
16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

Paper N° 1141 (Abstract ID) 

Registration Code: S-B1461947647 

AN APPROXIMATE APPROACH FOR EFFICIENT STOCHASTIC 
INCREMENTAL DYNAMIC ANALYSIS 

 
K. R. M. dos Santos(1*), I. A. Kougioumtzoglou(1+), A. T. Beck(2) 

 
(1*) Ph.D. Student, Department of Civil Engineering and Engineering Mechanics, Columbia University, kmd2191@columbia.edu 
(1+) Assistant Professor, Department of Civil Engineering and Engineering Mechanics, Columbia University, iak2115@columbia.edu 
(2) Associate Professor, Department of Structural Engineering, São Carlos School of Engineering, University of São Paulo, 

atbeck@usp.sc.br 

 

Abstract 
Incremental dynamic analysis (IDA) has been a well-established methodology in earthquake engineering for assessing the 
performance of structural systems under a suite of ground motion records, each scaled to several levels of seismic intensity. 
Nevertheless, the need for performing nonlinear dynamic analyses both for various excitation magnitudes and for a large 
number of seismic records renders the IDA methodology potentially a computationally highly demanding task. In this 
paper, an efficient stochastic IDA methodology for nonlinear/hysteretic oscillators is developed by resorting to nonlinear 
stochastic dynamics concepts and tools such as stochastic averaging and statistical linearization. Specifically, modeling the 
excitation as a non-stationary stochastic process possessing an evolutionary power spectrum (EPS), an approximate closed-
form expression is derived for the parameterized oscillator response amplitude probability density function (PDF) as a 
function of the excitation EPS intensity magnitude. In this regard, an IDA surface is determined providing the PDF of the 
engineering demand parameter (EDP) for a given intensity measure (IM) value. In contrast to an alternative Monte Carlo 
simulation (MCS) based determination of the IDA surface, the herein developed methodology determines the EDP PDF at 
minimal computational cost. Note that the technique can account for physically realistic excitation models possessing not 
only time-varying intensities but time-varying frequency contents as well. Numerical examples include a bilinear/hysteretic 
single-degree-of-freedom (SDOF) oscillator, whereas comparisons with pertinent MCS data demonstrate the reliability of 
the developed stochastic IDA methodology. 
 
Keywords: incremental dynamic analysis; nonlinear system; stochastic dynamics; stochastic averaging; statistical 
linearization 
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1. Introduction 
The emerging concept of performance based engineering (PBE) (e.g. [1]) advocates the assessment of the 
structural system performance in a comprehensive manner by properly accounting for the presence of 
uncertainties. Specifically, inherent in the philosophy of PBE is the definition of excitation related variables, 
known as intensity measures (IMs) (e.g. peak ground acceleration), and of system response related variables 
known as engineering demand parameters (EDPs) (e.g. inter-story drift ratio, deformation damage index, etc). 
Finally, the information provided via the functional relationship between the IMs and the EDPs, in conjunction 
with appropriately defined damage measures (DMs), is utilized for quantifying a selected decision variable (DV) 
(e.g. annual rate of loss, risk of financial loss, cost of failure, etc) [1-3] . Nevertheless, determining the functional 
relationship between the IMs and the EDPs constitutes typically a computationally cumbersome task, especially 
within a probabilistic framework where a large number of nonlinear dynamic analyses need to be typically 
performed in a Monte Carlo simulation (MCS) context. 

In this regard, one of the methodologies applied in the field of earthquake engineering for estimating the 
functional relationship between the IMs (e.g. earthquake intensity, peak ground acceleration, 5% damped “first-
mode” spectral acceleration Sa (T1, 5%), etc) and the EDPs (e.g. interstory drift ratio, deformation damage 
index, etc) and, ultimately, for assessing the structural capacity of engineering systems, is the incremental 
dynamic analysis (IDA) [21]. IDA aims at assessing the performance of structural systems under a suite of 
ground motion records, each scaled to several levels of seismic intensity; thus, by performing a nonlinear 
dynamic analysis for each and every scaled record, a set of IDA curves is produced.  

