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Abstract 
A general design procedure for elastic buildings equipped with linear and non-linear energy dissipating devices is presented 
herein. The procedure begins with an estimation of the total amount of equivalent damping and stiffness required to achieve 
a predefined building performance. The method defines the modal significance of some key design performance indicators, 
and then focuses on the control of the modal properties by solving a singular two-parameter eigenvalue problem. Although 
simple, the definition of a new measure of modal significance in the classical and non-classical damping case, is also critical 
for faster convergence of the method. The incorporation of non-classical damping in the design algorithm appears to be 
critical, and expands its applicability significantly. The design output provides a target frequency shift and damping ratio for 
the complete structure, obtained from the so called iso-performance design curves (IPCs), which cover the whole design 
space spanned by these two design variables representing the supplemental stiffness and damping of the devices. Once the 
linear equivalent properties of the dampers are obtained, the equivalent stiffness and damping of the devices are transformed 
into parameters that characterize the inelastic force-deformation constitutive models of the physical dampers. The design 
procedure does not require any a-priori definition of a specific damper type. The design procedure was validated using 8 
conventional buildings that were severely damaged during the February 27, 2010 Chile earthquake, and a rather complex 
free-plan building with two towers of a rhomboid-shape plan. Estimation errors between response reduction factors using 
linear versus inelastic modeling of the EDDs were usually less than 10% for the 9 buildings considered. The design 
procedure proposed is better described as a conceptual and practical framework for the design of buildings with passive 
EDDs. Its step-by-step nature can take advantage of future research in any of the current research topics described herein 
and could be easily adapted to new knowledge in the field.  

 

Keywords: modal significance, energy dissipation devices, non-classical damping, iso-performance curves, optimal 
damping distribution. 
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1. Introduction 
The successful performance of buildings equipped with seismic protection solutions during the recent cluster of 
large subduction earthquakes has generated increasing enthusiasm in using these techniques in the design of 
structures located in high seismicity environments. The response of thirteen seismically protected buildings 
during the Chile earthquake (Mw=8.8, 2010) [9], and many others during the Japan earthquake (Mw=9.0, 2011) 
[4][14] are just some examples of this successful behavior. 

 The literature in the topic of building design with EDDs is rather extensive [13][15] and deals with 
relevant aspects such as the optimal height-wise distribution location of EDDs [2][12] in single and multistory 
symmetric and asymmetric buildings; and the elastic and inelastic dynamic behavior of the building and their 
design considering different devices such as viscous, frictional, metallic, viscoelastic, and the more sophisticated 
semi-active dampers [e.g., 5]. 

 This research proposes a general and robust procedure for the design of elastic buildings equipped with 
EDDs. Although elastic building behavior may seem initially as a limitation to the applicability of the procedure, 
three reasons justify this assumption. First, as it was observed during the Chile earthquake in 2010, the actual 
behavior of slender structures equipped with EDDs was predominantly linear-elastic. Second, being the linear 
case well understood, it is rather straightforward to extend this design procedure to account for the inelastic 
behavior of a building. And third, since this is a design procedure rather than an analysis procedure, the design 
generated can be validated in the end by any inelastic dynamic analysis of the structure including every possible 
nonlinearity. Consequently, this procedure should be understood as one possible algorithm to generate an 
optimal design. 

 This procedure formulates the design problem as one of reducing a key performance design index (KDPI) 
by analyzing and controlling the vibration “modes” of the structure. To achieve this, it is necessary to identify 
the relative contribution or significance that each generalized coordinate has on the response of the system. Any 
modal response is controlled through its modal dynamic parameters, its natural frequency and damping ratio. 
The target reduction for the modal response depends on the modal significance on the KDPI, which will be 
characterized by the modal significance factor (MSF) introduced later. Modal parameter changes will be 
measured by shifts in the natural frequency and supplemental damping ratio, characterized by the design pair 
(𝛺2, 𝜉𝑑), with 𝛺2 and 𝜉𝑑 as defined later. Modal parameter changes will be obtained from Iso-Performance 
Curves (IPCs), which represent the locus of all pairs (𝛺2, 𝜉𝑑) that produce the same response reduction of the 
KDPI. Regardless of the EDD finally used, linear equivalent properties are used in general to determine the shift 
in modal parameters. 

