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Abstract 

A dynamical substructuring system (DSS) is a substructuring methodology where a dynamical experiment is implemented 
on a physical substructure, plus real-time interaction with a simulated numerical substructure. The linear substructuring 
control (LSC) method is a control law specifically designed for DSS, requiring knowledge of the nominal dynamics of the 
substructures as well as actuation (i.e. transfer) system. Therefore, application of the LSC method alone is limited to 
relatively well-known systems. In this study, we propose a nonlinear substructuring control (NLSC) as a more general form 
of LSC by incorporating a nonlinear signal-based control (NSBC) method into DSS. Although the LSC controller requires 
properties of substructured systems, the newly developed NLSC controller does not relies on such accurate properties, 
because of the implementation of NSBC. NLSC here is numerically and experimentally examined in a comparison with 
LSC, via a substructuring test on a rubber bearing, commonly used in base-isolated structures. In the examinations, stiffness 
of the rubber bearing used in the LSC and NLSC controllers is deliberately assumed to be five times as large as the real 
value. In substructuring experiments conducted with a rubber bearing and a hydraulic actuator, NLSC achieved accurate 
control with very small error even with the inaccurate assumption, while LSC showed 15 times larger error. NLSC is found 
to be effective in executing substructured experiments containing poorly known parameters in the substructures. 

 

Keywords: Nonlinear signal-based control, dynamically substructured system, nonlinear substructuring control, rubber 
bearing. 

 

1. Introduction 

Dynamical substructure testing, whereby a dynamical experiment is conducted upon a critical part (referred to as 
the physical substructure) of an emulated system with real-time simulations of the other parts (referred to as the 
numerical substructure) of the system, has become a key experimental method in a wide range of engineering 
fields. The purpose is to study the properties of the critical part, such as its nonlinear characteristics, instead of 
conducting dynamical experiments on the entire emulated system. Therefore, the dynamical substructuring 
methodology is required to maintain robustness for systems having nonlinearity or uncertainty. 

The dynamically substructured system (DSS), proposed from the perspective of automatic control system 
design [1], generates an input signal to the transfer system (a combination of actuators, inner-loop controllers 
and signal-conditioning hardware) that drives the physical substructure output so that it closely matches that of 
the corresponding output of the numerical substructure. In this method, knowledge of the parameters of the 
substructures as well as the transfer system is required in the formulation of the DSS using a linear 
substructuring controller (LSC). The advantage of the DSS-LSC strategy is the resultant separation of the 
emulated system dynamics from those of the closed-loop error dynamics. This enables the representation of even 
very lightly damped emulated systems using a DSS configuration with large stability margins that are designed 
into the system. However, the applicability of LSC is limited to relatively well-known systems because it is 
designed on the basis of the dynamics of the substructures. As a result, adaptive minimal control synthesis [1, 2, 
3] is required in the DSS scheme when system parameters are unknown or poorly known. In this study, we 
propose a nonlinear substructuring control (NLSC) method as a generalised form of LSC by incorporating a 
recently developed nonlinear signal-based control (NSBC) [4] to handle poorly known systems. We examine 
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NLSC in numerical and experimental studies of a substructured test on a rubber bearing used in base-isolated 
structure, as shown in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Nonlinear substructuring control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSBC manages nonlinear systems based on a nonlinear signal [4], and this method can be incorporated into 
substructuring tests when a signal corresponding to the nonlinear signal is given. Thus, NLSC shown in Fig. 2 is 
developed as an application of NSBC. In this method, a transfer system, which is crucially important for the 
interaction between the physical and numerical substructures, and its model are assumed to be: 
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where GTS and Gts represent the transfer system dynamics including a pure time delay τ, and the un-delayed 
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Fig. 1 – Dynamical substructuring test of a base-isolated structure with a rubber bearing
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component of the transfer system dynamics, respectively, and ḠTS and  Ḡts represent those linear models.  
In NLSC, substructures are expressed by:  
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where Gp and Gn are the physical and numerical substructures, Ḡp and Ḡn are the linear models of the 
substructures, and ΔGp and ΔGn are the nonlinearities of the substructures. Output forces from the nonlinear 
physical substructure and its linear model in Fig. 2 can be expressed by: 
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where pf  is the force generated in the physical linear model and fp is the force generated in the physical 

substructure. Outputs from the numerical substructure and its linear model can be expressed by: 
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where fd is the force related to the disturbance d.   