Clearly, performing IDA within a probabilistic framework, and depending on what kind of structural response 
statistical quantity is of interest, hundreds to thousands of IDA curves are typically required within a MCS 
context for a reliable statistical description of the EDP. Clearly, this can be a computationally prohibitive task. 
Indicatively, in [20] it is noted that the generation of a single IDA curve can last from thirty seconds to one hour, 
while in the case of a multi-record IDA, where thousands of curves are generated, the processing time can 
increase to weeks or even months. In this regard, several research efforts have focused on reducing the related 
computational cost by resorting to efficient MCS algorithms or by implementing, for instance, parallel 
computing strategies (e.g. [20]). 

In this paper, an efficient stochastic IDA methodology for nonlinear/hysteretic oscillators is developed by 
resorting to nonlinear stochastic dynamics concepts and tools such as stochastic averaging and statistical 
linearization [12]. Specifically, modeling the excitation as a non-stationary stochastic process possessing an 
evolutionary power spectrum (EPS), and scaling appropriately the intensity of the excitation EPS, an 
approximate closed-form expression is derived for the parameterized oscillator response amplitude PDF. In this 
regard, an IDA surface is determined providing the PDF of the EDP for a given IM value. In contrast to an 
alternative MCS based determination of the IDA surface, the methodology developed herein determines the EDP 
PDF at minimal computational cost. Note that the technique can account for physically realistic excitation 
models possessing not only time-varying intensities but time-varying frequency contents as well. Numerical 
examples include a bilinear/hysteretic single-degree-of-freedom (SDOF) oscillator, whereas comparisons with 
pertinent MCS data demonstrate the accuracy of the developed stochastic IDA methodology. 

2. Stochastic Averaging 
Consider a nonlinear SDOF oscillator whose motion is governed by the following stochastic differential equation 
(SDE) 

 𝑥̈ + 𝛽0𝑥̇ + 𝑧(𝑡, 𝑥, 𝑥̇) = 𝑤(𝑡) (1) 
 

where a dot over the variables denotes differentiation with respect to time 𝑡; 𝑥 is the displacement; 𝑧(𝑡, 𝑥, 𝑥̇) is 
the restoring force that depends on the values of 𝑥 and 𝑥̇; 𝛽0 = 2𝜔0𝜉0 is the linear damping coefficient; 𝜔0 is the 
natural frequency of the linear oscillator (i.e. 𝑧(𝑡, 𝑥, 𝑥̇) = 𝜔0

2𝑥);  𝜉0 is the ratio of critical damping; and 𝑤(𝑡) 
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represents a Gaussian, zero-mean non-stationary stochastic process possessing an evolutionary broad-band 
power spectrum 𝑆𝑤(𝜔, 𝑡) [14]. 

Relying primarily on the assumption of light damping, a combination of statistical linearization and 
deterministic/stochastic averaging is performed for approximating the second-order stochastic differential 
equation (SDE) (Eq. (1)), first, by a linear time-variant oscillator, and second, by a first-order SDE governing the 
response amplitude process 𝐴(𝑡). In this regard, a linearized version of Eq. (1) is given by 

 𝑥̈ + 𝛽𝑒𝑞(𝑡)𝑥̇ + 𝜔𝑒𝑞2 (𝑡)𝑥 = 𝑤(𝑡) (2) 
 

where 𝛽𝑒𝑞(𝑡) is the time-dependent equivalent damping element and 𝜔𝑒𝑞2 (𝑡) is the time-dependent equivalent 
squared natural frequency. These parameters are obtained via a mean square minimization procedure of the error 
between Eq. (1) and Eq. (2) yielding 

 𝛽𝑒𝑞(𝑡)  = 𝛽0 + 𝐸[𝛽(𝐴)] = ∫ �1
𝜋 ∫

cos[𝜓]𝑧[𝑡,𝐴cos(𝜓),−𝜔(𝐴)𝐴sin(𝜓)]
𝐴 𝜔(𝐴)

