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Abstract 

This paper discusses three methods for applying linear viscous damping at the global level in nonlinear time history 

analysis: (1) Rayleigh damping proportional to the mass and initial stiffness matrices, (2) Rayleigh damping 

proportional to the mass and tangent stiffness matrices, and (3) modal damping through the dynamic nonlinear 

modal analysis method, also known as fast nonlinear analysis (FNA). The effect of global stiffness changes on 

structures modeled with the three methods is studied and compared. This paper showcases one of the limitations 

of Method 1 (Rayleigh damping with initial stiffness): sensitivity to the modeling of localized nonlinearity, such 

as frame elements that are sub-divided around the nonlinear hinges. As the sub-division around the nonlinear 

hinges become smaller, the damping forces in the nonlinear elements become larger and can have a significant 

effect on the computed forces in neighboring elements as well as global behavior. In contrast, the latter two 

methods are insensitive to the modeling of localized nonlinearity. Finally, the results of nonlinear response history 

analyses using each method is compared for a 30-story building model used for performance-based design. All 

structural modeling and analysis is done using the commercial software ETABS 2015. Method 3 (modal damping 

with FNA) gives similar results to Method 2 (Rayleigh damping with tangent stiffness) for the 30-story building 

model. The effect of the three methods upon the efficiency of analysis is also compared. 

Keywords: Nonlinear Dynamic Analysis, Modal Damping, Rayleigh Damping, Fast Nonlinear Analysis. 
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1. Introduction and Motivation 

In this paper, three types of global linear viscous damping models used for nonlinear time history analyses 

(NLTHA) are considered:  

1. Mass and initial stiffness proportional Rayleigh damping, which will be referred to as RI damping. The 

damping matrix is a linear combination of the mass and initial stiffness matrices M and K0, respectively.  

 𝐶 = 𝛼 𝑀 + 𝛽 𝐾0 (1) 

The damping ratio for the nth mode, 𝜁𝑛, is  

 𝜁𝑛 =
𝛼

2𝜔𝑛
+

𝛽

2
𝜔𝑛 (2)  

where 𝜔𝑛 is the circular frequency of the mode and 𝛼 and 𝛽 are the mass and stiffness proportional coefficients, 

respectively. While RI damping is classical for a linear elastic structure, the damping matrix may be non-classical 

for NLTHA, where the tangent stiffness may vary over time due to nonlinear behavior in the structural model.  

2. Mass and tangent stiffness proportional Rayleigh damping, which will be referred to as RT damping. 

The damping matrix is a linear combination of the mass and tangent stiffness matrices M and KT, respectively. It 

has been shown that RT damping agrees better with experimental observations than RI damping [14]. 

 𝐶 = 𝛼 𝑀 + 𝛽 𝐾𝑇 (3) 

The mass and stiffness proportional coefficients 𝛼 and 𝛽 are defined as for RI damping; in this paper, the 

coefficients 𝛼 and 𝛽 are computed based on the initial stiffness and are constant throughout the analysis. This 

damping model differs from RI damping only for NLTHA; in contrast to RI damping, RT damping maintains a 

classical damping matrix for nonlinear structures. Studies [2,12] have considered the case where coefficients 𝛼 

and 𝛽 are recomputed every time step based on the tangent stiffness. However, this requires a modal analysis at 

every time step, an expensive operation when used for realistic structural models.  

3. Modal damping. In this method, the damping is equivalent to that used in linear modal time-history 

analysis. A major advantage of this method is that the modal damping ratio, 𝜁𝑛, can be specified for each mode 

independently. In the modal space, the modal damping matrix is diagonal. The resulting damping matrix for direct-

integration time history analysis is [3,16]: 