The nonlinear signal in NLSC is defined to be: 
 

     n ns x s x s    (5)  

 
When the dynamics of the transfer system are well known, the outputs of the transfer system and its model are 

nearly identical. Based on this assumption of    p px s x s , the outputs of the substructures can be rewritten as: 
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signal in Eq. (5), the error between the outputs of the numerical and physical substructures becomes:  
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where          1 0 2,d uG s G s G s G s G s   . Since the error signal e is comprised of three signals {d, u, σ} in 

Eq.(7), the input signal here is assumed to be:  
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Substituting Eq. (8) into Eq. (7), the error transfer function can be expressed by: 

 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

4 

       
         

     1

1 1

s s
d u d u

s s
u e u e

G s G s e K s G s e K s
e s d s s

G s e K s G s e K s

 


  
 

 

 
 

 
 (9)  

 
The controller transfer functions, Kd and Kσ, need to be determined so that the error becomes zero. Thus, we 

propose the controller transfer functions to be: 
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where Fd and Fσ are filters to realise proper transfer functions of Kd and Kσ. When these filters can set to be 1.0 
and there is no pure time delay, very accurate control with near zero-error is achievable. In this case, the 
controller transfer function, Ke, is not essential for the control. However, when the pure time delay is not zero, Ke 
becomes a key element especially for maintaining stability.  

3. Dynamical substructuring system for a base-isolated structure  

A base-isolated structure can be divided into two substructures, as shown in Fig. 1. The numerical substructure 
comprises the mass of the superstructure and the physical substructure comprises a rubber bearing. Therefore, 
the numerical linear model basically becomes Ḡn = Gn, whereas the physical substructure can is Ḡp ≠ Gp.  
 
3.1 Configuration  
The equation of motion for the emulated model is expressed by: 
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where t is the time variable, xe, me, fec and fek are the relative displacement, mass, force due to damping and 
restoring force of the emulated model, respectively. 

The numerical and physical substructures in Fig. 1 are expressed as:  
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where fn, xn and mn are the force, relative displacement and mass of the numerical substructure, respectively, 
while fp, xp, mp, fpc and fpk are, respectively, the force, relative displacement, mass, force due to damping and 
restoring force of the physical substructure. Base on Fig. 2, the following equation is obtained: 
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Linear models of the substructures are now expressed by: 
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where       n p df t f t f t   , nx  and nm  are the force, relative displacement and mass of the numerical linear 

model, and pf , px , pm , pc  and pk  are the force, relative displacement, mass, damping coefficient and stiffness 

coefficient of the physical linear model.  
Since the nonlinear signal can be obtained from the subtraction of the outputs of the numerical substructure 

and its linear model, the nonlinear signal is given as follows: 
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where n nm m . With Eqs. (15) and (14), the force applied to the physical substructure can be expressed by: 
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Substituting Eqs. (12) and (13) into Eq. (16), the output of the numerical substructure is obtained as: 
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Here the dynamics of the transfer system is expressed by: 
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where a is the transfer system coefficient. Based on this dynamics, the outputs of two substructures in Fig. 2 are 
found to be: 
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Thus, error dynamics can be obtained from Eq. (19), as follows: 
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Since Eq. (19) corresponds to Eq. (7), the following equation is obtained:  
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The controller transfer functions, Kd and Kσ, can be obtained from Eqs. (21)and (10), as follows: 
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Following the transfer function for the error feedback action in LSC [5], we here design the transfer function Ke 
to be: 
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where β is a simple controller gain . 
 
3.2 Example: inaccurate modelling  
Substructuring tests, in general, have to be conducted with an assumed model that, to one degree or another, has 
modelling error, because its accurate model is rarely obtained in advance of the experiments. Therefore, in this 
study, NLSC is numerically examined via an example of substructured test on the base-isolated structure with 
inaccurate parameters in the controller.  

In this example, the physical substructure, demonstrating a rubber bearing, is assumed to have properties 
obtained by a study of LSC [5], as follows: mp = 115 kg, cp = 354.6 Ns/m, kp = 158.4 kN/m. The properties of the 
transfer system is assumed to have a = 75.0 s−1 and τ = 6.0 ms, and the numerical substructure is set to be mn = 
20mp in this study. Then, the natural frequency and damping ration of the emulated system result in ωe = 
1.29×2π rad/s and ζe = 0.0091, respectively.  

