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Abstract 
Calibration of numerical models has become indispensable to reduce error in the prediction of structural performance of 
complex systems. Several methods have been developed in the last two decades to calibrate a numerical model, but the 
implementation of these procedures in engineering common practice is still infrequent. Hence, the analysis-verification-
calibration-design cycle is usually incomplete. 

In this study, a 24-m high cross-shape truss structure was model using a finite elements approach. The finite element code 
was validated by comparing its results with other finite element models commercial package. The numerical model was 
calibrated using experimental data extracted from the actual structure located at the San Andrés Campus of the UCSC in 
Concepción, Chile.  

A grid of 9 accelerometers was installed in the actual structure to record its response due to ambient excitation. The modal 
frequencies were extracted from these acceleration records using two operational modal analysis methods (SSI and FDD), 
identifying 4 predominant frequencies. 

Model calibration was performed by applying a regional sensitivity method based on Monte-Carlo sampling. This method 
adjusts the modal response of the structural model to the real response measured on the actual structure. More than 2000 
realizations were performed. The parameters chosen for calibrating the model were the Young´s modulus, truss-section 
thickness, material´s equivalent density and support flexibility. The simulation was carried out using the Matlab Toolbox 
MCAT.  

A significant improvement of the model prediction was achieved by the calibration that allows a more precise estimation of 
structural performance under extreme conditions (wind gusts, earthquakes and others). 
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1. Introduction 

In the last 25 years, numerical modeling of structural systems has become a routinary task in engineering. In the 
present days, most of the engineering firms work with packages of software (usually based on finite element 
approaches) to assist the design of complex structures. This is certainly an advantage for the new generation of 
structural designers, but at the same time it becomes a risk, because rarely these models are validated by 
contrasting their predictions with experimental data. Hence, the analysis-verification-calibration-design cycle is 
usually incomplete. 

Models are required that properly predict the performance of existing structures under operational conditions and 
extreme loadings, such as strong winds, earthquakes and other imposed loads. There is an increasing concern 
regarding the development of techniques to determine the degree of coherence among model predictions and the 
actual behavior of structures.  

In the last two decades, a number of techniques have been developed to quantitatively determine the level of 
coherence between the actual structural response recorded in an existing building and the response predicted by 
numerical models [1-4]. One of the most attractive methods consists of measuring the dynamic response of a 
structure when it is excited by low intensity actions. These actions induce an elastic vibration response of the 
structure from which the modal properties (frequencies, mode shapes and damping) can be estimated by 
applying system identification techniques. This kind of analysis is known in the structural dynamics community 
as Modal Testing [5, 6]. The modal response recorded in the actual structure is compared to the modal response 
computed by the numerical model. Then, the differences identified between both sets of modal properties are 
minimized by modifying physical properties (geometry, density, mechanical properties, boundary conditions, 
etc.) within a range of plausible values. This is a process known as Model Updating [7, 8].  

Modal testing of large scale structures can be undertaken by performing ambient vibration tests. In an ambient 
vibration test, the excitation is not controlled but the signal can usually be considered as a stationary random 
process. Consequently, only the response data can be used to estimate the dynamic parameters. A number of 
system identification methods have been proposed to obtain the modal parameters from vibration measurements. 
These methods can be classified as time-domain techniques and frequency-domain techniques, and usually more 
than one method and both approaches are used in a project. 

Model updating is essentially a process of adjusting certain parameters of the finite element model. There are 
numerous sources of modeling error, some of them resulting from idealization assumptions or simplifications 
and others related to intrinsic discretization errors introduced by the numerical methods employed which cannot 
be corrected. However, there is another group of errors associated with incorrect assumptions about model 
parameters which can be minimized by adjusting the model [9]. The final goal of model updating is to produce 
corrected and verified models that can be used for a better prediction of structural response under extreme 
actions (earthquakes, wind-gusts, impacts or any other imposed excitation). It also will contribute to a more 
precise diagnosis of structural health and improve the design of the needed retrofit interventions.  