 Any KDPI may be represented by a response factor defined as the ratio 𝑅𝑍 = 𝑍𝑑/𝑍0, where Z0 and Zd are 
the peak responses of the bare and equipped structure with EDDs, respectively. A target value for this KDPI is 
defined in the design to quantify the effectiveness of the proposed solution. This target response reduction value 
is based largely on experience, but usually ranges between 20%-60% for practical building solutions. A 
convenient way to impose this design goal is through the use of the IPCs introduced later.  

  

2. Formulation of the problem 
The reduced order equations of motion of a linear-elastic structure can be stated as  
 𝑴𝑅�̈�+ 𝑪𝑅�̇� + 𝑲𝑅𝒖 = 𝜳𝑇𝒇𝑔 (1) 

where 𝒖 is the vector of generalized coordinates; 𝜳 is a coordinate transformation matrix such that 𝒙 = 𝜳𝒖; and 
𝑴𝑅 = 𝜳𝑇𝑴𝜳, 𝑪𝑅 = 𝜳𝑇𝑪𝜳, and 𝑲𝑅 = 𝜳𝑇𝑲𝜳 are the mass, damping, and stiffness matrices in the new 
coordinate system, respectively; and 𝒇𝑔 is a general input to the structure. The reduced order dynamic equations 
of the structure may be written in some cases, say the design of Tuned Mass Dampers (TMDs), as a combination 
of physical and generalized modal coordinates. In any case, the reduced order representation of the structure 
needs to be sufficiently accurate to capture a large percentage, say over 95%, of the target response. Thus, it is 
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customary to select and adequate number of generalized coordinates by using the relative error of the response 
history of displacements and story-shears in the bare structure.  
Key to the proposed design procedure is to control the modal (coordinate) responses of the structure. The target 
is to identify required variations in modal parameters that lead to a target KDPI. This problem is addressed in 
three steps: (i) identify the most relevant generalized coordinate in relation to the chosen KDPI; (ii) compute the 
response reduction of that coordinate; and (iii) compute the variations in the modal parameters that lead to the 
target reduction.  
 
The steps of the algorithm to determine the reduction in response can be summarized as follows: (1) perform 
dynamic analysis of the reduced order model of the structure, ideally a response history analysis; (2) identify the 
peak response of the KDPI, say 𝑍(𝑡∗), occurring at time 𝑡∗--for modal spectral analysis peak responses are used; 
(3) decompose this peak response at time 𝑡∗ into modal contributions—in the case of classically damped systems 
this is straightforward, while in non-classically damped systems, uncoupling modes may be obtained as 
described elsewhere [6]; and (4) obtain for the m-th mode, the MSF 𝜒𝑚 by taking the ratio between the modal 
contribution and the peak response at t*--i.e., given  Z(t*) the peak response at time t*, and Zm(t*) the 
contribution of the m-th mode,  𝜒𝑚 is defined as: 

 
𝜒𝑚 =

𝑍𝑚(𝑡∗)
𝑍(𝑡∗) =

𝑍𝑚(𝑡∗)
∑ 𝑍𝑚(𝑡∗)𝑚

 (2) 

Please note that 𝜒𝑚 may have values with magnitude larger than 1, and that of all ratios, the most significant 
mode is defined as the one with the largest 𝜒𝑚. The corresponding MSF will be denoted hereafter as 𝜒𝐺 .  

In classically damped modal analysis, the modal decomposition of the response, 𝒙 = 𝝓𝒒, where 𝝓 and 𝒒 are the 
natural modes and coordinates is straightforward and leads to the well- known set of n uncoupled equations of 
motion for mode 𝑞𝑚(𝑡), i.e. 

 �̈�𝑚(𝑡) + 2𝜉𝑚𝜔𝑚�̇�𝑚(𝑡) + 𝜔𝑚2 𝑞𝑚(𝑡) = 𝜙𝑚𝑇 𝒇𝑔(𝑡)          𝑚 = 1, … ,𝑛 (3) 

where 𝜙𝑚 is the m-th mode; and 𝑥𝑚(𝑡) = 𝜙𝑚 𝑞𝑚(𝑡) is the m-th modal contribution to 𝑥.  However, for non-
classically damped structures, a more general approach is required [6], and the uncoupled equations of motion 
may be written as: 