 𝐶 = 𝑀𝑇 (∑
2 𝜁𝑛 𝜔𝑛

𝑀𝑛
𝜙𝑛𝜙𝑛

𝑇𝑁
𝑛=1 ) 𝑀 (4) 

where Φ = [ϕ1, ϕ2, … , ϕN] is a set of N mode shapes computed for the structure; and Mn, 𝜁𝑛, and ωn are the modal 

mass, damping ratio, and circular frequency for mode n, respectively. Note that N may be less than the total number 

of modes for the structure. When used for in direct-integration time history analysis, the modal damping matrix is 

fully populated as opposed to the sparse form of the RI and RT damping matrix. Some implementations of modal 

damping approximate the damping matrix by using only the terms that fall in the bandwidth of the stiffness matrix 

[13]; differences between using the full and approximate modal damping matrix for direct-integration NLTHA are 

studied in [3]. When NLTHA is performed in the modal space, the modal damping matrix is diagonal; modal 

NLTHA is described in the following section. 

RI damping is the most commonly used global linear viscous damping model and is available in many 

existing structural analysis software: e.g. [6,11,13]. Existing structural analysis software has also implemented the 

RT damping [6,11] and modal damping [6,11,13] methods. RI damping has limitations which have been widely 

studied [1-3,5,7-10,12,14,17]; an overview of the literature can be found in Jehel et al. [10]. This paper will discuss 

two major issues present for RI damping with a focus of studying the behavior of modal damping for these issues: 

1. Linear damping forces proportional to the initial stiffness of the model may be excessive in comparison 

to the nonlinear resisting force, especially for yielding, cracking, or gap/hook elements. To reduce the effect of 

this issue, the stiffness used to construct the RI damping matrix can be reduced or neglected for nonlinear elements 

[13, 17] or the overall damping force can be limited [7]. Studies [8,12] have shown that RT damping successfully 
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limits excessive damping during post-yield behavior; however, use of RT damping can cause numerical 

convergence difficulties when sudden changes in stiffness occur [7]. 

2. Spurious damping forces can occur at degrees of freedom with no or small mass when the stiffness 

matrix used for stiffness-proportional damping differs from the stiffness matrix of the structure [1,3]. McKenna 

and Chopra [3] showed that RT and modal damping do not exhibit spurious damping at degrees of freedom with 

zero mass. Studies [8,16] have also shown that RI damping can provide an unrealistically high level of damping, 

causing artificial collapse resistance for structures at or near collapse. This paper illustrates that, because of this 

issue, the damping force computed with RI damping has a strong dependence on initial stiffness and discretization 

of nonlinear components, a behavior that RT and modal damping do not exhibit. 

This paper discusses, quantitatively, the effect of global and local changes of stiffness on the damping ratio 

for the three damping models considered. A case study of a 30-story building model subjected to two bi-axial 

ground motions is presented to qualitatively assess and compare the three damping methods for use in a realistic 

structural model. All structural modeling and analysis is done using the commercial software ETABS 2015 

(v15.2.2) using direct-integration time history analysis with RI and RT damping and nonlinear modal time history 

analysis with modal damping. 

2. Nonlinear Modal Time History Analysis: Fast Nonlinear Analysis  

In this paper, nonlinear modal time history analysis is performed using the Fast Nonlinear Analysis (FNA) method 

developed and described in Ibrahimbegovic and Wilson [9] and Wilson [15]. Two important features of the FNA 

method are: nonlinear behavior occurs only in pre-defined elements, and the time history analysis is performed 

using modal superposition. A short summary is presented in this section. 

When using FNA, nonlinearity is restricted to predefined elements and degrees of freedom. While it is 

extremely efficient for structural systems which have a limited number of nonlinearities, there is no limit on the 

number of nonlinear elements that can be considered. For a linear elastic structure with predefined nonlinear 

elements, the dynamic equilibrium equations at time t can be written as:  

 𝑀 𝑢̈(𝑡) + 𝐶 𝑢̇(𝑡) + 𝐾𝐿 𝑢(𝑡) + 𝑅𝑁𝐿(𝑡) = 𝑅(𝑡) (5) 

where M and C are the mass and proportional damping matrices, respectively; and 𝐾𝐿 is the assembled stiffness 

matrix of the linear elastic elements; 𝑅𝑁𝐿 is the global resisting force vector for nonlinear elements; 𝑢(𝑡), 𝑢̇(𝑡), 

𝑢̈(𝑡) are the relative displacements, velocities, and accelerations at time t with respect to the ground; and R is the 

vector of applied loads. Moving 𝑅𝑁𝐿to the right-hand side: 

 𝑀 𝑢̈(𝑡) + 𝐶 𝑢̇(𝑡) + 𝐾𝐿 𝑢(𝑡) = 𝑅(𝑡) − 𝑅𝑁𝐿(𝑡) (6) 

A linear effective stiffness matrix, 𝐾𝑁, for the nonlinear elements is added to both sides of the equation. 

