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Abstract 
Significant advances have been established in the last decade in seismic-risk decision management through development of 
assessment and design methodologies based on detailed socio-economic metrics quantifying performance, such as 
casualties, repair costs and downtime. The associated design approaches are particularly relevant for supplemental seismic 
protective devices, for which a comprehensive socio-economic justification is frequtnly necessary to promote adoption. A 
probabilistic framework for the cost-effective design of such devices considering multiple criteria related to their life-cycle 
performance is presented in this contribution, focusing on application to fluid viscous dampers. The framework is based on 
nonlinear time-history analysis for describing structural behavior, an assembly-based vulnerability approach for quantifying 
earthquake losses, and on characterization of the earthquake hazard through stochastic ground motion modeling. In this 
setting life-cycle performance is described through the expected value of some properly defined risk consequence measure 
over the space of the uncertain parameters (i.e. random variables) for the structural system and the seismic hazard.  

The main objective considered for quantifying life-cycle performance is the expected life-cycle cost, composed of the 
upfront protective system cost and the present value of future earthquake losses. To offer greater versatility and incorporate 
risk-aversion attitudes in the decision making process, additional objectives are examined, corresponding to consequences, 
such as repair cost or downtime, with specific probability of exceedance over the lifetime of the structure. This explicitly 
accounts for low likelihood but high impact events, and ultimately leads to a multi-criteria design setting, representing 
competing objectives to the life-cycle cost and allowing to incorporate resilience and sustainability considerations in the 
design process. To facilitate adoption of complex numerical and probability models, a computational framework relying on 
kriging surrogate modeling is established for performing the resultant multi-objective optimization. The surrogate model is 
formulated in an augmented input space, composed of both the uncertain model parameters and the design variables 
(controllable device parameters) and therefore is used to simultaneously support both the uncertainty propagation 
(calculation of risk integrals for the life-cycle performance) and the design optimization. As an illustrative example the 
retrofitting of a three-story building with nonlinear fluid viscous dampers is examined. 

Keywords: Life-cycle cost; multi-objective design; kriging metamodeling; fluid viscous dampers; risk-averse design 
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1. Introduction 

In the last decades significant advances have been established in seismic-risk decision management through 
development of assessment and design methodologies based on detailed socio-economic metrics quantifying 
performance, such as casualties, repair costs and downtime [1]. Within this context, the life-cycle cost analysis 
of structures has been becoming increasingly popular. This analysis considers in the decision making the 
contributions from the initial (upfront) cost as well as the expected direct and indirect losses due to future 
seismic events, and has motivated researchers to look into the life-cycle cost-based assessment/design of 
structures [2], especially in the context of design of supplemental seismic protective devices [3, 4]. In the latter 
case life-cycle analysis can provide a comprehensive justification for the proposed seismic upgrades, which 
constitutes a necessary step for adoption of such alternative earthquake-protective measures. 

The aforementioned research efforts for life-cycle design of supplemental protective devices have focused, 
though, on adoption of a single objective, mainly the total life-cycle cost. Studies that have considered multiple 
criteria are limited [5, 6] and have examined only simplified metrics for representing the competing objectives. It 
is becoming, though, increasingly evident [7, 8], that seismic-risk decision management can greatly benefit from 
consideration of advanced metrics for quantifying life-cycle performance, especially criteria that can describe 
risk-averse attitudes. Of course, adoption of such metrics comes at the expense of an increased computational 
burden for their accurate quantification/calculation and for supporting the associated design optimization. This 
paper presents a computationally efficient, multi-objective design framework that can facilitate the adoption of 
enhanced life-cycle performance criteria for the competing objectives. Though the framework is general, the 
focus of the application is on fluid viscous dampers which represent a popular seismic upgrade strategy. 

The approach is based on nonlinear time-history analysis for describing structural behavior, an assembly-
based vulnerability approach for quantifying losses and on characterization of the hazard through stochastic 
ground motion modeling. The main objective considered for quantifying life-cycle performance is the expected 
life-cycle cost, composed of the upfront protective system cost and the present value of future earthquake losses. 
To offer greater versatility and incorporate risk-aversion attitudes in the decision making process, additional 
objectives are examined, corresponding to consequences, such as repair cost or downtime, with specific 
probability of exceedance over the lifetime of the structure. This explicitly accounts for low likelihood but high 
impact events, and ultimately leads to a multi-criteria design setting, representing competing objectives to the 
life-cycle cost while allowing to incorporate resilience and sustainability considerations in the design process. To 
facilitate adoption of complex numerical and probability models, a computational framework relying on kriging 
surrogate modeling is described for performing the resultant risk assessment and multi-objective optimization. 

