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Abstract 
A 3-story 4-bay steel moment resisting frame (MRF) is analyzed using the finite element analysis (FEA) software 
OpenSees. The frame is subjected to dynamic analysis, based on selected ground motions of past earthquakes, considering 
input uncertainties. Based on the fact that time history analysis is time consuming, probabilistic FEA may not be practical 
for dynamic analysis problems. Therefore, the probabilistic FEA is implemented using the multiplicative dimensional 
reduction method (M-DRM), which is automated in OpenSees using the Tcl programing language, in order to calculate the 
statistical moments of the response, e.g., mean and variance. This study shows that M-DRM can be considered as an 
efficient alternative method for the probabilistic analysis of these types of problems. In addition, this study examines how 
the same input uncertainties affect the structural response, e.g., inter-story drift, when the structure is subjected to different 
ground motions. First, the frame is subjected to single ground motion records under uncertainties in material properties. The 
results in terms of coefficient of variation (COV) indicate that the frame’s structural response is not primarily affected from 
the material variations. However, considering as a random variable the applied mass in each node, the results indicate that 
the structural response uncertainty is slightly increased and it is observed that the COV of the inter-story drift can be highly 
increased for a specific earthquake. Taking into account that repeated earthquakes have occurred at brief intervals of time, 
this study also examines the structural response of an already deformed frame subjected to a subsequent ground motion 
under input uncertainties. Therefore, the frame is subjected to two repeated earthquakes, i.e., combining the previous single 
ground motions. The results indicate that the material uncertainty does not seem to affect the inter-story drift variance, while 
the mass uncertainty does. However, more earthquake scenarios are to be examined, since the proposed framework can be 
easily applied for probabilistic studies of structures subjected to single and/or repeated earthquakes under input 
uncertainties. 
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1. Introduction 
Finite element analysis (FEA) is widely used for evaluating the structural performance. However, structural 
performance may depends on the variability of the input parameters, i.e., material properties, geometry, applied 
forces, etc., since these values might never be the same even under seemingly identical conditions [1]. Thus, 
uncertainties can play a major role when it comes to assess the performance of a structure, which can be 
classified in two main categories known as aleatory and epistemic [2]. For dynamic analysis problems, aleatory 
uncertainties can be referred to the earthquake loading randomness and epistemic uncertainties can be referred to 
randomness due to not complete knowledge, e.g., in material properties, model parameters, analysis methods, 
etc. [3]. Therefore, the structural behavior under seismic loads can be influenced due to variabilities in both 
ground motion records and scientific assumptions/omissions [4]. Although, the earthquake loading is considered 
as the most dominant source of uncertainty, research has only partial addressed several epistemic uncertainties 
[3], while considering epistemic uncertainties for repeated earthquakes scenarios has not been of interest yet. 

Probabilistic analysis can be used for incorporating these uncertainties with the FEA, because it allows 
characterizing the deterministic quantities of interest as random variables [5]. Monte Carlo simulation (MCS) is 
considered as an easy to implement probabilistic analysis technique, where the FEA code is called repeatedly. 
However, this approach can be highly computational demanding due to the required repeated analyses [6]. 
Considering that the time variant nature of the dynamic analysis also requires an enormous computational time 
[7], the MCS computational cost might be prohibited for analyzing structures subjected to single and/or repeated 
ground motion records under uncertainties. The multiplicative dimensional reduction method (M-DRM) 
provides fairly accurate results within a feasible computational time for the probabilistic FEA of structures 
subjected to time history analysis [8]. Thus, M-DRM is adopted in this study for the nonlinear FEA of a steel 
moment resisting frame (MRF) subjected to both single and repeated earthquakes under input uncertainties. 

The steel MRF provides primarily resistance to the lateral load due to the rigid beam-to-column 
connection, which does not allow the frame to displace laterally without the beams and columns having bend [9]. 
Thus, the MRFs are popular in high seismicity areas for several reasons, such as high ductility and architectural 
versatility. However, the 1994 Northridge earthquake resulted to more than 100 failures of steel beam-column 
connections [10], while the 1995 Kobe earthquake highlighted the severity of the problem [11]. Apart the 
principal earthquake effect on the structure, steel MRFs can experience further damage when subjected to one or 
more aftershocks, within a short period of time following the mainshock [12]. Thus, the current study will also 
investigate the effect of repeated earthquakes on the structural response due to input uncertainties. 