This effective stiffness is arbitrary and can be between zero and the maximum nonlinear stiffness. The resulting 

dynamic equilibrium equation resembles the linear elastic modal equations and all nonlinear effects are 

incorporated in the right-hand side: 

 𝑀 𝑢̈(𝑡) + 𝐶 𝑢̇(𝑡) + 𝐾 𝑢(𝑡) = 𝑅̂(𝑡) (7) 

with stiffness matrix K and effective applied load vector, 𝑅̂(𝑡): 

 𝐾 = 𝐾𝐿 + 𝐾𝑁 (8) 

 𝑅̂(𝑡) = 𝑅(𝑡) − 𝑅𝑁𝐿(𝑡) + 𝐾𝑁 𝑢(𝑡) (9) 

Modal analysis is performed using the stiffness matrix K and mass matrix M. In this paper, the load 

dependent Ritz-vector method is used to generate a set of N orthogonal modes, Φ, as suggested in [4,15]. The 

equilibrium equations can be written in modal form as: 

 𝐼 𝑌̈(𝑡) + Λ 𝑌̇(𝑡) + Ω2 𝑌(𝑡) = 𝐹(𝑡) (10) 
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 𝐹(𝑡) = Φ𝑇𝑅̂(𝑡) = Φ𝑇𝑅(𝑡) − Φ𝑇𝑅𝑁𝐿(𝑡) + Φ𝑇 𝐾𝑁 𝑢(𝑡) (11) 

where Y is the vector of modal coordinates, I is the identity matrix, Λ is the modal damping matrix, and Ω is the 

diagonal matrix of modal frequencies. Unlike linear modal time history analysis, the modal equations in Eq. (10) 

will be coupled through the resisting force vector for nonlinear elements, which is a function of all modal 

displacements. Because of this, iteration is necessary to obtain the solution of the modal equations. The 

decomposition to modal equations allows the damping ratio to be specified per mode.  

Compared to direct integration time history analysis with a damping matrix formed by the modal properties, 

FNA has a few advantages: 

1. Because the equations of motion are solved in the modal form, modal damping does not require 

formation or storage of a fully populated damping matrix or approximation of the modal damping matrix. 

2. Exact, closed-form integration can be used to solve the modal equations at every iteration, removing 

time-step dependence due to the time stepping algorithms used. Thus, the method is not sensitive to time step to 

the extent that the nonlinearity is piece-wise linear over the time step. 

3. The FNA method can be used without the complete set of all possible structural modes. For this reason, 

it is suggested to use the load dependent Ritz-vector method to determine a sufficient number of structural modes 

to represent the behavior of the structural response. The number of equations solved when using the FNA method 

may be significantly smaller than the total number of degrees of freedom in the structure, especially for structures 

with limited nonlinear degrees of freedom. This can result in significantly faster analysis completion time with 

comparable accuracy compared to direct-integration time history analysis. 

However, it is important to note that the solution obtained by FNA is dependent on being able to adequately 

represent the behavior of the structure and nonlinear forces by the computed mode shapes. With sufficient modal 

representation, the results of FNA are of comparable or greater accuracy than that of direct integration [15].  

3.  Effect of Changes in Stiffness on Damping Ratio 

In this section, the damping ratio for inelastic yielded modes is discussed for the three damping methods. For any 

damping matrix 𝐶, the damping ratio of the nth mode is found using the modal strain energy (MSE) method [2]: 

 𝜁𝑛 =
𝜙𝑛

𝑇 𝐶 𝜙𝑛

2 𝜔𝑛 𝜙𝑛
𝑇 𝑀 𝜙𝑛

 (12) 

The damping ratios found by the MSE method are exact for a classically damped system. For a non-

classically damped system, the damping ratio calculated from Eq. 12 is approximate with good accuracy for low 

damping ratios. 