 �̈�𝑚(𝑡) + 2𝜉𝑚𝜔𝑚�̇�𝑚(𝑡) + 𝜔𝑚2 𝑞𝑚(𝑡) = 𝑻1𝑚
𝑇 𝒇𝑔(𝑡) + 𝑻2𝑚

𝑇 �̇�𝑔(𝑡)        𝑚 = 1, … ,𝑛 (4) 

where 𝒇𝑔 and �̇�𝑔 are the input and its time derivative, respectively. The modal parameters of the system result 
from solving the second order eigenvalue problem (𝑴𝜆2 + 𝑪𝜆 +𝑲)𝝓 = 𝟎, and as it is well known, the 
eigenvalues and eigenvectors appear in complex conjugate pairs. Although real modes may occur in an over-
damped case, the procedure randomly pairs these real eigen-solutions and introduces them into the set of 
equations as conjugates pairs. Eigenvalues for this problem have the well-known structure of complex poles, i.e. 
𝜆 = −𝜉𝜔 + 𝑗𝜔�1 − 𝜉2, with �𝜆 + 𝜆� = −2𝜉𝜔,  and 𝜆𝜆 = |𝜔|2.  Also, in Eq. (4), 𝑻1 = �𝑻1𝑚� and 𝑻2 = �𝑻2𝑚� 
are real matrices with its m-th columns 𝑻1𝑚 and 𝑻2𝑚. It can be shown that 𝑻1𝑚 = �𝝓𝑚�̅�𝑚 − 𝝓�𝑚𝜆𝑚�/��̅�𝑚 −
𝜆𝑚� = 2Re��̅�𝑚/��̅�𝑚 − 𝜆𝑚�𝝓𝑚�, and 𝑻2𝑚 = (𝝓�𝑚 −𝝓𝑚)/��̅�𝑚 − 𝜆𝑚� = 2Re�𝝓𝑚/�𝜆𝑚 − �̅�𝑚��, while the m-th 
mode contribution to the response is given by 𝒙𝑚(𝑡) = 𝑻1𝑚𝑞𝑚(𝑡) + 𝑻2𝑚�̇�𝑚(𝑡)− 𝑻2𝑚𝑻2

𝑇
𝑚𝒇𝑔(𝑡). For example, 

if the KDPI is the maximum displacement of the building, i.e. 𝑍(𝑡) = max�𝒙(𝑡)�), the MSF 𝜒𝑚 can be written 
for classically damped systems as: 

 
𝜒𝑚 =

𝑍𝑚(𝑡∗)
𝑍(𝑡∗) =

max�𝝓𝑚𝑞𝑚(𝑡∗)�
max�𝝓𝒒(𝑡∗)�

 (5) 

and for non-classically damped system as: 
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𝜒𝑚 =

𝑍𝑚(𝑡∗)
𝑍(𝑡∗) =

max �𝑻1𝑚𝑞𝑚(𝑡∗) + 𝑻2𝑚�̇�𝑚(𝑡∗)− 𝑻2𝑚𝑻2𝑚
𝑇 𝒇𝑔(𝑡∗)�

max �𝑻1𝒒(𝑡∗) + 𝑻2�̇�(𝑡∗) − 𝑻2𝑻2𝑇𝒇𝑔(𝑡∗)�
 (6) 

If a reduction in dynamic order is used for design purposes, 𝒙 = 𝜳𝒖, as in Eq. (1), these MSF equations may be 
extended to include the coordinate transformation corresponding to the generalized modal matrix 𝜳, i.e. 

 𝜒𝑚 = max�𝜳𝝓𝑚𝑞𝑚(𝑡∗)�
max�𝜳𝝓𝒒(𝑡∗)�

 , and  𝜒𝑚 = max�𝜳�𝑻1𝑚𝑞𝑚(𝑡∗)+𝑻2𝑚�̇�𝑚(𝑡∗)−𝑻2𝑚𝑻2𝑚
𝑇 𝒇𝑔(𝑡∗)��

max�𝜳�𝑻1𝒒(𝑡∗)+𝑻2�̇�(𝑡∗)−𝑻2𝑻2𝑇𝒇𝑔(𝑡∗)��
 (7) 

for the classical (left) and non-classical (right) damped structure, respectively. Hence, the global modal 
significance ratio 𝜒𝐺  is defined as: 

 𝜒𝐺 = max
𝑚

(𝜒𝑚) (8) 

Most KDPIs, say story drifts or member forces, are obtained as linear combinations of several degrees of 
freedom (DOFs) of the structure, and the above equations need to be simply modified to introduce the 
corresponding output transformation matrices between the DOFs and the selected response. 