With the above-mentioned parameters, the control signal u in NLSC for this example is expressed by: 
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where γk is the modelling error parameter for stiffness, kp. Note that 

d
K   and K  are the proper transfer functions 

related to the ground motion acceleration, d , and the nonlinear signal,  . Based on the design of LSC [5], 
suitable parameters are found to be β = 75 and b =18.75. In addition, 

d
K   and Ke in Eq. (25) are taken as the LSC 

controller for the comparison with the NSLC controller. 
A Japan Meteorological Agency Kobe (JMA Kobe) ground motion, recorded during the 1995 Hyogo-ken 

Nanbu Earthquake, is adopted as an input ground motion. Since this numerical simulation is to be compared with 
the experimental study in section 4, for the comparison, this input motion is scaled down to 10%, following the 
maximum stroke of an actuator used in the experiment. The response of the emulated system is shown in Fig. 3 
and the maximum displacement reaches to 35.6 mm. 

In the numerical simulations, the maximum errors of {xn – xp, xe – xp, xe – xn} become {5.8 mm, 35.4 mm, 
38.8 mm} in LSC and {0.3 mm, 3.2 mm, 3.2 mm} in NLSC. Although the largest error in LSC is 109% of the 
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maximum emulated response (i.e., 35.6 mm), the largest error in NLSC is only 9.0% of the maximum emulated 
response. Now, NLSC is found to achieve good control even when its controller contains an inaccurate 
parameter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Experiment 

4.1 Experimental system 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test rig shown in Fig. 5 was built at the University of Bristol for substructuring test on a rubber bearing. This rig 
comprised a ±25 kN force, ±120.0 mm stroke servohydraulic actuator and a proprietary inner-loop discrete-time 

Fig. 5 – Test rig for the substructured experimet on a rubber bearing 
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Fig. 3 – Response of the emulated system 
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Fig. 4 – Numerical results: (a) LSC, (b) NLSC 
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controller (thus comprising the transfer system), together with a connecting steel plate and a bearing made of 
natural rubber (the physical substructure). In addition to the substructure control signal, the actuator was 
configured to additively generate earthquake ground excitations to the rubber bearing. The diameter and height 
of the rubber bearing were 200.0 mm and 125.0 mm, respectively, and the measured mass of the steel plate was 
115 kg. Rigid connections ensured that the outputs from the LVDT displacement transducer and load cell 
attached to the actuator were equivalent to the displacement and force applied to the rubber bearing. DSS was 
implemented as an outer-loop configuration using dSPACE 1104 hardware, operating with a sampling interval of 
1.0 ms. 

Identification tests were conducted on the physical substructure and transfer system in Fig. 5 with a band-
limited white noise between 0.02 × 2π and 100.0 × 2π rad/s, time duration of 120.0 s and sampling interval of 
1.0 ms. The output-error method provided by the System Identification Toolbox within MATLAB was applied in 
this identification. Then, the properties of the physical substructure was identified to be mp = 114.3 kg, cp = 354.6 
Ns/m and kp = 158.4 kN/m. Similarly, the properties of the transfer system was also found to be a = 75.0 s−1 and 
τ = 6.0 ms, from the averaged best-fit first-order model of the transfer system.  
 
4.2 Substructured test 
Substructuring experiments were implemented under exactly the same conditions as the numerical example with 
the LSC and NLSC controllers in section 3; as inaccurate modelling, five times larger value of kp was adopted in 
the controllers in the experiment. In the experimental results shown in Fig. 6, the maximum value of xn – xp 
became 6.5 mm in LSC and 0.4 mm in NLSC; note that the emulated response is unknown and the errors related 
to xe were not obtained here. According to the experimental results, the error obtained by NLSC is nearly 1/15 of 
the LSC’s result. Now, the efficiency of NLSC was verified in both experimental and numerical examinations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5. Conclusions 

This study proposed NLSC for substructured tests based on DSS. NLSC was numerically and experimentally 
examined together with LSC, via a substructuring test on a rubber bearing. In the examinations, the stiffness in 
the rubber bearing was assumed to be five times as large  as its real value in order to introduce deliberately large 
modelling errors in both NLSC and LSC controllers. In the numerical and exprerimental studies, NLSC 
succeeded in generating accurate results even with the inaccurate modelling, while LSC was unable to do so 
under the same condition. The efficiency and practicality of NLSC were numericallly and experimentaly 
verified. 
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Fig. 6 – Experimental results: (a) LSC (b) NLSC 
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