3.1 Effect of Global Changes in Stiffness 

This example illustrates the effect of global stiffness change due to inelastic structural behavior using the five 

degree of freedom structural model studied by Charney [2]. This simplified model represents a five story structure 

with one degree of freedom for each story. The mass and stiffness of each floor is identical and equal to 228 kN-

sec2/m and 8.70x104 kN/m, respectively; Table 1 lists the natural frequencies of the structural model. For RI and 

RT damping, the damping coefficients 𝛼 = 0.183 and 𝛽 = 0.00128 so the first and third elastic modes have a 

damping ratio of 2%. For modal damping, all modes have a damping ratio of 2%. 

To illustrate the effect of nonlinear behavior, two scenarios for damage in the structure are studied: 

Case 1, Uniform Damage: The entire stiffness matrix is assumed to reduce to 50% of its original value.  

Case 2, Varied Damage: The stiffness properties change non-uniformly along the height: 0.9, 0.7, 0.5, 0.3, and 

0.1 times the initial stiffness of each story, top down, respectively. 

The second and third columns of Table 1 lists the natural frequencies for Case 1 and 2, respectively. Figures 

1(a) and (b) show the damping ratio versus circular frequency for the damaged modes for Case 1: Uniform Damage 
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and Case 2: Varied Damage, respectively. In the two figures, the elastic damping curves for Rayleigh and modal 

damping are shown in grey and the vertical dashed lines represent the original undamaged frequencies.  

Table 1 – Modal Frequencies (radian/sec) of five degree of freedom structural model 

Mode  
Elastic: 

No Damage 

Case 1: 

Uniform Damage 

Case 2: 

Varying Damage 

1 5.56 3.95 2.29 

2 16.23 11.48 9.81 

3 25.58 18.09 16.41 

4 32.87 23.24 23.18 

5 37.47 26.51 31.00 

 

For Case 1: Uniform Damage, the damaged modal frequencies are exactly 0.7072 times the undamaged 

modal frequencies for all modes due to the uniform reduction in the stiffness matrix. For the two damping methods 

which depend only on the initial state of the structure – RI and modal damping – the damping ratio at the frequency 

of each damaged mode is exactly 1.414 times the original damping ratio at the original frequency of the undamaged 

mode. The RT damping matrix is proportional to the damaged stiffness and the damping ratios of the damaged 

system lies on the Rayleigh damping curve defined for the undamaged system. The damping ratios at the damaged 

frequencies differ from that of the corresponding initial frequencies because the frequencies have shifted toward 

lower values.  

For Case 2: Varying Damage, RI and modal damping, which depend only on the initial state of the structure, 

may be non-classical when the stiffness changes. For both RI and modal damping, the damping ratios at the 

damaged modes are considerably larger – up to 2.5 times – than that of the corresponding undamaged modes. For 

this case, modal damping results in a smaller increase of damping ratio for the higher modes. As for Case 1, the 

damping ratio of the damaged system for the RT damping method lies on the Rayleigh damping curve defined for 

the undamaged system. Note that, due to the shape of the Rayleigh damping curve, the damping ratio of the first 

damaged mode for RT damping is twice that of the corresponding undamaged modes. For this reason, studies have 

suggested that Rayleigh damping constants be defined taking into account the damaged modal frequencies [2,12]. 

For the two cases of global stiffness change considered in this section, modal damping does not result in 

significant improvement over RI damping.  