2. Seismic risk quantification and life-cycle performance characterization 

2.1 Seismic risk quantification 

The probabilistic framework from [4] is adopted to describe seismic risk. The framework, shown in Fig. 1, is 
based on adoption of appropriate models for the seismic excitation (hazard analysis), structural system 
(structural analysis) and loss evaluation (damage and loss analysis), and on assigning appropriate probability 
distributions to the parameters that are considered as uncertain in these different models. The combination of the 
first two models within this augmented model description of Fig. 1 provides the structural response, denoted z 
herein, and this is established in terms of nonlinear time-history analysis and ultimately approximated through a 
kriging surrogate model as will be detailed later. The loss evaluation model quantifies, then, earthquake 
performance in socio-economic terms based on that response though an assembly-based vulnerability approach. 
Seismic excitation (acceleration time-histories) is described through a stochastic ground motion modeling 
approach, established by describing separately and then combining the broadband (high-frequency) and near-
fault (long-period) components of the excitation. The first component is represented through a point source 
stochastic model [9] that entails modulation of a high-dimensional white noise sequence wW, through 
functions that address the frequency and time-domain characteristics of the excitation. Near-fault characteristics 
are incorporated through the velocity pulse model proposed by Mavroeidis and Papageorgiou [10]. 
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Fig. 1 – (a) Augmented model for life-cycle performance (seismic risk) quantification and (b) its approximation 

through a kriging surrogate model. 

To formalize this modeling let θ  lying in Θ n  , denote the augmented vector of continuous uncertain 
model parameters with probability density functions (PDFs) denoted as p(θ), where Θ denotes the space of 
possible parameter-values. This vector includes all the different parameters (either seismological, or structural or 
ground motion related) that are considered as uncertain. The random characteristics in the model description 
involve, additionally, the high-dimensional white noise sequence wW utilized in the stochastic ground motion 
model, with probability distribution function p(w), and a dicrete random variable εp with binary outcome {yes, 
no} to describe the pulse existence, with probability model P(εp|θ) [εp=yes means that excitation combines both 
the broadband and near-fault components, whereas for εp=no only broadband component exists]. Also, let the 
vector of controllable parameters for the seismic protective device (its properties that can be adjusted), referred 
to herein as design variables, be xnX x , where X  denotes the admissible design space. 

For a specific design configuration x  the risk consequence measure, representing the utility of the 
response from a decision-theoretic point of view, is given by hr(θ,w,εp|x). Each consequence measure hr(.) is 
related to (i) the earthquake performance/losses that can be calculated based on the estimated response of the 
structure z (losses for a specific event), as well as to (ii) the rate of occurrence of earthquakes (incorporation of 
the probability of seismic events occurring). Seismic risk, ( )rH x , is then described through  

 ( ) ( , , | ) ( ) ( | ) ( )
p

r r p p pW
H h p P p d d


   x θ w x θ θ w θ w

Θ
  (1)  

2.2 Life-cycle performance metrics needed in the multi-objective design 

The main life-cycle performance metric needed in the design formulation is the total life-cycle cost C(x), 
provided by adding the initial (upfront) cost Ci(x), which is directly a function of the characteristics of the 
protective system, and the cost due to earthquake losses over the life-cycle of the structure Cl(x),                  
C(x)= Ci(x)+Cl(x). For the latter only direct losses due to repair cost are considered here, though the framework 
can be extended, as also demonstrated in [1], to address other loss-components. For a Poisson assumption for 
occurrence of earthquakes, Cl(x) is given by integral (1) with risk consequence measure definition [1] 
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 ( , , | ) ( , , | ) [(1 ) / ]d lifer t
r p l p life d lifeh L vt e r t   θ w x θ w x  (2) 

where rd is the discount rate, tlife is the life cycle considered and Ll(θ, w, εp|x) is the cost given the occurrence of 
an earthquake event. For estimating the latter an assembly-based vulnerability approach is adopted: the elements 
of the structure are grouped into damageable assemblies and different damage states are designated for each 
assembly. A fragility function and repair cost estimates are established for each damage state, with the former 
conditional on some response quantity of interest zk (representing the engineering demand parameter –EDP– for 
the assembly). The fundamental component of this approach is the fragility function for which a lognormal 
distribution is typically adopted. This leads to the following probability for the kth damageable assembly 
exceeding its jth state 

 [ | ] [ln( / ) / ]kj k k kj kjP d z z    (3) 

where Φ stands for the standard Gaussian cumulative distribution function (CDF), dkj represents the jth damage 
state for the kth assembly, βkj  is the median threshold for dkj and σkj the associated logarithmic standard deviation. 
If ndk is the number of the different damage states for the kth assembly, nas the number of total assemblies 
considered, and Ckj the repair cost associated with dkj, the seismic losses are given by 