The simplest version of model updating is reducing model discrepancies by applying the trial-and-error method, 
but this procedure can be extremely laborious and highly ineffective for complicated systems. In recent years 
many efforts have been undertaken to automate this process and one of the most traditional approaches is based 
on the construction of sensitivity matrices [10].  

There is another group of techniques that have been effectively implemented in other fields of civil engineering, 
but they have not yet been explored in structural engineering. That is the case of regional sensitivity methods 
which are widely employed to calibrate hydrological and environmental models [11, 12]. The basic idea of 
regional sensitivity analysis is to partition the samples of an input factor with a potential influence on model 
behavior into two sub-samples (i.e., behavioral and non-behavioral) according to the given criterion (e.g. 
quantiles of the output distribution, or thresholds derived from observed behavior). If the distributions of the 
input factor in the two sub-samples are dissimilar, then that factor is considered influential in the model. The 
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comparison of the two distributions is done by a Smirnov test, in which the maximum distance between the two 
empirical cumulative distributions is taken as the sensitivity indicator [13]. 

In this study, a cross-shape truss structure was instrumented with a set of 9 accelerometers to record its response 
due to ambient excitations. The modal frequencies were extracted from these acceleration records using two 
operational modal analysis methods: Stochastic Subspace Identification [14] and Frequency Domain 
Decomposition [15]. A numerical model of the structure was generated by applying a finite elements approach 
The model was calibrated using experimental data extracted from the actual structure by applying a regional 
sensitivity method based on Monte-Carlo sampling.  

2. Structure Description 

The UCSC-Cross is located at the San Andres Campus of the Universidad Católica de la Santísima Concepción 
in Concepción, Chile. It was erected in 1987 for the visit of the Pope John Paul II to the City of Concepción, and 
it became an iconic image of the university since its foundation in 1991. It is a 24 m high truss structure built 
using two types of steel profiles with hollow circular section. Each cross arm is 4.5 m long. The external 
diameters of the sections are 64 mm and 89 mm. The thicknesses of the sections are unknown. The bar joints 
correspond to welded connections. The cross is connected by bolted base plates to individual foundation blocks. 
A general view of the structure is presented in Fig. 1 and the most significant dimensions are presented in Fig. 2. 

 

 

 

 

Fig. 1 – General view of UCSC-Cross  Fig. 2 – Main dimensions of UCSC Cross.  
(a) Front view, and (b) Plane view 

3. Numerical Model 

A numerical model was generated in Matlab following a classical finite element approach for tridimensional 
truss elements. The model was formed by 336 frame elements and 116 nodes, according to the detail presented 
in Table 1. The support of the structure was modeled as hinges connected to the base plate. Also, fully restricted 
supports were considered in others analyses, not showing significant differences in the results. The structural 
parameters considered for the initial model are shown in Table 2. 

The quality of the modeling approach was verified by comparing the results of a static and modal analysis 
performed in our Matlab code with the results of a model built in the commercial package of finite elements 
(SAP2000), showing an excellent correlation (differences smaller than 1% in stresses and deformations). 
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Table 1 – Elements of the numerical model 
  Elements diameter [mm] Number of elements 

Longitudinal elements 89 96 
Transversal elements 64 120 

Diagonal elements 64 112 
89 8 

Table 2 – Structural parameter considered for the initial numerical model 
Parameter Value 
Diameter 1 [mm] 89 
Diameter 2 [mm] 64 
Poisson´s ratio 0.3 
Young´s Modulus [MPa] 2.10*105 
Thickness 1 [mm] 1.5 
Thickness 2 [mm] 2.0 
Equivalent density [kg/m3] 7800 

Some results of the modal analysis is presented in Fig. 3. It can be observed that the first mode corresponded to a 
translational mode that activated lateral movement in the cross. The resonant frequency of mode 1 was 1.976 Hz. 
Mode 2 had a frequency equal to 1.992 Hz and mobilized the cross in the frontal direction. Mode 3 exhibited a 
torsional behavior and had a frequency of 3.456 Hz. Mode 4 corresponded to a lateral mode with a significant 
vertical component in the arms of the cross. The fourth modal frequency was 10.509 Hz. 