2. Multiplicative dimensional reduction method 
In probabilistic FEA the structural response, e.g., inter-story drift, is evaluated as a function of several input 
variables as 𝑌 = ℎ(𝐱), where Y is the FEA response and 𝐱 is the vector of input random variables, i.e., 𝐱 =
x1, x2, … , xn. Using M-DRM the response function is approximated as: 

 𝑌 = ℎ(𝐱) ≈ ℎ0
(1−𝑛) × �ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

 (1) 

where, ℎ0 is the response when all random variables are fixed to their mean value, 𝑛 is the number of 
random variables and ℎ𝑖(𝑥𝑖) is an 𝑖𝑡ℎ one-dimensional cut function (𝑖 = 1,2, … , 𝑛). Then, a 𝑘𝑡ℎ moment of the 
response function can be approximated using the previous M-DRM approximation as: 

 𝐸[𝑌𝑘] ≈ 𝐸 ��ℎ0
(1−𝑛) × �ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

�
𝑘

� (2) 

where, 𝐸[. ] is the mathematical expectation operation, e.g., 𝐸[𝑌] is the mean value for 𝑘 = 1. For 
independent input random variables Eq. (2) can be written as: 
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 𝐸[𝑌𝑘] ≈ ℎ0
𝑘(1−𝑛) �𝐸��ℎ𝑖(𝑥𝑖)�

𝑘�
𝑛
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Then, considering the mean and the mean square of an 𝑖𝑡ℎ cut function as 𝜌𝑖 = 𝐸[ℎ𝑖(𝑥𝑖)] and 𝜃𝑖 =
𝐸 ��ℎ𝑖(𝑥𝑖)�

2� , respectively, and with the use of Eq. (3), the mean (𝜇𝑌) and mean square (𝜇2𝑌) of the response 
are approximated as: 

 

𝜇𝑌 = 𝐸[𝑌] ≈ ℎ0
(1−𝑛) × �𝜌𝑖

𝑛

𝑖=1

 

𝜇2𝑌 = 𝐸[𝑌2] ≈ ℎ0
(2−2𝑛) × �𝜃𝑖

𝑛

𝑖=1

 

(4) 

The evaluation of the mean (𝑘 = 1) or any other 𝑘𝑡ℎ moment of the response requires the calculation of a 
𝑘𝑡ℎ moment of all the cut functions through one dimensional integration. This integration is optimized using the 
Gauss quadrature formulas as: 

 𝐸 ��ℎ𝑖(𝑥𝑖)�
𝑘� = � [ℎ(𝑥𝑖)]𝑘

𝑋𝑖
𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖 ≈�𝑤𝑗�ℎ𝑖�𝑥𝑗��

𝑘
𝐿

𝑗=1

 (5) 

where, 𝐿 is the number of the Gauss quadrature points, 𝑥𝑗 and 𝑤𝑗 are the coordinates and weights, 
respectively, of the Gauss quadrature points (𝑗 = 1,2, … , 𝐿) and ℎ𝑖 (𝑖 = 1,2, … ,𝑛) is the response when an 𝑖𝑡ℎ 
cut function, i.e., input random variable, is set at a 𝑗𝑡ℎ Gauss quadrature point. Then, the variance of the response 
is calculated as [2]: 

 𝑉𝑌 = 𝜇2𝑌 − (𝜇𝑌)2 ≈ (𝜇𝑌)2 × ���
𝜃𝑖
𝜌𝑖2

𝑛

𝑖=1

� − 1� (6) 

The standard deviation of the response (𝜎𝑌) is then calculated as the square root of the variance and the 
coefficient of variation (COV) of the response is finally calculated as the ratio of the standard deviation to the 
mean. The coefficient of variation is dimensionless and is considered as positive even though the mean may be a 
negative value. Small value of the response’s COV indicates a small amount of uncertainty in the response due 
to the input random variables [13]. 

The benefit of M-DRM is the low computational cost since M-DRM combined with the Gaussian 
quadrature reduces remarkably the total number of evaluations of the response function. M-DRM requires 
(𝑛𝐿 + 1) function evaluations to calculate all the moments, where 1 corresponds to the function evaluation for 
which all the input random variables are set equal to their mean values. For instance, a problem with 10 random 
variables and a 5-point Gauss quadrature scheme will require 51 function evaluations. 

3. Steel moment resisting frame 
A 3-story 4-bay structure is selected from literature [14], which represents a hypothetical office building located 
in Vancouver (BC, Canada), has a symmetric structural layout and consists of four steel MRFs located at its 
perimeter (Fig. 1). All 3-stories and 4-bays are each 3.96 m high and 9.14 m wide (center-to-center), 
respectively. Only the East-West direction of the MRF is considered in this study, resulting to the 2D analysis of 
a 3-story 4-bay steel MRF (Fig. 2). The columns of the steel MRF are fixed to the ground level, while it is 
assumed to have rigid beam-to-column connections. The steel MRF is connected with a fictitious leaning column 
through rigid links at each story level, in order to take into account the effect of the interior gravity frames for 
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the FEA. The seismic weight distribution is shown in Fig. 2, from which the seismic weight is equal to 4567 kN 
for the floor 2 and 3 and equal to 4850 kN for the roof. 