 1 1

( 1)

( , , | ) [ | ]  

[ | ] [ | ] [ | ]  ;  [ | ] [ | ]

as dk

dk dk

n n

l p e kj k kjk j

e kj k kj k k j k e kn k kn k

L P d z C

P d z P d z P d z P d z P d z


 





  

 θ w x
  (4) 

The upfront cost, Ci(x), now depends on the details of the specific system examined. For a variety of 
protective systems this cost can be related to the capacity [11] required under some chosen design event. For 
fluid viscous dampers, which will be the application examined later, the forces exerted by the dissipative device 
are a function of the relative velocity across the end points of the damper vD and the upfront cost can be 
correlated to a reference ultimum force capacity FDu under the maximum credible earthquake [4]. This ultimately 
entails calculation of the reference velocity vref(x) with certain probability of exceedance over the lifetime of the 
structure. Under the established seismic hazard description the latter probability is given by 

 [ ( )| , seismic event][ ( ) | , ] 1 exp life D reft v P v v
D ref lifeP v v t      x xx x  (5) 

where [ ( ) | , seismic event]D refP v v x x  is the mean rate (probability) of exceeding the reference velocity given 
an event occurring, and is expressed through the generic integral (1) for a definition of the risk consequence 
measure ( , , | ) ( , , | )

refr p v ph I θ w x θ w x  corresponding to an indicator function, which is one if vD > vref (x) and 
zero if vD ≤ vref(x).  

An additional metric that will be utilized in the multi-objective design formulation is the seismic event 
consequences, such as repair cost or repair time, with specific probability of being exceeded over the lifetime of 
the structure. For the repair cost Ll, described by (4) for a specific seismic event, the probability of exceeding a 
targeted threshold Cthresh(x) is given by an Equation similar to (5) simply by replacing the ( )D refv v x  argument 
with  ( )l threshL C x . This entails calculation of  the probability [ ( ) | , ]l thresh lifeP L C t x x  of exceeding the repair 
threshold for a given seismic event which is given by the generic risk integral (1) with risk consequence measure 

( , , | ) ( , , | )r p C ph I θ w x θ w x corresponding to an indicator function, being one if  Lr(θ, w, εp|x) > Cthresh(x) and 
zero if not. Similar approach holds for the repair time RT and its corresponding threshold Rthresh(x) with the only 
difference that the risk consequence measure needs to be substituted by the corresponding indicator function 
related to the repair time for specific seismic event RT(θ, w, εp|x) exceeding Rthresh or not. The repair time      
RT(θ, w, εp|x) is calculated through the assembly-based vulnerability approach used for Lr(θ, w, εp|x), simply by 
assigning a repair time Rkj for each damage state in (4) rather than a repair cost Ckj [12]. 

3. Multi-objective design formulation 

The fundamental metric that needs to be examined for design based on life-cycle criteria is the mean total life 
cycle cost C(x) [13]. Consideration of only this performance objective facilitates a “risk-neutral” design, which 
assumes that preference is assessed only through quantities that can be monetized. In reality, though, engineers 
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and stakeholders have to take into account social risk perceptions that inevitably lead to more conservative 
designs (risk aversion) [7, 8]. Motivated by this concept the additional metrics for the multi-criteria design 
proposed here correspond to performance quantities, such as repair costs or repair time, with specific probability 
of exceedance over the life-cycle of the structure. Appropriate selection of this probability-level allows 
consideration of low-likelihood events within the design, whereas different selection of the aforementioned 
performance quantities supports stakeholder’s preference towards them and could potentially facilitate further 
integration of concepts related to resiliency or sustainability. Adoption of these types of enhanced metrics 
supports the goal of providing to decision makers a spectrum of design solutions related to different attitudes 
towards risk, since minimization of expected life-cycle cost represents “risk-neutral” designs, whereas 
minimization of the latter type of metrics represents “risk-averse” designs. 

Though the computational approach detailed is general, and can support any type of life-cycle 
performance metrics, the specific objectives that are considered here are the (a) expected life-cycle cost, and the 
(b.i) repair cost or (b.ii) repair time with specific probability of exceedance over the lifetime of the structure. 
Objective (a) and any of the objectives in (b) represent a set of competing objectives, and therefore a well-posed 
multi-objective design problem, since the former incorporates the upfront cost of the protective devices whereas 
the latter do not. Notes that objectives (b.i) and (b.ii) are not directly competing, so simultaneous consideration 
of both of them offers little additional information. Here, each of these objectives will be separately combined 
with objective (a) in the multi-criteria design problem formulation, resulting in a separate design problem. Since 
each of these objectives, (b.i) and (b.ii), represents a different measure of seismic-performance, these two design 
problems incorporate different practical considerations within the design formulation. 