  

 

 
(a) Mode 1 
1.976 Hz 

(b) Mode 2 
1.992 Hz 

(c) Mode 3 
3.456 Hz 

(d) Mode 4 
10.509 Hz 

Fig. 3 – Modal response obtained by the finite element model 

4. Experimental Analysis 

As explained above, the cross is located in the San Andres Campus of UCSC, close by a main highway, and 
exposed to wind action. Considering that, an operational modal analysis approach was followed to identify the 
modal properties of the actual structure. A set of 9 accelerometers was attached to the structure to capture the 
vibration response due to ambient excitations. The accelerometers were triaxial capacitive transducers 
(MEMSIC CXL04GP3) connected by cables to a National Instrument data acquisition system (NI9205) 
controlled by a LabView code developed by the authors. Fig 4 presents the accelerometer installing process 
assisted by a team of Concepción Fire Brigade. Fig 5 indicates the location of the sensors in the actual structure. 
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Fig. 4 – Installation of accelerometers in the Cross Fig. 5 – Accelerometers distribution in the structure 

Structural response was recorded during 60 minutes with a sample rate of 400 Hz. Two measurements were 
performed per day during 8 days. These measuring campaigns were conducted at different hours in the day to 
assess the influence of intensity of the excitation source (vehicle traffic) in the structural response. Then, the 
records were then cleaned using a 5th order Butterworth low-pass filter with a 100 Hz cut off frequency.  

Two system identification methods were employed to determine the modal properties of the structure: Stochastic 
Subspace Identification (SSI) [14] and Frequency Domain Decomposition (FDD) [15]. The SSI method is a 
data-driven time-domain technique that employs QR-factorization and singular value decomposition to identify 
the matrices of the dynamic state-space model. Once the state space model of the structure is found, the modal 
parameters (natural frequencies, damping ratios and mode shapes) can be determined by eigenvalues 
decomposition. In general, it is not possible to determine the system order beforehand. Therefore, it is necessary 
to repeat the analysis with different system orders and verify the repeatability of the results. This procedure is 
performed by constructing stabilization charts (Fig 6). In this graph, the dots represent the fundamental 
frequencies of the poles (modes) identified considering models with different system orders (SO). The red dots 
are associated with those frequencies that are similar to another frequency detected in the precedent model, while 
the blue circles around the dots represents those poles that have a similar mode shape to a pole detected in the 
precedent model. Those poles that reveal stability in terms of similar frequencies and mode shapes (usually 
aligned in a vertical column in the graph) are very likely to represent vibration modes.  

The FDD method is an extension of the classical peak-picking method. The FDD algorithm assumes that the 
excitation applied on the structure has a random nature and can be described as a white-noise. Thus, the 
excitation power spectral density function (PSD) becomes a constant (S) and, consequently, the FRF peaks can 
be directly identified from the peaks of the response PSD function. These peaks on the PSD function are 
assumed as resonant frequencies and mode shapes can be determined by applying Single Value Decomposition 
procedures. The PSD curves obtained for this experiment are presented in Fig 7. 
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Fig. 6 – Stabilization charts of SSI metdod Fig. 7 – Power spectral density curves of FDD method 

The frequencies were identified from those systematically repeated poles in the different tests and detected by 
both system identification techniques. The first three modal frequencies detected by the structure are presented in 
Table 3. These frequencies were paired with the frequencies predicted by the numerical model paying attention 
to the predominant displacements activated for each mode and the mass participation calculated by the numerical 
model. It can be noted that the first experimentally detected frequency was paired with two frequencies of the 
numerical model. This analyst’s decision was made considering on the similitude between these two numerical 
modes, and assuming that our system identification method was unable to decouple these modes. This judgement 
was based on the main analyst experience and it was demonstrated to be correct, because during the calibration 
other mode pairing choices were studied with deficient results. 