 
Fig. 1 – Plane view of the 3-story 4-bay building showing the moment resisting frames and the gravity frames 

 
Fig. 2 – Side view of East-West direction of the steel moment resisting frame showing geometry, seismic weight 

distribution, node numbers and element numbers (in parenthesis) 

The steel MRF consists of 27 wide-flange section members, with 345 MPa grade steel and 248 MPa grade 
steel for the columns and beams, respectively, where this difference in the grade steel is based on ductility 
consideration [14]. In the original study [14], a capacity design optimization was performed resulting to an 
optimum design of W310x158 for exterior columns, W360x179 for interior columns, W610x82 for floor 2 
beams, W530x66 for floor 3 beams and W460x82 for roof beams. The basic dimensions of each selected cross 
section are presented in Table 1, while more information can be found in the Canadian Handbook of Steel 
Construction [15]. The gravity columns were considered as hollow structural sections HSS254x254x13 [15], 
while the leaning column has a cross sectional area equal to 89,000 mm2 and a moment of inertia equal to 
845×106 mm4 [14]. 

The frame is modeled and analyzed using the OpenSees FEA software [16]. The force-based beam-
columns elements are employed (with five Gauss-Labbato numerical integration points) and the steel behavior is 
modeled using the bilinear elastoplastic stress-strain relationship with 5% hardening [17]. The summation of the 
mass of all the members connected to a joint result to the lumped mass at a joint of the frame. For the time 
history analysis are selected the same ground motions with the original study [14]. These ground motions were 
taken from the PEER Strong Motion Database (http://peer.berkeley.edu/smcat/) and were scaled based on the 
design response spectrum for Vancouver, as specified by the National Building Code of Canada [18], such that 
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their response spectra should be equal or bigger than the design response spectrum throughout the period of 
interest. The adopted ground motions together with the scale factors are shown in Table 2. 

Table 1 – Beams and columns cross sections 

Variable Steel section Depth  

(mm) 

Flange Width  

(mm) 

Flange Thickness  

(mm) 

Web Thickness  

(mm) 

Exterior columns W310x158 327 310 25.1 15.5 

Interior columns W360x179 368 373 23.9 15.0 

Floor 2 beams W610x82 599 178 12.8 10.0 

Floor 3 beams W530x66 525 165 11.4 8.9 

Roof beams W460x82 460 191 16.0 8.9 

 

Table 2 – Selected earthquakes records for the steel MRF 

Earthquake Station Magnitude PGA (g) Record duration (sec) Scale Factor 

1979 Imperial Valley El Centro Array #12 6.5 0.143 39.01 2.1 

1989 Loma Prieta Belmont Envirotech 6.9 0.108 39.99 4.5 

1989 Loma Prieta Presidio 6.9 0.2 39.985 1.5 

4. Probabilistic analysis  
4.1 Single earthquakes under material uncertainty 
First, are considered as uncertain the material properties only, i.e., the modulus of elasticity E, the yield strength 
fy and the hardening ratio b (ratio between post-yield tangent and initial elastic tangent). Each member of the 
steel MRF is assigned one random variable for each material property. These random variables are independent 
and identically distributed across the steel MRF members (Table 3). Thus, in total there are 81 (27×3) 
independent input random variables. The fifth-order Gauss Hermite integration scheme is adopted, resulting to 
the M-DRM method with 81 × 5+1 = 406 FEA trials. The frame is subjected to each of the three previous 
earthquakes, considering the same input material uncertainties. In this study, the response of the steel frame in 
terms of inter-story drift is recorded. The M-DRM approximation is used for the calculation of the inter-story 
drift statistics (Table 4). The results indicate that the material uncertainty does not play a significant role to the 
response variance, since it has been estimated a coefficient of variation (COV) less than 1.5% for each time 
history analysis. 