Once the controlling mode has been selected (Eq. (8)), this mode controls the reduction of the KDPI until a 
second mode starts controlling, and the design procedure shifts to reduce incrementally the response of that 
second mode. Shown in Figure 1 is a schematic view of the algorithm, where 𝜒𝑚 is plotted against the response 
reduction RZ for the first three controlling modes of a structure. Points A and B represent critical points where 
the controlling mode for the target response changes from the first to the second, and from the second to the 
third; the envelope corresponds to 𝜒𝐺  and is plotted in solid line. Because it is numerically costly in practice, and 
also unnecessary for design purposes, to determine the continuous variation of the response controlling mode as 
shown in Figure 1, the problem is numerically implemented by introducing reductions in one mode first, and if 
the intended reduction in response is not achieved, update the system matrices, recalculate all modes, and repeat 
the procedure with the new controlling mode until the target in response reduction is achieved. 

 
Fig. 1 – Variation of modal significance ratio (MSF) with global response reduction RZ.  

 The reduction factor for the m-th controlling mode, 𝑅𝑚, needs to be defined by accounting for the effect of 
the other modes. Therefore, let 𝑍(𝑡) be the response of interest, 𝑍𝑚(𝑡) the contribution to 𝑍(𝑡) of the m-th mode, 
and 𝑡∗ the instant at peak value of the response. Then, 𝑍(𝑡) is obtained as 𝑍(𝑡∗) = ∑ 𝑍𝑚(𝑡∗)𝑚 , and hence, the 
global reduction factor RZ and the modal reduction factor Rm are related by 𝑅𝑍𝑍(𝑡∗) = 𝑅𝑍 ∑ 𝑍𝑝(𝑡∗)𝑝 ≈
𝑅𝑚𝑍𝑚(𝑡∗) + �∑ 𝑍𝑝𝑝 (𝑡∗) − 𝑍𝑚(𝑡∗)�, and solving for 𝑅𝑚 

𝑅𝑚 ≈
∑ 𝑍𝑝(𝑡∗)𝑝

𝑍𝑚(𝑡∗)
(𝑅𝑍 − 1) + 1 =

(𝑅𝑍 − 1)
𝜒𝐺

+ 1 
(9) 

where 𝜒𝐺 = 𝑍𝑚(𝑡∗)/∑ 𝑍𝑝(𝑡∗)𝑝 . Please notice that Eq. (9) is an approximation since it assumes complete 
decoupling of the modes. 
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 Theoretically, there are an infinite number of pairs of supplemental stiffness and damping that may lead to 
the same KDPI. The locus of these combinations is denoted herein as the IPC. When analyzing a single 
coordinate, supplemental stiffness and damping shift the modal frequency and damping ratio, and equal 
performance may be obtained by different pairs of these shifts denoted as (Ω2, ξd). The IPCs enable us to define 
the total amount of supplemental stiffness and damping required to reduce the building response to a specific 
value. Using this total value, linear equivalent stiffness and damping parameters are obtained at each building 
story. The goal next is to guide the selection of the circular frequency shift and supplemental modal damping 
ratio required to achieve the desired modal response reduction 𝑅𝑚, i.e. the design pair (𝛺2, 𝜉𝑑) for the 
controlling mode, based on the dynamic properties of the bare structure. 

Let us define the supplemental damping ratio 𝜉𝑑 = 𝑐𝑑/2𝑚𝜔0, where 𝑐𝑑 is the modal linear equivalent viscous 
damping coefficient of the equipped structure; and 𝛺 = �(𝜔𝑓/𝜔0)2 − 1�1/2 the frequency shift, where 𝜔0 and 
𝜔𝑓 are the circular natural frequencies of the bare and equipped structure (with EEDs), respectively. It is 
convenient to produce an appropriate parameterization of the problem by using modal analysis on the reduced 
order system with modal coordinate 𝒒, such that 𝒖 = 𝝓�𝒒, where 𝝓� = �𝜙�𝑚�. External loads may be ground 
motions or a design spectrum. Derivations of the parametric representation are skipped and may be found 
elsewhere [1]. The resulting single coordinate equation of motion for the m-th controlling coordinate is: 