Considering as performance criteria the total life-cycle cost C(x) and the repair cost threshold ( )op
threshC x  

with probability of being exceeded po over the considered life-time tlife leads to the following formulation for the 
multi-objective design problem 

  arg min ( ), ( )     such that [ ( ) | , ]o o
Tp p

thresh l thresh life o
x X

x C x C P L C x t p


  x x*    (6) 

Similar formulation holds when the repair time is considered as the second objective [simply replace ( )op
threshC x  in 

(6) by ( )op
threshR x ]. The design problem in (6) will be abbreviated by D1 herein, and the alternative one, when 

( )op
threshR x  is substituted as objective, by D2. The probabilistic quantification of all these objectives has been 

discussed in Section 2.2. The multi-objective optimization in (6) leads to a set of points, known as dominant 
designs, which form a manifold in the objective space, the so-called Pareto front. A point belongs to the Pareto 
front and it is called Pareto optimal point if there is no other point that improves one objective without detriment 
to the other one. Once these Pareto fronts are established the decision-maker (e.g. building owner) can choose 
among a range of retrofitting solutions (Pareto optimal solutions) that describe different attitudes towards risk. 

4. Multi-objective optimization supported by kriging surrogate modeling 

4.1 Metamodel implementation details 

The solution of the design problem requires different risk metrics whose estimation involves calculation of 
various probabilistic quantities as detailed in Section 2.2. These quantities are dependent upon the response 
vector z, which includes the engineering demand parameters required for the fragilities of the different 
assemblies for calculation Ll(θ, w, εp|x) [or RT(θ, w, εp|x)] as well as any response quantities needed to quantify 
the upfront cost of the protective devices. Due to the potential complexity of the adopted numerical and 
probability models, relying on nonlinear time-history analysis and a comprehensive characterization of the 
seismic hazard, evaluation of these probabilistic quantities can be reliably performed only through stochastic 
simulation. This setting creates a significant computational burden for the associated design optimization [14]. 

For efficiently performing this optimization a kriging metamodelling approach is adopted here. The 
metamodel is developed in the so-called augmented input space [15], composed of both x and θ [metamodel 
input]. The developed metamodel can then simultaneously support the uncertainty propagation (with respect to 
θ) and the design optimization (with respect to x), which facilitates significant computational savings. For 
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addressing the influence of the high-dimensional stochastic sequence w, involved in the seismic hazard 
representation, within the metamodeling formulation the statistical approximation presented in [16] is adopted. 
This is facilitated by assuming that under the influence of w each response quantity zk follows a lognormal 
distribution with median iz  and coefficient of variation 

kz . Under this assumption the probabilistic integral for 
estimating seismic risk in (1) simplifies to (influence of w removed) 

 ( ) ( , | ) ( ) ( | ) ( )
p

r r p p pH h p P p d


  x θ x θ θ w θ
Θ

  (7) 

with the modified risk consequence measure ( , | )r ph θ x  replacing the initial one ( , , | )r ph θ w x . This is 
ultimately established by changing any components of the different risk consequence measures that depend 
directly on the response vector z, considering the impact of the statistical approximation for the influence of w 
on it [16]. For the fragility in (3) or the indicatof function ( , , | )

refv pI θ w x  this modification leads to [16] 

2 2[ | z ] [ | z ] [ln( / ) / ],     ( , , | ) ( , | ) [ln( / ) / ]
k ref ref Dkj k kj kj k k kj kj z v p v p D ref vP d P d z I h v v           θ w x θ x  (8) 

where in the second equation Dv  and 
Dv denote explicitly the median and logarithmic standard deviation, 

respectively, of the damper velocity Dv . 

The kriging metamodel is formulated to provide predictions for the quantities needed to support evaluation 
of the risk consequences measures in (8), corresponding to the statistics, individual logarithmic mean and 
standard deviation of the responses of interest (engineering demand parameters and damper velocities), 
ultimately forming the ny dimensional metamodel output y. The nφ dimensional augmented vector of both the 
design variables and the uncertain model parameters φ = [x θ] is considered as an input vector, whereas separate 
metamodels are established for the εp=yes and εp=no cases since these two cases ultimately represent different 
excitation models and different parameters comprising θ. Note that since the surrogate model is established to 
approximate the structural response, any components of θ that do not influence this response, for example 
uncertain parameters included in the definition of ( | )pP  θ , do not need to be considered in the definition of φ. 