Table 3 – Statistical properties for material random variables 

Parameter Distribution Mean COV Reference 

E of steel columns and beams (27 RVs) Lognormal 200,000 N/mm2 5.0% [19] 

fy of steel columns (15 RVs) Lognormal 345 N/mm2 10% [19] 

fy  of steel beams (12 RVs) Lognormal 248 N/mm2 10% [19] 

b of steel columns and beams (27 RVs) Lognormal 0.05 10% [19] 

Notes: RVs = random variables; COV = coefficient of variation 
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Table 4 – Inter-story drift statistics: Steel MRF subjected to single earthquakes under material uncertainty 

 El Centro Belmont Presidio 

Location Mean (%) COV (%) Mean (%) COV (%) Mean (%) COV (%) 

Story 1 1.40 1.25 1.08 1.00 1.26 0.89 

Story 2 2.39 0.51 1.67 1.16 2.02 0.26 

Story 3 2.08 0.95 2.43 0.74 2.01 0.57 

 

4.2 Single earthquakes under mass uncertainty 
The mass at each node of the steel MRF is considered as uncertain, only. Each node takes the half mass of each 
element, which is framing to that node, and this value is considered as the mass mean value for each node. The 
dead loads, which form the mass of a structure, can be considered as random variables with a COV equal to 0.1 
[20]. Thus, the mass at each node is assumed to have a lognormal distribution with a 10% COV, resulting to 18 
(18×1) independent input random variables in total, since they are not correlated. The M-DRM method requires 
18 × 5+1 = 91 FEA trials, since the fifth-order Gauss Hermite integration scheme is adopted. The inter-story 
drift statistics (Table 5) show an increased COV compared to the material uncertainty results. Especially, for the 
earthquake 1989 Loma Prieta (Belmont Envirotech) the COV of the story 2 inter-story drift is 13.70%. Thus, the 
mass uncertainty may play an important role to the response uncertainty compared to the material uncertainty. In 
addition, the results indicate the importance of the ground motion selection in these types of analyses, since there 
can be a significant variation to the COV of the response. For example, for the 1989 Loma Prieta earthquake the 
inter-story drift of story 2 has a 2.05% COV using the Presidio station ground motion, while this COV is highly 
increased to 13.70% using the Belmont Envirotech station ground motion. 

Table 5 – Inter-story drift statistics: Steel MRF subjected to single earthquakes under node mass uncertainty 

 El Centro Belmont Presidio 

Location Mean (%) COV (%) Mean (%) COV (%) Mean (%) COV (%) 

Story 1 1.41 5.92 1.11 4.60 1.26 1.80 

Story 2 2.37 5.12 1.68 13.70 2.03 2.05 

Story 3 2.05 7.96 2.41 7.85 2.01 2.75 

 

4.3 Repeated earthquakes under material uncertainty 

It has been observed that structures can be subjected to repeated earthquakes, which may occur at brief time 
intervals [21]. Thus, the steel MRF is subjected to two repeated earthquakes, i.e., combining the aforementioned 
scaled ground motion records (Fig. 3). A time gap, i.e., zero ground acceleration, is applied between the two 
hypothetical seismic events, in order to cease the moving of the structure due to damping [22]. This time gap is 
assumed to be equal to 40 seconds [21]. For instance, the hypothetical sequence for applying the 1979 Imperial 
Valley (El Centro Array #12) earthquake followed by the 1989 Loma Prieta (Belmont Envirotech) is shown in 
Fig. 3, where t denotes the duration of each ground motion record (Table 2). 
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Fig. 3 – Seismic sequence of scaled ground motion records 

 

The steel MRF is subjected to these repeated earthquakes considering as random variables the same 
material properties with the previous analyzed single event (Table 3). M-DRM is implemented with 406 FEA 
trials for each seismic sequence. It is observed that there is almost no increase in the COV of the inter-story drift 
(Table 6), compared to the single event results under material uncertainty (Table 4). Thus, the total response 
uncertainty is not primarily affected by the material uncertainty, for the repeated earthquakes scenarios. 
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Table 6 – Inter-story drift statistics: Steel MRF subjected to repeated earthquakes under material uncertainty 

 El Centro 

and Belmont 

Belmont and 

El Centro 

El Centro 

and Presidio 

Presidio and 

El Centro 

Belmont and 

Presidio 

Presidio and 

Belmont 

Location Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Story 1 1.40 1.25 1.31 1.12 1.40 1.43 1.50 1.57 1.16 0.92 1.26 0.89 

Story 2 2.39 0.51 2.23 0.76 2.39 0.51 2.55 0.51 1.87 0.55 2.02 0.26 

Story 3 2.28 0.83 2.43 0.74 2.17 0.89 2.25 0.84 2.43 0.74 2.29 0.82 

 

4.4 Repeated earthquakes under mass uncertainty 

The steel MRF is subjected to the previous hypothetical scenarios of repeated earthquakes, considering only the 
node masses as random variables, similar to the previous analyzed single event (Section 4.3). The inter-story 
drift statistics (Table 7) have an increased COV compared to the material uncertainty results under repeated 
earthquakes. Applying the 1989 Loma Prieta (Belmont Envirotech) earthquake followed by the 1979 Imperial 
Valley (El Centro Array #12) predicts the biggest COV for the inter-story drift, indicating the importance of the 
selected earthquakes and the major role of the mass uncertainty to the outcome response. In addition, the 
selected order of the applied ground motion record, i.e., which earthquake will be applied first and which second, 
does not seem to highly affect the uncertainty of the output response. 