 �̈�𝑚(𝑡) + 2𝜉𝑓𝜔𝑓�̇�𝑚(𝑡) + 𝜔𝑓2𝑞𝑚(𝑡) = 𝝓�𝑚𝑇 𝚿𝑇𝒇𝑔(𝑡)
𝝓�𝑚𝑇 𝑴𝑅𝝓�𝑚

           (10) 

where 𝑞𝑚(𝑡) is the m-th generalized control coordinate of the system; and ξf and ωf  are the respective m-th 
coordinate damping ratio and natural frequency of the structure with EEDs. The natural frequencies and damping 
ratios of the equipped structure can be expressed in terms of the dynamic properties of the original bare structure 
parameters (ω0, ξ0) through the expressions: 

 𝜔𝑓 = 𝜔0√1 + Ω2    and   𝜉𝑓 = 𝜉0+𝜉𝑑
√1+Ω2

   (11) 

It is apparent from Eq. (11) that the shape of the IPCs depends on the selected KDPI, the dynamic 
characteristics of the bare system (ω0, ξ0), and the input 𝒇𝑔(𝑡). Shown as an example in Figure 2 are 
the displacement and acceleration IPCs corresponding to the NCh2745 design spectrum [10] for two 
different buildings with periods T0=1s and T0=3s, assuming an initial classical damping ratio for the 
bare structure ξ=0.05. Numerical labels on top of the IPC represent response reduction factors 𝑅𝑚, 
where 0.9 implies a 10% reduction, 0.6 implies a 40% reduction, and so forth. While IPCs differ for 
displacements and accelerations, especially for larger frequency shifts (𝛺), in both cases 2(a) and 2(b), 
curves tend to be horizontal, which implies that introducing supplemental damping is more effective 
than reducing the response through stiffness. As 𝛺 grows, stiffness is introduced into the system, and a 
larger damping ratio is needed to preserve the reduction in acceleration in the structure (Figures 2(a) 
and (b)). 
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Fig. 2 – IPCs for displacement and acceleration corresponding to the NCh2745 spectrum, soil type I (rock), 
and Seismic Zone 1 

3. Heightwise distribution of EDDs 
Numerous investigations have dealt with optimal damper distributions, and optimal criteria by selecting diverse 
objective functions [12]. Despite this effort, the question of which optimal criterion is better and why does not 
have a trivial and unique answer. Given a criterion, and optimal local solution is usually found. Moreover, the 
selection of an optimal damper distribution in a building is a three dimensional problem, and the optimal height-
wise and plan-wise distributions are coupled. In the current procedure, the problem is split in two parts: (i) find 
an optimal height-wise distribution; and (ii) find a plan distribution that performs best for the already determined 
height-wise distribution. This is based on the fact that the 3D damper allocation problem may be dealt with by 
dynamically uncorrelating the lateral and torsional problem as explained elsewhere [2]. Furthermore, normalized 
stiffness and damping distributions 𝜶 and 𝜷 are assumed proportional based on the case of metallic dampers. 
This assumption does not limit the generality of the design procedure and is used only for numerical 
convenience. 

Although the design procedure may include any arbitrary height-wise distribution of supplemental dampers, the 
proposed strategy herein seeks a distribution of supplemental stiffness and damping that causes the highest 
perturbation of the dynamic properties of the controlled vibration mode given a fixed amount of total 
supplemental stiffness and damping. This problem is iterative in nature and requires and initial distribution to 
start with the iteration process. Theoretically, any initial distribution could be used, but due to numerical 
convergence it is advisable to choose it carefully.  

The proposed initial distribution is obtained following the procedure described earlier, i.e. choosing the 
controlling mode based on the MSF 𝜒𝑚. For each possible damper location l, compute the MSF 𝜒𝑙𝑑 
corresponding to the d-th mode, and assume that the damper deformation is selected as the relevant response 
when 𝜒𝑙𝑑 is computed. Thus, the initial distribution vector proposed contains 0’s in the damper locations not 
controlled by the mode controlling the KDPI, and 1’s in those locations that are controlled by the mode. The 
final distribution vector is normalized to have unitary norm one. Consequently, as for 𝜒𝑚 in Eq. (8),  𝜒𝑙𝑑 can be 
written as: 