 

Fig. 1 – Damping ratio versus frequency for (a) Case 1: Uniform Damage and (b) Case 2: Varying Damage. The 

elastic damping curves for Rayleigh and modal damping are shown in grey. Vertical dotted lines show the elastic 

modal frequencies. 
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3.2 Effect of Local Inelasticity and Sensitivity to Discretization 

This example considers a simple model consisting of two elements (elements A and B) in series, shown in Figure 

2. Nonlinear behavior in element A is modeled using a concentrated plasticity element. Element A consists of two 

components: a short nonlinear component, representing the concentrated plasticity, and an elastic component. For 

this study, the node between the two components in beam A has a negligible non-zero mass. The model has modal 

frequencies of 62.81 and 1.64 rad/sec (a period of 0.1 and 0.038 sec, respectively) initially and modal frequencies 

of 16.38 and 1.45 rad/sec (a period of 0.38 and 0.043 sec, respectively) after yielding in the nonlinear element. For 

RI and RT damping, the damping coefficients 𝛼 = 1.8186 and 𝛽 = 1.76 x10-4 so the first and second elastic modes 

have a damping ratio of 2%. This was modeled in ETABS by using frame elements discretized (using the hinge 

overwrite option) around the nonlinear hinge.  

 

Fig. 2 – Schematic of nonlinear two element model 

Figure 3 shows the damping ratio for the first yielded mode using the MSE for varying values of rh, the ratio 

of nonlinear component length to the total length of element A. The damping ratios for modal and RT damping 

are larger than 2% as discussed in section 2.1 of this paper and are not dependent on rh. The damping ratios for RI 

damping increases as rh decreases, corresponding to a decreasing size of the nonlinear component. This issue 

occurs because RI damping is proportional to the large initial stiffness of the nonlinear component; after the 

nonlinear element yields, this initial stiffness proportional part of the damping results in disproportionally large 

damping forces in the yielded nonlinear component. In contrast, the modal damping matrix is not significantly 

affected by the large initial stiffness of the nonlinear component of element A. 

 

Fig. 3 – Damping ratio of the fundamental mode of the yielded system (ω = 62.8 rad/s) versus the discretization 

size of the inelastic portion. 

Figure 4 shows applied force versus displacement at node 2 where 1.8 times the yield force was applied to 

node 2 over 0.9 seconds in ETABS. The yield force was 10 kips. Models with modal and RT damping showed no 

sensitivity to the discretization of the nonlinear hinge. The force-displacement behavior for models with RI 

damping showed artificial post-yield stiffness which increased with decreasing rh. Figure 5 compares the resisting 

force from the nonlinear and elastic components of element A and illustrates the discrepancy between the resisting 

forces for models with RI damping. Equilibrium is maintained between the nonlinear and elastic components 

because of the large damping force in the nonlinear component, due to the accumulation of deformation in the 
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nonlinear component after yield and the initial stiffness-proportional damping. The 25% of the total force resisted 

in the nonlinear component was contributed by the damping force when 1.8 times the yield force was applied to 

the rh = 1% model. 

For RI damping, the sensitivity to discretization has been alleviated in existing structural analysis software 

[6,13] through the use of substructuring for frame (beam or column) elements with concentrated plastic hinges. 

For substructuring, the joint connecting the nonlinear and elastic components in element A is internal to the 

element and static condensation is used to get the properties of element A as a superelement. Thus, global damping 

would be applied for element A as a whole. This effect is also observed for distributed plasticity elements, as 

studied in McKenna and Chopra [3] where the damping model is shown to have significantly less influence on the 

response when distributed plasticity elements are used to model nonlinear structural elements. 

 

Fig. 4 – Force versus displacement response normalized by the yield force and displacement for varying rh, ratio 

of nonlinear component length to total length of element A. 

 

 

Fig. 5 – Resisting force of the elastic component vs. that of the nonlinear component, both normalized by the 

nonlinear yield force, for varying rh (the ratio of nonlinear component length to total length of element A). 

4. Case Study: 30-story Shear Wall Building 

The 30-story building model shown in Figure 6(a) is used to qualitatively assess and compare the damping methods 

for use in realistic structural models. The building consists of two C-shaped reinforced concrete core walls joined 

by slender coupling beams at the story levels. The core walls are modeled using shell elements, and nonlinear fiber 

wall hinges are used in the bottom 10 stories of the model. All coupling beams over the height of the building are 

modeled using frame elements with nonlinear moment hinges at both ends. The slabs at each story are modeled 
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using linear thin shell elements and the rigid diaphragm constraint is applied at each floor level. Exterior columns 

are assumed to be linear elastic and are modeled with pinned supports at the ground level. The total number of un-

constrained degrees of freedom in this model is 13,914; the total number of nonlinear degrees of freedom is 240. 