For forming the metamodel initially, a database with nm observations is obtained that provides information 
for the φ-y pair. For this purpose nm samples for {φl, l=1,…,nm}, also known as support points, are generated 
following initially a Latin hybercube grid over the expected range of values possible for each component of φ 
while integrating the adaptive enhancement proposed in [16]. Stochastic ground motions are then generated 
according to the excitation model and the structural response is numerically evaluated. The influence of the 
white noise is addressed by considering nw different samples for each φl and using the statistics under these 
samples to ultimately quantify the response sample yl. Using this dataset the kriging model is then obtained. 
Details for the metamodel development may be found in [16]. 

4.2 Computational details for design optimization 

All required probabilistic integrals for performing optimization (6) are estimated here through stochastic (Monte 
Carlo) simulation, ultimately utilizing the kriging model for efficient evaluation. This facilitates an accurate 
(since it is based on stochastic simulation) and computational efficient (since it utilizes the kriging metamodel) 
estimation of all required statistical quantities needed in the optimization proves. Using a finite number, ns, of 
samples of θ and εp drawn from importance sampling densities (IS) q(θ|εp) and Pq(εp), respectively, with jθ and 

j
p  denoting the jth sample, an approximation for the integral in (1) is given by: 

 
1

ˆ ( ) 1 / ( , | ) ( | ) ( ) / ( ) ( | )sn j j j j j j j j
r s r p p p q p pj

H n h P p P q   


   x θ x θ θ θ   (9) 

The proposal densities are used to improve the efficiency of this estimation [Importance Sampling (IS)]. More 
details on this evaluation may be found in [4]. 

The design problem (6) is finally solved using an exterior sampling approach [14], utilizing the same 
stream of random numbers for all stochastic simulations used to calculate the different probabilistic integrals. 
This ultimately facilitates a consistent estimation error for all examined damper configurations, contributing to a 
more efficient comparison. The optimization (6) is thus transformed into a deterministic optimization problem 
and to obtain the Pareto front of dominant designs an  elitist genetic algorithm is utilized in this study [17]. 
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5. Illustrative application 

5.1 Structural and excitation models 

For the illustrative example, a three-story reinforced concrete office building with nonlinear fluid viscous 
dampers is considered. The dimensions of the building are 32 x 32 m and the height of each story is 4.0 m. A 
planar frame model with peak oriented hysteretic behavior and deteriorating stiffness and strength is utilized for 
the structure, modeled through the parsimonious approach detailed in [18] by representing restoring forces per 
floor through a nonlinear spring (exhibiting the desired hysteretic behavior). This modeling approach had been 
demonstrated [18] to provide seismic risk estimates with high accuracy when compared against high-fidelity 
numerical modeling of the structural behavior, even for moderate to large inelastic responses. 

The lumped masses of all the stories are [mi] = [976, 932, 887] metric tons, i =1,2,3. The initial inter-story 
stiffnesses ki of all stories are parameterized by ,

ˆ
i i k ik k , i=1,2,3, where [ ˆ

ik ]= 789.02[1.00, 0.85, 0.70] MN/m 
are the most probable values and θk,i are nondimensional uncertain parameters, assumed to be correlated 
Gaussian variables. The mean value of θk,i is one and the covariance matrix corresponds to variances 0.10 for all 
the floors and correlation coefficients 0.5 between adjacent floors and 0.2 between the first and third floor. The 
yield displacement per story δy,i, is treated as lognormal variable with median value 0.5% of story height and 
c.o.v. 10%. The structure is assumed to be modally damped. The damping ratio ζi for all modes are treated as 
perfectly correlated lognormal variables with median value 5% and c.o.v. 30%. Definition of the structural 
model requires additional characteristics for the hysteretic behavior [18], the post-yield stiffness coefficients ai 
(ratio of pre to post yield stiffnesses), the over-strength factor γi (ratio of ultimum to yield strength), ductility 
coefficient μi (ratio of displacement for onset of deterioration to yield displacement) and the stiffness 
deterioration coefficient βi (ratio of stiffness for strength deterioration branch to initial stiffness). These are taken 
to have values of 0.1, 0.2, 4, and 0.2 respectively. Detailed discussion of the numerical model is included in [4]. 

The retrofitting of this structure with nonlinear fluid viscous dampers is examined. The damper forces are 
given by FD=cDsgn(vD)|vD|aD where cD is the damper coefficient, vD is the damper velocity introduced earlier and 
αD is the velocity exponent. The design variables in this problem correspond to the damper coefficients in each 
story cD,i, i = 1,2,3. The velocity exponents for dampers αD are taken equal to 0.5 for all dampers, corresponding 
to a common value for seismic applications. The design domain is considered as [0.0 9.2] MN/(m/sec)0.5 for cD,1, 
[0.0 8.4] MN/(m/sec)0.5 for cD,2, and [0.0 5.1] MN/(m/sec)0.5 for cD,3. The upper limit for each damper is based on 
maximum force capacity desired at each floor [4]. 