 
𝜒𝑙𝑑 =

𝑳𝑙𝜳�𝜱𝑑𝑞𝑑�𝑡𝑙
∗��

𝑳𝑙𝜳�𝜱𝑇𝒒�𝑡𝑙
∗��

,  and     𝜒𝑙𝑑 =
𝑳𝑙𝜳�𝑻1𝑑𝑞𝑑�𝑡𝑙

∗�+𝑻2𝑑�̇�𝑑�𝑡𝑙
∗�−𝑻2𝑑𝑻2𝑑

𝑇𝒇𝑔�𝑡𝑙
∗��

𝑳𝑙𝜳�𝑻1𝒒�𝑡𝑙
∗�+𝑻2�̇��𝑡𝑙

∗�−𝑻2𝑻2𝑇𝒇𝑔�𝑡𝑙
∗��

 (12) 

for the cases of classical and non-classical damping, respectively; and 𝑳𝑙 represents the row of the kinematic 
transformation matrix L corresponding to the location of the l-th damper. Thus, if the m-th mode is controlling 
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the KDPI, then the l-th element of the initial guess distribution vector of EDDs, 𝛼𝑙 (prior to normalization) is 
defined as: 

 
𝛼𝑙 = �

1, 𝑖𝑓 𝜒𝑙𝑚 = max
𝑑
�𝜒𝑙𝑑�    𝑑 = 1, … ,𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          
 (13) 

Once the initial distribution 𝛼𝑙 has been defined by Eq. (13), the goal is to find the height-wise distribution of 
devices that requires the least value of total linear equivalent damping 𝑐𝑑. Linear equivalent properties, 𝑘𝑑 and 
𝑐𝑑  are used for the dampers in order to define an initial design algorithm that is general to all devices [e.g., 11]. 
Furthermore, please assume without loss of generality that the m-th mode is the controlling mode, while 𝜔𝑓 and 
𝜉𝑓 are the target dynamic properties for that mode. However, the problem is cast somewhat in an inverse 
manner, given 𝑘𝑑 and 𝑐𝑑 as indicated elsewhere [1], find the height-wise distribution that leads to the largest 
modal damping ratio for the m-th mode. 

For a certain distribution at the k-th iteration 𝜶(𝑘), the overall supplemental linear equivalent parameters 𝑘𝑑
(𝑘) 

and 𝑐𝑑(𝑘) are first determined from the solution of an eigenvalue problem as explained elsewhere [1,7,8]. A new 
distribution 𝜶(𝑘+1) is obtained as the one that maximizes the modal damping ratio given 𝑘𝑑

(𝑘)and 𝑐𝑑(𝑘), i.e., 

𝛂(k+1) = max
𝛂

 ξm �𝛂, 𝑐d�𝛂(k)�,𝑘d�𝛂(k)�� , 𝑠. 𝑡. �𝛼𝑙
𝑙

= 1,    0 ≤ 𝛼𝑙 ≤ 1  (14) 

The procedure iterates until the variation in the height-wise damper distribution 𝜶, measured by the quadratic 

error, 𝑒 = �∑ �𝛼𝑙
(𝑘+1) − 𝛼𝑙

(𝑘)�
2

/𝑁𝑁
𝑙=1  , becomes negligible. Hence, this Perturbation Based Optimal 

Distribution Algorithm (PBODA) is summarized as follows: (1) From Eq. (13), obtain an initial distribution of 
dampers 𝛂(0), select a desired tolerance, and set k=0; (2) determine 𝑘𝑑

(𝑘) and 𝑐𝑑(𝑘) from the eigenvalue problem 
explained elsewhere using 𝛂(𝑘); (3) compute from Eq. (14) an updated distribution 𝛂(𝑘+1); and (4) if the 
tolerance is not reached, set k=k+1 and iterate to Step 1; otherwise, set 𝛂 = 𝛂(𝑘) and exit. Numerical aspects of 
the solution of the above algorithm can be found elsewhere [1]. 

4. Validation of the design algorithm 
A summary of the results of applying the proposed design procedure to 8 shear wall buildings that underwent 
structural damage during the February 27, 2010 Chile Earthquake is presented in this section [16][17]. Herein, 
X- and Y-directions refer to the principal building axes. Please note that each buildings PP-7 and RT-8 are 
composed by two different blocks, separated by a construction joint, so tables differentiate these blocks by 
indices “a” and “b”. Shown in Table 7 is a summary of the total equivalent supplemental damping and stiffness 
required for each of the buildings in order to achieve the nominal target response reduction RZ=0.6. 