2𝜋
0 𝑑𝜓�𝑝(𝐴, 𝑡)𝑑𝐴∞

0  (3) 
and 

 𝜔𝑒𝑞2 (𝑡) = 𝐸[𝜔2(𝐴)] = ∫ �− 1
𝜋 ∫

sin[𝜓]𝑧[𝑡,𝐴cos(𝜓),−𝜔(𝐴)𝐴sin(𝜓)]𝑑𝜓
𝐴

2𝜋
0 𝑑𝜓�𝑝(𝐴, 𝑡)𝑑𝐴∞

0  (4) 
 

In Eqs. (3-4) the non-stationary response amplitude PDF 𝑝(𝐴, 𝑡) is modeled as a time-dependent Rayleigh PDF 
in the form [12,18] 

 𝑝(𝐴, 𝑡) = 𝐴
𝑐(𝑡) 𝑒

− 𝐴2

2𝑐(𝑡) (5) 
 

Considering next the oscillator initially at rest, i.e., 𝑝(𝐴, 𝑡 = 0) = 𝛿(𝐴), where 𝛿(. ) is the Dirac delta function, 
and defining the slowly varying with time response amplitude 𝐴(𝑡) as 𝐴2(𝑡) = 𝑥2(𝑡) + �𝑥̇(𝑡) 𝜔𝑒𝑞(𝑡)⁄ �2, 
substituting Eq. (5) into the Fokker-Planck partial differential equation associated with the first order SDE 
governing the evolution of the response amplitude process PDF, the following first-order nonlinear deterministic 
differential equation can be obtained after some tedious mathematical manipulations, i.e. 

 𝑐̇(𝑡) = −𝛽𝑒𝑞�𝑐(𝑡)�𝑐(𝑡) + 𝜋𝑆𝑤�𝜔𝑒𝑞(𝑐(𝑡)),𝑡�
𝜔𝑒𝑞
2 (𝑐(𝑡))   (6) 

 

Eq. (6) constitutes a first-order nonlinear ODE for the time-dependent parameter 𝑐(𝑡), which can be solved by 
standard numerical schemes such as the Runge-Kutta. Once 𝑐(𝑡) is determined, both the non-stationary response 
amplitude PDF of Eq. (5) and the time-dependent equivalent linear elements of Eq.(3) and Eq.(4) can be 
evaluated. A detailed presentation of the derivation of Eq. (6) can be found in [12,18]. 

3. Stochastic Incremental Dynamic Analysis  
In this section a novel stochastic IDA framework based on the nonlinear oscillator stochastic 
averaging/linearization treatment delineated in the previous section is developed.  

Considering the ground motion records to be realizations compatible with a stochastic process EPS, and 
exploiting the closed form expressions for the nonlinear oscillator response amplitude PDF, analytical 
expressions are derived for the parameterized EDP statistics as functions of the excitation EPS intensity 
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magnitude. In comparison with a standard IDA framework, the complete statistical characterization (i.e. PDF 
determination) of the EDP quantity is achieved at minimal computational cost; thus, circumventing a 
computationally demanding MCS kind statistical treatment [20] that requires the, computationally prohibitive in 
many cases, derivation of a large number of IDA curves. 

In general, in the earthquake engineering field several EPS 𝑆𝑤(𝜔, 𝑡) forms have been proposed for 
describing the ground motion time-varying intensity and frequency content (e.g. [11, 6]). In the following, a 
parameterized EPS is introduced in the form 

 𝑆𝑤(𝜔, 𝑡; 𝑆0) = 𝑆0 ∙ 𝑆(𝜔, 𝑡)  (7) 
 
where 𝑆0 ∈ (0,∞) represents the EPS 𝑆(𝜔, 𝑡) intensity magnitude, and 𝑆𝑤(𝜔, 𝑡; 𝑆0) is the ground acceleration 
EPS for a given 𝑆0. In a performance based engineering context, the IM can be represented by 𝑆0, whereas the 
EDP considered herein is the maximum in time response displacement amplitude 𝐴. Clearly, based on the time-
dependent Rayleigh PDF (Eq. (5)) the maximum response displacement amplitude 𝐴 occurs also when the 
system response variance 𝑐(𝑡) attains its maximum value in time 𝑐𝑚𝑎𝑥(𝑆0) for a given value of 𝑆0 as in Fig. 1. 
Thus, for various values of 𝑆0, a curve of maxima (Fig. 2) has the functional form 𝑐𝑚𝑎𝑥(𝑆0). In this regard, the 
EDP PDF can be obtained in the form 