Two hinge discretization sizes are considered for the coupling beam elements: 5% and 25% of the beam length 

for each hinge. Wall hinges are modeled to account for the flexibilty of the entire wall element. Geometric 

nonlinearity was not considered. The first three modal periods are 2.386, 0.454, and 0.198 sec and 2.322, 0.514, 

and 0.229 seconds in the X- and Y- directions, respectively. 

 The 30-story building model is subjected to two ground motion excitations: LACC-NOR is the recorded 

far-field ground motion from the LA – Century City CC North station during the 1994 Northridge, CA earthquake 

with an amplitude scaling factor of 7.6 to represent a MCE-level earthquake, and SCAL-LONG is a synthetic 

ground motion record generated by ETABS to match the response spectrum from the recorded ground motion at 

the Kanti Path, Kathmandu station during the April 2015 Nepal earthquake. The SCAL-LONG excitation was 

selected to excite the long period modes of the structure. The acceleration response spectrum for the two ground 

motion excitations are shown in Figure 6(c) and (d) for the X- and Y-direction components, respectively; in this 

figure, LACC-NOR is shown unscaled.  

RI and RT damping models are analyzed using nonlinear direct-integration time history analysis with 

damping parameters 𝛼 = 0.0961 and 𝛽 = 1.33 x 10-3 so the first and third translational modes have a damping ratio 

of 2%; the Hilbur-Hughes-Taylor time stepping algorithm [4] is used with a factor of alpha = -0.05. The modal 

damping is analyzed using FNA with 620 modes generated using acceleration in the X- and Y- directions, gravity 

loading, and link forces as starting vectors for Ritz modal vector generation. 2% damping is applied in all modes 

with period of 0.001 sec or more and 20% damping is applied in modes with period of less than 0.001 sec; this is 

specified to reduce high frequency behavior in the model and has negligible effect on response behaviors with 

frequency less than 100 Hz. Analysis for both ground motion excitations was computed with a maximum time 

step of 0.02 sec.  

 

Fig. 6 – (a) 30-story core wall building modeled in ETABS; (b) Deformed shape at time t = 17.5 sec for ground 

motion excitation “SCAL-LONG” with modal damping, floors are not shown for clarity; (c) X- and (d) Y-

direction spectral accelerations for the ground motion excitations LACC-NOR (unscaled) and SCAL-LONG.  
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Fig. 7 – Roof drift response time history of 30-story building model for base excitation LACC-NOR in the (a) X- 

and (b) Y-directions with RI, RT, and modal damping. 

 

Fig. 8 – Peak response values of (a-b) floor displacements normalized by the total building height and (c-d) 

inter-story drift ratio of 30-story building model for base excitation LACC-NOR with RI, RT, and modal 

damping. 
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Fig. 9 – Roof drift response time history of 30-story building model for base excitation SCAL-LONG in the (a) 

X- and (b) Y-directions with RI, RT, and Modal damping. 

 

Fig. 10 – Peak response values of (a-b) floor displacements normalized by the total building height and (c-d) 

inter-story drift ratio of 30-story building model for base excitation SCAL-LONG with RI, RT, and modal 

damping. 
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Figures 7 and 8 shows the roof drift response time history and peak values of floor displacement and inter-

story drift ratio in the X- and Y- directions for ground motion excitation LACC-NOR. The three considered 

damping methods do not result in large differences for the computed roof drift response: the RI with rh = 5%, RI 

with rh = 25%, and modal damping peak roof drift were 1.05, 1.2, and 1.16 times that of RT damping, respectively, 

in the X-direction and 0.88, 0.93, and 0.94 times that of RT damping, respectively, in the Y-direction. The inter-

story drift response showed greater differences; the results of RI with rh = 25% and modal damping had good 

agreement. As an average over the height for the X- and Y-directions, inter-story drift ratios from modal damping 

had a 5.8% and 9% difference, respectively, from that of RT damping. Comparatively, inter-story drift ratios from 

RI damping with rh = 25% had a 6.6% and 8% difference, respectively, from that of RT damping. 