Seismic events are assumed to occur following a Poisson distribution. The uncertainty in moment 
magnitude M is modeled by the Gutenberg-Richter relationship truncated on the interval [Mmin, Mmax] = [5.0, 
8.0], leading to the PDF and expected number of events per year given, respectively, by  

          ( ) ( ) )]) / [ ( ( ( )(,   )M M M min M max M min M maxp M b exp b M exp b M exp b M v exp a b M exp a b M          (10) 

For the regional seismicity factors, the values adopted are a=4.35loge(10) and bM=1.0loge(10), leading to             
v = 0.22. Regarding the uncertainty in the event location and orientation with respect to the fault, the closest 
distance to the fault rupture, r, for the earthquake events is assumed to follow a log-normal distribution with 
median value rmed = 20 km and coefficient of variation 40%. Ultimately the group of uncertain model parameters 
is θ=[M, r, Ap, Tp, γp, vp, ki, δy,i,, ζ]. 

5.2 Cost characteristics 

The upfront damper cost Ci(φ) is estimated based on the maximum force capacity FDu,i, as 
Ci,,i=$(96.88(FDu,i)

0.607) [4]. The ultimum damper force for each device is taken as the force with 2% probability 
of exceedance over the lifetime of the analysis tlife, calculated through estimation of an appropriate reference 
velocity as detailed in Section 2.2. The lifetime for the analysis tlife is taken as 60 years and the discount rate as 
2.5%. The fragility and repair cost/repair time characteristics are reviewed in Table 1, where nel corresponds to 
the number of elements that belong to each damageable assembly for each floor. For structural components and 
partitions, the maximum interstory drift is used as the engineering demand parameter (EDP), while for the rest 
the maximum story absolute acceleration. Detailed discussion for the adopted fragility functions and the repair 
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cost may be found in [4]. The repair time follows the recommendations in [12], adjusted to correspond to labor 
time needed to complete the work assuming one worker per 500 ft2 and one worker per 1000 ft2 for structural 
and non-structural components, respectively, following the guidelines in [19]. It should be stressed that the total 
repair time calculated here corresponds to the total effort, or equivalently to the repair time assuming that all 
necessary repairs per floor and per damageable assembly are performed in a serial manner. This of course is 
simply a conservative upper bound estimate for the actual total repair-downtime of the structure since jobs will 
proceed in parallel [1]. 

Table 1 – Characteristics of fragility curves and expected repair cost and time for each story. 

Damage state EDP βkj σkj nel
++ Ckj ($/nel) Rkj (days/nel)

Structural components
1 (light) IDR+ 1.0δy

* 0.20 32 2700 0.074 
2 (moderate) IDR (δy + δp

*)/2 0.35 32 12995 0.163 
3 (significant) IDR δp 0.40 32 24570 0.263 

4 (severe) IDR δu
* 0.40 32 29160 0.323 

5 (collapse) IDR 5% 0.50 32 46305 27.000 
Contents 

1 (damage) PFA+ 0.70g 0.30 75 1500 N/A 
Partitions 

1 (small cracks) IDR 0.21% 0.60 2000 m2 22.30 0.010 
2 (moderate cracks) IDR 0.71% 0.45 2000 m2 60.30 0.024 
3 (severe damage) IDR 1.2% 0.45 2000 m2 92.70 0.038 

Ceiling 
1 (some tiles fallen) PFA 0.55g 0.40 648 m2 15.20 0.08 

2 (extensive tile fallout) PFA 1.00g 0.40 648 m2 120.10 0.056 
3 (total ceiling collapse) PFA 1.50g 0.40 648 m2 237.70 0.109 

+IDR: Peak interstory drift; PFA: Peak floor acceleration 
++nel: number of elements per story 
*

 δy yield displacement, δp displacement at maximum strength, δu displacement at onset of stiffness degradation 