 𝑝(𝐴; 𝑆0) = 𝐴
𝑐𝑚𝑎𝑥(𝑆0) 

𝑒−
𝐴2

2𝑐𝑚𝑎𝑥(𝑆0)   (8) 
 

 
Fig. 1 – Parameterized system response variance for a given EPS intensity magnitude S0. 

 
Fig. 2 – Curve of system response variance maxima for different EPS intensity magnitude S0. 
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Clearly, the complete statistical description of the EDP is provided by the PDF of Eq. (8), whereas the 
derivation of other EDP related statistical quantities, such as the mean and the standard deviation, is a trivial 
task. 

4. Numerical example 
In this section, numerical examples are included demonstrating the efficiency and accuracy of the herein 
developed stochastic IDA. To this aim, the bilinear hysteretic oscillator [4], widely used in earthquake 
engineering applications (e.g. [5, 8]), is considered in detail.  

Focusing on the bilinear hysteretic oscillator, its equation of motion is given by [15] 

 𝑥̈ + 𝛽0𝑥̇ + 𝛼𝜔0
2𝑥 + (1 − 𝛼)𝜔0

2𝑥𝑦𝑧 = 𝑤(𝑡)  (9) 
 

where the internal variable 𝑧(𝑡, 𝑥, 𝑥̇) is given by the differential equation 

 𝑥𝑦𝑧̇ = 𝑥̇[1 −𝐻(𝑥̇)𝐻(𝑧 − 1) −𝐻(−𝑥̇)𝐻(−𝑧 − 1)]  (10) 

In Eq. (10) 𝐻(. ) denotes the Heaviside step function defined as  𝐻(𝑛) = 0 if 𝑛 < 0, and  𝐻(𝑛) = 1, 
otherwise. 

A typical force-displacement diagram is plotted in Fig. 3, with 𝑘 being the pre-yield stiffness, 𝑘𝑝 the 
post-yield stiffness, 𝛼 = 𝑘𝑝/𝑘, 𝑥𝑦 the yield displacement, and 𝐹𝑦 denoting the yield force, and 𝑧(𝑡, 𝑥, 𝑥̇) = 𝛼𝑘 +
(1 − 𝛼)𝑘𝑥𝑦𝑧/𝑚. 

 
Fig. 3 – Force-displacement diagram of a bilinear hysteretic oscillator. 

Next, 𝛽𝑒𝑞(𝑡) and 𝜔𝑒𝑞2 (𝑡) can be obtained analytically by employing Eq. (3) and Eq. (4), yielding [19] 

 𝛽𝑒𝑞�𝑐(𝑡)�  = 2𝜔0𝜉 + 4𝑥𝑦(1−𝛼)𝜔0
2

𝜋𝑐(𝑡) ∫ 1
𝜔(𝐴) �1 − 𝑥𝑦

𝐴
� exp �− 𝐴2

2𝑐(𝑡)� 𝑑𝐴
∞
𝑥𝑦

 (11) 
and 

 𝜔𝑒𝑞2 �𝑐(𝑡)� = 𝜔0
2 �𝛼 + (1 − 𝛼) �1 − exp �− 𝑥𝑦

2𝑐(𝑡)�+ 1
𝜋𝑐(𝑡)∫ �Λ − 1

2
sin(2Λ)�𝐴 exp �− 𝐴2

2𝑐(𝑡)�𝑑𝐴
∞
𝑥𝑦

��  (12) 
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The system response variance 𝑐(𝑡) is obtained numerically by solving Eq. (6) via standard integration 
schemes such as the Runge-Kutta. In the ensuing example, the values 𝜉0 = 0.05,𝑇0 = 2𝜋

𝜔0
= 0.5𝑠, 𝑥𝑦 = 0.016𝑚 

are used, whereas the oscillator is assumed to be initially at rest. Further, a time-modulated excitation EPS is 
utilized to model a non-stationary stochastic process characterizing the ground motion. Results obtained by the 
developed stochastic IDA are compared against pertinent MCS data (10,000 realizations) generated via a 
spectral representation approach [16].  