Figures 9 and 10 shows the roof drift response time history and peak values of floor displacement and inter-

story drift ratio in the X- and Y- directions for ground motion excitation SCAL-LONG. The damage from this 

ground motion excitation is extensive; the hinge states and deformed shape (deformation scale factor = 1) of the 

building at time t = 17.5 sec are shown in Figure 6(b). The coupling beams over the bottom half of the building 

have exceeded the collapse prevention (CP) state and have begun to lose moment strength capacity. The damage 

to the core walls is concentrated at the bottom two stories of the building, forming a flexible plastic hinge at the 

base of the building. For this ground motion excitation, the results with modal damping agree well with that of RT 

damping while RI damping, especially with rh = 5%, computes significantly smaller displacement and drift 

response. The RI with rh = 5%, RI with rh = 25%, and modal damping peak roof drift were 0.91, 0.92, and 0.98 

times that of RT damping, respectively, in the X-direction and 0.67, 0.81, and 0.96 times that of RT damping, 

respectively, in the Y-direction. As an average over the height, inter-story drift ratios from modal damping had a 

2.6% and 2.9% difference from that of RT damping in the X- and Y-directions, respectively. Comparatively, inter-

story drift ratio from RI damping with rh = 5% and 25% exceeded 10% and 8% difference, respectively, from that 

of RT damping in either direction. This behavior is consistent with the results of the building with lumped plasticity 

studied by McKenna and Chopra [3]; in that study, the modal damping was done with direct-integration time 

history analysis. In addition, the effect of hinge discretization is apparent on the results in the Y-direction, the 

direction of loading corresponding to deformation of the coupling beams. 

Table 2 lists the computational time for the analysis with each of the three damping methods and two ground 

motions excitations. While analysis with RT damping is 3-5 times slower than RI damping, modal damping with 

the FNA method is considerably faster than both: 8 and 3.4 times faster than RI damping for LACC-NOR and 

SCAL-LONG, respectively. 

Table 2 – Analysis computational time (sec) for the 30-story building model subjects to ground motion 

excitation LACC-NOR and SCAL-LONG (using a 3.49 GHz Intel Xeon CPU and 24 GB of RAM). 

Damping 

Model  

Computational time (sec) 

LACC-NOR SCAL-LONG 

RI, rh = 5% 4113 1668 

RI, rh = 25% 3750 1674 

RT 18418 6106 

Modal 482 489 

5. Conclusion 

Compared to the Rayleigh damping methods for nonlinear time history analysis, modal damping has the advantage 

of being readily understood and controlled because the modal damping ratios can be specified independently for 

each mode. While modal damping can be used in direct-integration analysis, this paper considered its use in 

nonlinear modal time-history analysis (FNA) methods. 

Similar to tangent stiffness proportional Rayleigh (RT) damping, modal damping is shown to be insensitive 

to hinge discretization and does not produce spurious damping forces at nodes with little or no mass, both of which 

are major concerns for initial stiffness proportional Rayleigh (RI) damping. While discretization effects can be 
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reduced by modeling techniques, they can be still be inherent in the structural configuration such as due to localized 

damage or hinging at the first story of a tall building. 

One limitation to modal damping is that the damping matrix is constructed based on the initial modal 

properties of the structure so that inelastic modes may be more damped than expected when stiffness reduction 

occurs on a global level. However, in the case study of a 30-story building model subjected to two different bi-

axial ground motions, modal damping with FNA was shown to produce displacement and inter-story drift results 

similar to RT damping while RI damping significantly underestimated the displacements and drifts for the larger 

earthquake excitation. Analysis using FNA with modal damping was shown to be more than 10 times faster than 

using direct-integration with RT damping, and was more than 3 times faster than RI damping. 
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