5.3 Development of surrogate model and optimization details 

Separate metamodels are established for ground motions with, i.e. εp = yes, or without, i.e. εp = no, pulses. The 
augmented input vector φ is composed of x as well as the components of θ that are essential for estimating the 
structural response, and it corresponds to φ=[cD,i, M, rrup, Ap, Tp, γp, vp, θk,i, δy,i, ζ ;i=1,…,3] (nφ=16 parameters) 
and φ=[cD,i, M, rrup, θk,i, δy,i, ζ ;i=1,…,3] (nφ=16 parameters), for εp=yes and εp=no excitations, respectively. A 
total of nm=6000 support points is used and the influence of the white noise is addressed by considering nw=100 
samples. The response quantities predicted from the metamodel correspond to the peak interstory drifts, peak 
floor accelerations and peak damper velocities for the three stories of the structure. The accuracy of the 
developed surrogate model is evaluated by calculating different error statistics using the leave-one-out cross-
validation approach. The accuracy established is ultimately high with coefficient of determination over 97% and 
mean error less than 5% for most approximated response quantities. The optimized kriging metamodels are then 
utilized to support the design optimization. For the stochastic simulation a total of ns = 10000 samples are used 
with properly selected importance sampling densities for key parameters, M, rrup and εp, as in [4]. The multi-
objective optimization identifies a large, complete set of Pareto optimal solutions but to simplify the presentation 
of the results here, a representative set of points, providing a balanced distribution along the Pareto front, is used 
to describe each Pareto curve. 

5.4 Results and discussion 

Three different values are examined for po=1, 5, 10%. The performance for the unretrofitted structure (without 
the dampers) is C=1.74 ($105) for the total cost and Cthresh=9.20, 5.99, 4.31 ($105) and Rthresh=154.77, 113.97, 
92.31 days for repair cost and repair time thresholds, respectively, for the three different po values 1, 5 and 10%. 
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For the structure with the fluid viscous dampers, Fig. 2 presents the Pareto curve for design problem D1 (when 
Cthresh(x) is considered as the secondary objective) [part (a)] as well as for design problem D2 (when Rthresh(x) is 
considered as the secondary objective) [part(b)]. For each curve the risk neutral ( min ,max[ , ]op

threshC C  for D1 and 

min ,[ , ]po
thresh maxC R  for D2) and risk-averse ( max ,min[ , ]o op p

threshC C  for 1D  and max ,min[ , ]o op p
threshC R  for D2) designs are 

distinguished. In addition, a balanced design ( m ,m[ , ]o op p
threshC C  for 1D  and m ,m[ , ]o op p

threshC R  for D2) is identified, 
representing a solution in the middle of the Pareto front. Comparisons of the curves in Fig. 2 to the values for the 
unretrofitted structure reported previously shows the efficiency established through the seismic retrofitting, as 
well as the versatility of offering a range of solutions with a different compromise between the chosen 
objectives. This also validates the computational efficiency of the proposed framework; once the surrogate 
model is established, it can be utilized to support the optimization for different objectives (design problems D1 or 
D2 here) as well as for different values of po. The identified Pareto fronts demonstrate a significant variability for 
the different objectives and ultimately allow the stakeholder to examine in detail the compromise offered by 
different solutions in converging to a final decision. In aiding this decision additional features of the life-cycle 
performance can be examined, like the decomposition of the total or repair cost to their different components. 
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Fig. 2 –  Pareto front curves for different probabilities of exceedance po for design problem (a) D1  and (b) D2. 
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three reference Pareto optimal designs corresponding to design problem D1 and po=1%. 
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Fig. 4 – Damping coefficients of different reference Pareto optimal configurations for design problem D1 [part 

(a)] and D2 [part (b)], and corresponding maximum damper capacity for design problem D1 [part (c)]. 

Fig. 3 (a) presents a comparison of the performance established by utilizing different criteria, examining 
how the secondary objective (i.e. choice of Cthresh or Rthresh) as well as the value of po impact the design. This is 
established by presenting the performance in the objective space corresponding to problem D1 and value of 
po=1% for three different cases: the respective Pareto-front for that design case, the optimal solution from D2 for 
po=1%, as well as the optimal solution from D1 for po=10%. This comparison shows that design D2 
accomplishes only a slightly inferior performance than the actual Pareto front (design D2). The agreement of the 
curves validates the similarity, argued earlier, of the secondary design objectives. The comparison between the 
performance established for po=1% and po=10% also shows a practically identical performance. This result 
indicates that the selection of value of po, at least for the cases examined here, does not significantly alter the 
design performance. Then in Fig. 3 (b) the distribution of the life-cycle cost between the different stories is 
shown for the characteristic Pareto optimal designs that correspond to design D1 and po=1%. Additionally, the 
decomposition of the life-cycle cost per story to upfront and repair cost is presented. It is interesting to note that 
while the damper cost decreases when moving to higher stories, the distribution of the repair losses along the 
height of the structure is more regular. This trend is attributed to the fact that for all the Pareto optimal designs 
the damping coefficients are higher in the lower floors (see also Fig. 4 next) as a result of the higher seismic 
shear forces acting on these floors; hence earthquake damages are reduced to greater extent. 