Because the structural configurations of these buildings are quite simple, the complete design procedure ended 
after one or two iterations (last column, Table 2), and in most cases the damper capacity was rather concentrated 
in few stories. Indeed, several of these distributions locate dampers in a single story, such as the case for the X-
direction distributions of AA-1, AH-2, CM-3, TL-4, PP-7a, and TO-9. This result is in complete agreement with 
the modal distribution theorem presented elsewhere [1]. Please notice that the damper capacity values presented 
in this table are relatively small when compared with damping values required in larger structures with lateral 
stiffnesses much larger. 
 
Table 1 – Comparison of the responses and reduction factors between linear equivalent analysis and results 
obtained using the nonlinear force-deformation and force-velocity constitutive relationships—numbers in 
parenthesis represents de ratio between nonlinear and linear cases (target 𝑅𝑍 ≤ 0.6) 

Direction 
Linear Equivalent TADAS Non-linear viscous 

( )cmZ0  ( )cmZF  ZR  ( )cmZF  ZR  ( )cmZF  ZR  
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X 52.467 30.91 0.589 25.99 (84.0%)  0.495 30.31 (98.1%) 0.578 
Y 49.063 28.12 0.573 32.31 (114.9%) 0.659 27.45 (97.6%) 0.559 

 
Table 2 – Summary of the total linear equivalent supplemental damping and stiffness required to achieve a 
response reduction factor 𝑅𝑍 ≤ 0.6 

Building Period 
T (s) 

Equivalent Damping 
𝒄𝒅 (ton s/cm) 

Equivalent stiffness 𝒌𝒅 
(ton/ cm) Design 

Iterations X ; Y 
X Y 𝑹𝒁 X Y 𝑹𝒁 

AA-1 0.71 4.06 3.67 0.59 18.61 21.91 0.60 1 ; 1 
AH-2 0.70 6.31 10.39 0.59 43.18 125.88 0.42 1 ; 2 
CM-3 0.80 6.99 3.01 0.62 44.25 22.48 0.58 1 ; 1 
TL-4 0.77 2.95 1.43 0.58 15.06 7.94 0.58 1 ; 1 
PR-6 0.50 1.73 2.03 0.56 11.20 21.22 0.56 1 ; 1 

PP-7a, RT-8a 0.36 3.85 1.49 0.59 40.38 22.17 0.59 1 ; 1 
PP-7b, RT-8b 0.34 2.98 1.52 0.54 55.42 16.93 0.58 1 ; 1 

TO-9 0.93 1.70 6.50 0.58 8.04 39.40 0.55 1 ; 1 

  
(a) Linear Distribution (b) Quadratic Distribution 

Fig. 3 – Required increase in total linear equivalent damping using “n”-number of additional dampers 
locations, and considering two types of distribution  

 

To evaluate the impact of the height-wise distributing of EDDs, the damper capacity and stiffness required was 
spread in several stories. As stated earlier, stories were organized in descending order of deformation demand on 
the EDDs, and a linear and quadratic height-wise damper distributions were tested. This is to understand the loss 
in efficiency of damper distributions in case we want to avoid excessive concentration of damper capacity in few 
stories. Ratios of the required increase in linear equivalent damping to achieve the same response reduction 
factor 𝑅𝑍 are shown in Figure 3, and compared with the expected values derived theoretically. It is apparent that 
there is always a loss in efficiency as we distribute damper capacity in more stories. Consequently, the solutions 
presented in Table 2 are locally optimal. The quadratic distribution of damper capacity shows an inefficiency 
smaller than the linear case, which is obvious since more damping is placed where the highest EDD drift 
location occurs. As it was said earlier, in most practical cases localizing damping is impractical since it implies 
large forces, and hence, eventual problem with the joints and connections. As shown in this Figure, the accuracy 
of the analytical prediction is acceptable and conservative for the whole range of stories considered in the 
distribution of damping. 
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Table 3 – Summary of the maximum response reduction 𝑅𝑍 for the eight buildings using three ground 
acceleration records (Chile, 1985) (Target 𝑅𝑍 ≤ 0.6). 