Table 3 – Experimentally detected and numerically calculated modal frequencies  
  Mode 1 Mode 2 Mode 3 Mode 4 
Numerical model (Hz) 1.976 1.992 3.456 10.509 
Experimental FDD (Hz) 1.172 2.637 5.469 
Experimental SSI (Hz) 1.104 2.687 5.567 

5. Model Calibration 

The model calibration was performed using a regional sensitivity method based on a Monte-Carlo sampling 
procedure for the structural parameters. This method randomly selected combinations of physical parameters that 
may affect the structural response from a range of plausible values. A number of simulations were performed 
using these inputs parameters and the simulated responses were compared to the experimental response. The 
similitude was assessed using a frequency error function known as Mean Absolute Relative Error (MARE) that 
is described by Eq. (1): 

 
(1) 

where fcal  is the modal frequency calculated by the numerical model, fexp is the modal frequency experimentally 
identified by the modal tests and n is the number of modal frequencies considered for the comparison. A smaller 
value of MARE implies a better level of similitude between the calculated and the experimentally observed 
response. 

The above described procedure was performed by the Matlab Toolbox Monte-Carlo Analysis Toolbox (MCAT) 
[16]. This toolbox allowed the analyst to perform a huge number of simulations given a set of input parameters 
and a range of values for each of them. After each simulations the MARE was calculated and stored by the 
software. The results of these simulations in terms of MARE values and the sensibility of MARE to the 
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parameter value were graphically displayed as it can be seen in Fig 8. With this information on sight the 
parameter ranges were progressively narrowed until the model became insensitive to the parameter in the range 
of analysis. That optimal solution was then considered as a possible solution of the problem. However, this 
solution might be not unique and its physical meaning needed to be validated. 

In this study, the parameters selected as input values to be variated in the simulations were the Young´s Modulus 
of the steel bars, the equivalent density of elements considering the mass of steel and the paint covering, and the 
thicknesses of the tubular elements. These parameters were selected because there were high levels of 
uncertainty in their value and the model demonstrated to be sensitive to them. Other parameters were discarded 
as calibration parameters because their values were well known or measurable (bar element diameters), or they 
did not affect significantly the structural response (Poisson´s ratio). Therefore, they were selected as constant. 
Two thousand simulations were performed and the values chosen for the fixed parameters and the range of 
values considered for the variable parameters are presented in Table 4.  
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Fig. 8 – MARE value and Cummulative probability charts for impusts parametes. (a) Young’s modulus,  
(b) equivalent density, (c) thikness of 89 mm diameter bars and (d)  thikness of 64 mm diameter bars. 
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Table 4 – Input parameter considered for the regional sensitivity analysis 
Parameter Value / Range of values 
Diameter 1 [mm] 89.0 
Diameter 2 [mm] 64 
Poisson´s ratio 0.3 
Young´s Modulus [MPa] 1.89*105 ~ 2.31*105 
Thickness 1 [mm] 3 ~ 5 
Thickness 2 [mm] 3 ~ 5 
Equivalent density [kg/m3] 7700 ~ 9400 

In Figure 8, the plots on the left represents the value of MARE given different values of the parameters. Each dot 
represents the results of one simulation and the dot in magenta color corresponds to the regional minimum of 
MARE. Each line in the plots on the right show the cumulative probability associated to each input parameter 
grouped in deciles. The magenta curve represents the decil of the best simulations. The more stepped (or less 
linear) is this curve, the more significant is the effect of a parameter variation in the simulated response. 

In the chart presented in Fig. 9, the grey zone corresponds to the 95% confidence zone for the frequencies 
calculated by the model with the initial range of values given in Table 3. Fig 10 shows the same chart, but this 
time considering the final range of values considered for adjusting the model. In both charts, the blue dots 
represents the experimentally determined frequencies. As it can be seen, the final solution was able to find 
satisfactory solutions only for the first three frequencies, but it was unable to match an adequate response for the 
fourth frequency. Also, a fifth experimentally detected frequency was matched by the calibrated model. 