Fig. 4 reports the optimal damper configuration (distribution of dampers along height of structure) with 
respect to the damping coefficient for design problems D1 [part(a)] and D2 [part(b)] and with respect to the 
maximum force capacity for design problem D1 [part(c)]. Overall, the results show that the various characteristic 
Pareto optimal solutions lead to significantly different configuration designs (Fig. 4), which consequently result 
to different levels and distributions of expected costs (Fig. 2). For example if the risk-averse design 

max ,min[ , ]o op p
threshC C  (or max ,min[ , ]o op p

threshC R ) is preferred then the repair cost threshold op
threshC  is minimized leading to 

negligible structural damages and minimal damages to partitions, whereas the contribution of the acceleration 
sensitive components prevails (nonlinear damper can suppress displacement quantities more efficiently than 
acceleration quantities). However, the latter design is achieved with the expense of using big dampers associated 
with a significantly high upfront damper cost Ci(x) corresponding to 98% of the total life-cycle cost C. On the 
other hand, if a less conservative design is chosen ( m ,m[ , ]o op p

threshC C  or m ,m[ , ]o op p
threshC R ) then the reduction in C is 

19%, with the trade-off of a 52% increase in o

thresh

pC (or 93% increase in o

thresh

pR for D2). The risk-neutral design leads 
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to the minimum total life-cycle cost C (reduction of 33% over risk-averse design), establishing in this case a 
balance between repair Cl and upfront cost Ci, with the latter contributing only 70% towards C. However, this 
design approach does not explicitly suppress response for low likelihood but for large consequence events, 
leading to a very high value of o

thresh

pC  (or equivalently o

thresh

pR  for D2 problem), an increase of around 300%. Finally 
Fig. 5 demonstrates the decomposition across the Pareto-front of the different cost components. This is 
established by showing the variation as a function of the total cost C of the percentage (%) contribution of the 
upfront cost (with respect to the total cost) and the percentage (%) contribution of the structural components, 
partitions, contents and ceiling (with respect to the repair cost). The results show that the damper upfront cost 
dominates the total life-cycle cost (large values of  Ci/C) while it rapidly increases as the formulation moves 
from risk-neutral to risk-averse concepts, moving quickly towards a plateau. For the contribution of the different 
damageable assemblies to the repair cost (i.e. Cstr/Cl, Cpart/Cl, Ccont/Cl  and Cceil/Cl curves), as the size of the 
dampers increases (move towards risk-averse designs) the contribution from structural contents becomes quickly 
zero whereas the contribution from damages in partitions also decreases.  

Overall the discussions here show that the retrofitting scheme with fluid viscous dampers leads to 
significant improvement in performance, that the risk-informed design facilitates a clear characterization of this 
improvement, and that the multi-objective formulation supports the idenfitication of a range of solutions, 
allowing stakeholders to incorporate their own preferences (and risk aversion attitude) in the final decision. 
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Fig. 5 – Variation across the Pareto optimal points of contribution of the different cost components, upfront cost 
with respect to total cost Ci/C and structural components Cstr/Cl, partitions Cpart/Cl, contents Ccont/Cl and ceiling 

Cceil/Cl with respect to repair cost. Case plotted corresponds to design problem D1 and po=1%. 

6. Conclusions 

The multi-objective design of supplemental seismic protective devices considering life-cycle cost criteria was 
discussed in this paper, focusing on application to fluid viscous dampers. The fundamental metric examined as 
design objective is the total life-cycle cost with additional (secondary) metrics corresponding to performance 
quantities, repair costs or repair time in this study, with specific probability of exceedance over the life-cycle of 
the structure. A modeling/computational framework was discussed based on an assembly-based vulnerability 
approach for estimation of seismic losses and characterizing the earthquake hazard through a stochastic ground 
motion model. For the efficient optimization a kriging surrogate model was developed to approximate the 
structural response with respect to both the damper configuration and the uncertain model parameters. The 
development of this model involves a considereable upfront computational burden for evaluating the system 
response for an ensemble of ground motions, but ultimately facilitates a highly accurate and efficient 
approximation to the various engineering demand parameters needed for estimating the probabilistic 
performance, and therefore an efficient design optimization. The examined example illustrated that the multi-
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objective formulation of the optimization problem offers the flexibility of considering retrofitting schemes 
associated with various decision-making preferences towards risk, ranging from risk-neutral attitude to risk-
averse attitude. Close agreement was reported, as expected for the additional (secondary) objectives, i.e. 
considering repair cost or repair time thresholds. Despite this agreement, the ability to consider any of the two 
showcases the versatility of the established approach, as it is capable of supporting the estimation of diverse 
design goals. Overall the discussion showcased the enhanced risk and design information that the multi-criteria 
approach can offer, something exceptionally important for designing advanced seismic protective devices. 
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