In this example the ground motion excitation is modeled as a non-stationary stochastic process, 
i.e. 𝑤(𝑡) = 𝑔(𝑡)𝑣(𝑡), where 𝑔(𝑡) is a deterministic time-modulating function, and 𝑣(𝑡) is a stationary stochastic 
process. The EPS of 𝑤(𝑡) is given by 

 𝑆𝑤(𝜔, 𝑡|𝑆0) = |𝑔(𝑡)|2𝑆𝑣(𝜔|𝑆0)  (13) 
 

where the time-modulating function 𝑔(𝑡) is given by 

 𝑔(𝑡) = 𝐶𝑡 exp �−𝑏𝑡
2
�  (14) 

 

In Eq. (14) 𝐶 and 𝑏 are constants related to the ground motion intensity and duration, respectively. 
Further, the stationary process power spectrum 𝑆𝑣(𝜔) is modeled as the widely used in earthquake engineering 
double-sided Kanai-Tajimi spectrum modified by Clough and Penzien (C-P) [6] in the form 

 𝑆𝑣(𝜔|𝑆0) = 𝑆0
𝜔𝑔
2+4𝜉𝑔2𝜔2𝜔𝑔

2

�𝜔𝑔
2−𝜔2�

2+4𝜉𝑔2𝜔2𝜔𝑔
2

𝜔2

(𝜔𝑓
2−𝜔2)2+4𝜉𝑓

2𝜔2𝜔𝑓
2.  (15) 

 
It is worth noting that several methodologies have been developed for determining the parameters of 

the C-P power spectrum, so that the resulting EPS is compatible with a prescribed design spectrum, as provided 
by the structural design codes [9,7,17]. For instance, an inverse optimization problem was formulated and solved 
in [9] for computing the EPS parameters of Eq. (15), so that the time-modulated C-P spectrum is compatible 
with the design spectrum provided by the European aseismic code - EC8. In this regard, the parameter values for 
soil B and peak ground acceleration (PGA) equal to 0.36g (𝑆0 = 1 𝑚2/𝑠3) were evaluated in [9] to be 𝐶 =
17.76 𝑐𝑚/𝑠2.5; 𝑏 = 0.58 𝑠−1; 𝜉𝑔 = 0.78; 𝜔𝑔 = 10.73 𝑟𝑎𝑑/𝑠; 𝜉𝑓 = 0.90; 𝜔𝑓 = 2.33 𝑟𝑎𝑑/𝑠. 

 

 
Fig. 4 – Time-modulated Clough-Penzien excitation EPS, surface a), and sections b). 

 

In the following example, the above parameter values are used, while a functional relationship is 
established between the EPS intensity magnitude 𝑆0 and the spectral acceleration 𝑆𝑎(𝑇1, 5%). This is motivated 
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by the trend of earthquake engineering applications, where the spectral acceleration is chosen as the IM. To this 
aim, for a given value of 𝑆0, realizations compatible with Eq. (13) are generated (500 realizations) via the 
spectral representation approach [16]. Next, the equation of motion of a 5% damped linear SDOF oscillator with 
a natural period 𝑇1 = 2𝜋/𝜔0 = 0.5 𝑠 is solved, by utilizing a fourth order Runge-Kutta numerical integration 
scheme. Finally, the spectral acceleration for a given 𝑆0 value is estimated as the ensemble average of the 
response realizations. The process is then repeated for a range of 𝑆0 values. The functional relationship 𝑆0 -  
𝑆𝑎(𝑇1 = 0.5 𝑠, 5%) is depicted in Fig. 5. Further, the functional form 

 𝑆𝑎(𝑇1, 5%) = 𝑃1(𝑆0)𝑃2  (14) 
 

is fitted to the MCS data for convenience purposes, whereas a least-squares minimization scheme yields the 
parameters values 𝑃1 = 1.065 and 𝑃2 = 0.5. 