Building 
Response Reduction, 𝑅𝑍 

X-, Y-Direction 
San Felipe Melipilla Llolleo 

AA-1 0.59, 0.60 0.65, 0.72 0.59, 0.65 
AH-2 0.59, 0.42 0.65, 0.43 0.64, 0.44 
CM-3 0.62, 0.58 0.59, 0.75 0.62, 0.64 
TL-4 0.58, 0.58 0.63, 0.81 0.60, 0.71 
PR-6 0.56, 0.58 0.53, 0.61 0.55, 0.65 

PP-7a, RT-8a 0.59, 0.59 0.59, 0.66 0.58, 0.61 
PP-7b, RT-8b 0.54, 0.58 0.55, 0.60 0.53, 0.61 

TO-9 0.58, 0.55 0.83, 0.60 0.70, 0.59 

 

Table 4 –  Y-Direction inelastic response history analysis of the buildings subject to the San Felipe record 
(Chile, 1985). 

Building 

Y-Direction 

( )cmZ 0  
TADAS Viscous 

( )cmZ F  ZR  ( )cmZ F  ZR  

AA-1 22.52 11.49 0.61 13.46 0.60 
AH-2 17.31 10.36 0.60 8.35 0.48 
CM-3 24.12 8.99 0.59 14.99 0.62 
TL-4 25.14 11.47 0.58 15.86 0.63 
PR-6 7.18 8.82 0.60 4.63 0.64 

PP-7a, RT-8a 6.57 1.83 0.66 4.33 0.66 
PP-7b, RT-8b 9.51 2.11 0.66 6.05 0.64 

TO-9 18.20 25.17 0.61 10.97 0.60 

Although the design of the 8 buildings was performed using an spectrum compatible ground motion from the 
seed record of San Felipe (Chile, 1985), a time history analysis was also performed using the same design for 
two other design spectrum compatible records based on the seed records of Melipilla and Llolleo (Chile, 1985). 
Shown in Table 3 is a summary of these results, and though the design based on the San Felipe record leads to 
quite reasonable results, a better solution is obtained when the average of the design for several ground motions 
is used to extrapolate among cases. If the lateral displacements of a building are coupled in both lateral 
directions such as in AH-2, the required supplemental stiffness and damping design in one direction leads to a 
larger response reduction as a result of the effect of the equivalent stiffness and supplemental damping defined in 
the orthogonal direction. 

Finally, shown in Table 4 is a comparison of the results of non-linear response history analyses for the 8 
buildings equipped with either TADAS or non-linear viscous dampers with velocity coefficient α=0.8. It is 
apparent that the procedure works very well, though some of the nonlinear results show reduction factors slightly 
above the target value 𝑅𝑍 = 0.6. They could be improved easily by a small modification of the design, but the 
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results prove again that for design purposes the linear equivalent method proposed herein works well when 
compared against the building response with inelastic dampers. 

5. Conclusions 
A general design framework for elastic structures with inelastic supplemental damping is proposed herein. The 
procedure seeks modal control by first obtaining the total amount of equivalent damping and stiffness to achieve 
a specific building performance. Then, it sweeps the whole design space spanned by two design variables 
representing a shift in natural frequency and damping ratio (IPCs). For the sake of validation, the study considers 
8 shear wall buildings damaged during the 2010 Chile earthquake. It was observed that in all cases, the 
procedure led in one or two iterations to an optimal design (𝑅𝑍 ≤ 0,6) of the EDDs. The incorporation of non-
classical damping in the design algorithm becomes critical and expands its applicability significantly. Although 
very simple, the definition of a new measure of modal participation, the Modal Significance Factor (MSF), in the 
classical and non-classical damping case is also critical for faster convergence of the method.  

 It is also concluded that though linear equivalent methods are controversial in their usefulness to predict 
inelastic responses, they are still very useful as a design tool. The main advantage is that they provide a 
completely general framework for the design of EDDs. No a-priori definition of a specific damper type is 
required, and estimation errors between response reduction factors using linear versus inelastic models for the 
EDDs are usually less than 10% in the buildings considered.  

 Optimal designs tend to concentrate damping in a few stories, and in several cases in a single story. This is 
in perfect agreement with theory, but inconvenient from a practical standpoint. In practice, this optimal solution 
can be perturbed slightly to better distribute damping and stiffness in several stories according to a rule that 
ranks stories in descending order of deformation demand for the EDDs.  

 The design procedure proposed is better described as a conceptual and practical framework for the design 
of buildings with passive EDDs. Its step-by-step nature can take advantage of future research in any of the 
pending topics presented herein and could be easily adapted to new knowledge in the field.  
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