Table 7 – Inter-story drift statistics: Steel MRF subjected to repeated earthquakes under mass uncertainty 

 El Centro 

and Belmont 

Belmont and 

El Centro 

El Centro 

and Presidio 

Presidio and 

El Centro 

Belmont and 

Presidio 

Presidio and 

Belmont 

Location Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Mean 

(%) 

COV 

(%) 

Story 1 1.41 5.92 1.32 8.09 1.42 5.33 1.50 4.67 1.17 3.09 1.26 1.64 

Story 2 2.37 5.12 2.22 7.97 2.37 5.04 2.53 3.95 1.89 3.32 2.03 2.05 

Story 3 2.32 5.81 2.41 7.50 2.17 4.76 2.21 6.17 2.41 7.82 2.27 7.29 

 

4.5 Computational time 

The single time history analysis of structures usually requires an enormous computational cost. Thus, the 
probabilistic dynamic analysis of repeated earthquakes can be a highly demanding computational task. M-DRM 
seems to overcome this challenge, since the required trials can be performed within a feasible computational 
time for both single (Table 8) and repeated earthquakes (Table 9), using a personal computer with Intel i7-3770 
3rd Generation Processor and 16GB of RAM. For instance, M-DRM with 406 FEA trials and 91 FEA trials 
requires less than 12.5 hours and 3 hours, respectively, for each hypothetical scenario of repeated ground motion 
records. Therefore, M-DRM can be considered as an efficient tool for the probabilistic FEA of structures 
subjected to single and/or repeated earthquakes. 
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Table 8 – Computational time using M-DRM: Single earthquakes 

 Computational time 

Single 

Earthquakes 

Material uncertainty  

(406 FEA trials) 

Mass uncertainty  

(91 FEA trials) 

El Centro 104 min 25 min 

Belmont 150 min 37 min 

Presidio 98 min 35 min 

 

Table 9 – Computational time using M-DRM: Repeated earthquakes 

 Computational time 

Repeated 

Earthquakes 

Material uncertainty  

(406 FEA trials) 

Mass uncertainty  

(91 FEA trials) 

El Centro and Belmont 717 min 122 min 

Belmont and El Centro 737 min 122 min 

El Centro and Presidio 667 min 134 min 

Presidio and El Centro 660 min 131 min 

Belmont and Presidio 660 min 172 min 

Presidio and Belmont 645 min 168 min 

 

5. Conclusions 
This study presents the multiplicative form of dimensional reduction method (M-DRM), for the probabilistic 
analysis of structures subjected to both single and repeated earthquakes. Based on the Gauss quadrature scheme, 
M-DRM reduces significantly the required FEA trials. Thus, the statistical moments (mean and variance) of the 
structural response are obtained within a feasible computational time, making M-DRM an efficient alternative 
for the probabilistic analysis of high computational demanding problems. In this study, the M-DRM trials have 
been automated in OpenSees using Tcl programming, where the Gauss quadrature scheme requires the change of 
only one random variable per FEA trial. Therefore, for a small number of input random variables, M-DRM trials 
can be executed without using a programming language to automate the procedure within the deterministic FEA 
software. Taking advantage of the M-DRM computational efficiency, several dynamic analyses of a steel 
moment resisting frame (MRF) are performed considering as random variables the material properties and the 
node mass. The results indicate that the response variance, in terms of coefficient of variation (COV), is not 
primarily affected by the material uncertainty of the steel MRF subjected to single or repeated earthquakes. 
However, mass uncertainty may affect the variance of the structural response for a specific single earthquake 
scenario, i.e., for the 1989 Loma Prieta (Belmont Envirotech) the COV of the story 2 inter-story drift was highly 
increased to 13.70%. The mass uncertainty also may affect the variance of the structural response for the 
repeated ground motion scenarios. For example, applying the Belmont Envirotech station ground motion record 
followed by the Presidio, the COV of the story 3 inter-story drift was calculated equal to 7.82%. In general, mass 
uncertainty mostly contributes to the variance of the inter-story drift, compared to the material uncertainty. 
However, more single and repeated earthquakes scenarios under input uncertainties are to be examined. 
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