 
Fig. 5 – Functional relationship between the spectral acceleration 𝑆𝑎(𝑇1 = 0.5 𝑠, 5%) and 𝑆0 for a time-

modulated Clough-Penzien excitation EPS. 
 

To assess the efficiency of the proposed approach a range of  𝑆𝑎 = 𝑆𝑎(𝑇1, 5%) from 0.001𝑔 to 10.0𝑔, 
where 𝑔 = 9.81𝑚/𝑠2, is considered. First, the linear oscillator is studied, i.e.,  𝛼 = 1, and the response 
amplitude PDF obtained via the stochastic averaging/linearization approach (Fig. 6a) is compared with the 
response amplitude PDF obtained by MCS data (Fig. 6b). Similarly, for a nonlinear oscillator with 𝛼 = 0.2, in 
Figures 7a,b the response amplitude PDFs obtained by a stochastic averaging/linearization approach and by 
MCS data are plotted, respectively. It can be readily seen that the accuracy level is quite satisfactory, given the 
approximations involved in the proposed approach. 

In Fig. 8 the response amplitude PDFs obtained via the proposed approach, considering both α=1 (Fig. 
8a) and α=0.2 (Fig. 8b), are compared with MCS based PDF for various levels of spectral acceleration. 
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Fig. 6 – Response amplitude PDF (α = 1, T=0.5s) obtained by a) stochastic averaging/linearization and by b) 

Monte Carlo simulation (10,000 realizations). The solid red line denotes the EDP mode. 

 
Fig. 7 – Response amplitude PDF (α = 0.2, T=0.5s) obtained by a) stochastic averaging/linearization and by b) 

Monte Carlo simulation (10,000 realizations). The solid red line denotes the EDP mode. 
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Fig. 8 –Response amplitude PDF for various excitation/spectral acceleration levels for (T=0.5s) a) α = 1 and b) α 

= 0.2; comparisons with pertinent MCS data (10,000 realizations). 
 

Further, based on the estimated response amplitude PDF, various other related statistics can be 
readily determined. For instance, in Fig. 9 the 16%, 50% and 84% fractiles are plotted, both for the linear (𝛼 =
1) and the nonlinear (𝛼 = 0.2) oscillators. Comparisons with MCS data demonstrate a satisfactory degree of 
accuracy, even for the nonlinear case.  

 
Fig. 9 – Stochastic IDA curves (16%, 50% and 84% fractiles) (T=0.5s); comparisons with MCS data (10,000 
realizations). 
 

Regarding the computational performance of the proposed approach, it is worth noting that using a 
PC with standard configurations, the stochastic averaging based approach takes approximately 2-3 s to generate 
the data for Fig. 7ª, whereas a MCS based approach utilizing 10,000 realizations takes approximately 20 h. 
Considering 30 to 300 excitation records per scaling level, as it is common in the standard IDA implementation, 
the related cost would be approximately 30 min for a SDOF bilinear oscillator. Note, however, that a 
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significantly higher number of records is needed, in general, for estimating reliably higher order statistics (or 
even the PDF). 

5. Conclusions 
A novel efficient stochastic incremental dynamic analysis (IDA) methodology for nonlinear/hysteretic oscillators 
has been developed, by resorting to nonlinear stochastic dynamics concepts and tools such as stochastic 
averaging and statistical linearization. Specifically, considering the ground motion records to be realizations 
compatible with a stochastic process EPS, closed form expressions have been derived for the chosen 
parameterized EDP PDF. This is done at minimal computational cost; thus, circumventing a computationally 
demanding MCS kind statistical treatment [20] that requires the, computationally prohibitive in many cases, 
derivation of a large number of IDA curves. The numerical example has included a bilinear/hysteretic SDOF 
oscillator, whereas comparisons with pertinent MCS data have demonstrated the accuracy of the developed 
stochastic IDA methodology. Hopefully, due to its versatility, the developed stochastic IDA methodology can be 
used for preliminary structural system design applications within a PBE framework in various engineering fields 
such as earthquake and wind engineering. 
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