         
0

5

10

15

20

25
Model output and associated confidence limits (UCI=0.95, LCI=0.05)

 

 
Observed
Confidence Limits

1

 

 
Fig. 9 – 95% confidence response zone for the parameters considering initial range of values  
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Fig. 10 – 95% confidence response zone for the parameters considering optimal range of values  

8 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

The optimal parameters obtained from the above described calibration process is presented in Table 5. The 
numerical model results obtained by applying these parameter values are shown in Table 6. It can be seen that 
the MARE in the initial numerical model was 68% and the prediction was significantly improved giving an 
updated model which MARE was 37%. 

Table 5 – Parameter obtained after the calibration 
Parameter Value / Range of values 
Diameter 1 [mm] 89  
Diameter 2 [mm] 64 
Poisson´s ratio 0.3 
Young´s Modulus [MPa] 1.89*105  
Thickness 1 [mm] 3 
Thickness 2 [mm] 5 
Equivalent density [kg/m3] 9400 

Table 6 – Experimentally detected and numerically calculated modal frequencies  
at the beginning and end of the analysis 

  Mode 1 Mode 2 Mode 3 Mode 4 MARE 
Experimental (Hz) 1.133 1.133 2.662 5.518  
Initial numerical model (Hz) 1.976 1.992 3.456 10.509  
Initial numerical model error 74% 76% 30% 90% 68% 
Updated numerical model (Hz) 1.530 1.554 3.221 8.532  
Updated numerical model error 35% 37% 21% 55% 37% 

 

To complete the calibration process a further adjustment was incorporated to the model. The support conditions 
at the base of the cross were modeled as uniaxial springs that acted in the vertical direction. A stiffness equal to 
4.75*106 [N/m] was assigned to these springs which was considered as reasonable for the kind of soil identified 
at the base of the structure and the size of the foundation blocks. This second stage calibration was performed 
manually, considering that the other parameters where already optimized. The final outcome of this calibration 
process is presented in Table 7. It can be seen that the MARE was improved from 68% at the initial model to 
11% in the final calibrated model. 

Table 7 – Experimentally detected and final numerically calculated modal frequencies  

  Mode 1 Mode 2 Mode 3 Mode 4 MARE 
Experimental (Hz) 1.133 1.133 2.662 5.518  
Final numerical model (Hz) 1.159 1.172 3.082 6.753  
Final numerical model error 2% 3% 16% 22% 11% 

6 Conclusions 
The modal frequencies of the structure were satisfactorily identified by two system identification methods: SSI 
and FDD. Both techniques were able to identify the same modes with a maximum relative error smaller than 6%. 

The numerical model of the structure constructed using a Matlab code was compared to a model elaborated 
using a commercial package of software (SAP 2000), obtaining the same results when subjected to static load. 
Also, the modal response predictions were coincident.  

Even though the model was carefully generated using the best available information, the model predictions of 
the modal response did not coincide with the response measured on the actual structure. The average difference 
between the numerical and experimental frequencies was 68%, considering just the first four modes. 
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The regional sensitivity method implemented for calibrating the model demonstrated to be efficient in adjusting 
the numerical predictions. The mean absolute relative error for the calibrated model was reduced to 37%. This 
calibration process imposed a 10% reduction in the Young´s Modulus. The 89 mm diameter bars increased their 
thickness in 200% and the 64 mm diameter bars increased their thickness in 250%. The equivalent density that 
considers the mass of steel and the paint cover was increased in 20%. 

A further calibration was performed by adding springs in the structure supports, replicating the soil stiffness. As 
results of this process the model error was reduced to 11%. 

The result of the calibration process was considered as satisfactory, because the model error was reduced by 
modifying the structural parameters within a range of values that were physically reasonable. This new 
calibrated mode can be now used for more precisely predicting the response of the structure under extreme 
action.  

The study presented here demonstrated that the regional sensitivity method based on a Monte-Carlo sampling 
was an effective tool for calibrating numerical models of structural systems. 
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