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Abstract 
Seismic design codes are primarily aimed at protecting human life, but they are not intended to minimize or even calculate 
the earthquake-induced economic losses that a building might experience during its service life. Fortunately, the 
Performance Based Earthquake Engineering (PBEE) framework introduced by the Pacific Earthquake Engineering 
Research (PEER) Center allows evaluation of decision variables such as earthquake-induced economic losses, downtime, 
fatalities and environmental impacts. The evaluation of these decision variables shows the level of performance of a given 
structure, allowing owners and stakeholders the selection of higher levels of performance if they are not satisfied with the 
minimum code requirements. These higher levels of performance are associated with higher initial investments that also 
need to be estimated to provide complete information for a satisfactory decision-making process. However, the computation 
of economic losses under the PEER-PBEE framework is very time consuming to conduct on a routine basis. 

These difficulties highlight the importance of simplified methodologies to calculate building-specific earthquake-induced 
economic losses towards optimizing the structural design, and significant work has been developed in this area since the 
early 1970s. However, these simplified methods are still not widely used in real practice. Therefore, more research is 
needed towards developing simpler methodologies (based on the PEER-PBEE framework) that can be used in performance-
based design. Consequently, this study develops a simplified methodology to estimate the earthquake-induced expected life 
cycle cost (ELCC) of buildings, which is the summation of the expected construction cost (CC) and the net present value of 
the earthquake-induced expected annual loss (EAL). In particular this study focuses on low-rise steel special moment-
resisting frame (SMRF) buildings since these structures are very flexible, first-mode dominated, and their EAL values are 
dominated by small spectral acceleration (Sa) intensities where the structures are behaving linearly or under the equal 
displacement rule, presenting a distribution of engineering demand parameters, such as peak story drift ratios (PSDR), that 
is relatively uniform along the height of the structure. 

To develop the simplified methodology, firstly a series of 4-story steel SMRF buildings are designed with varying degrees 
of lateral stiffness. While designs are code-conforming, the variation in lateral stiffness affects the ELCC of the structure. 
The ELCC of each structure is assessed via the PEER-PBEE framework, using nonlinear response history analyses in 
OpenSees to perform seismic simulations and commercially available construction cost databases to estimate variations in 
construction costs. Based on these numeric results, this simplified methodology is developed and calibrated to estimate the 
ELCC as a function of the fundamental period of vibration (T1) for low-rise SMRF buildings. For the estimation of the CC, 
this study extends previous work, and for the estimation of the EAL this study develops a closed-form solution that does not 
require performing incremental dynamic analyses and numerical integrations. Finally, approximate values obtained using 
the proposed simplified methodology are compared to exact numeric values obtained using the PEER-PBEE framework for 
a series of 4-story steel SMRF buildings designed, and results are promising. 
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1. Introduction 
Seismic design codes are primarily aimed at protecting human life, which has been successfully demonstrated in 
recent large earthquakes in Chile and New Zealand [1, 2] where the number of fatalities due to collapsed 
buildings was relatively low. However, the economic losses experienced in these countries were significant, 
pointing out that owners and stakeholders may desire performance objectives that go beyond the minimum code 
requirements to reduce these earthquake-induced economic losses. To face these challenges, the fully 
probabilistic PBEE framework introduced by PEER allows assessing decision variables such as earthquake-
induced economic losses, downtime, fatalities [3] and environmental impacts. The quantitative evaluation of 
these decision variables shows the level of performance of a given structure, allowing owners and stakeholders 
to select higher levels of performance if they are not satisfied with the minimum code requirements. These 
higher levels of performance are associated with higher initial investments that also need to be estimated to 
provide complete information for a satisfactory decision-making process. However, the computation of 
economic losses under the PEER-PBEE framework requires large data sets, estimating the response of the 
structure under study and several integrations of many random variables, among other things. These 
requirements can make the implementation of this framework very time consuming, making it prohibitively 
expensive to conduct on a routine basis [4]. The framework also requires engineers well trained in topics such as 
probability theory and nonlinear dynamic analyses. 

 These difficulties highlight the importance of simplified methodologies to calculate building-specific 
earthquake-induced economic losses towards optimizing the structural design, and significant work has been 
developed in this area since the early 1970s. Vanmarcke et al. [5] introduced a Markov decision theory 
methodology for optimum seismic design, accounting in a simplified way for the trade-off between higher 
construction costs in seismic structural designs and reduction in future earthquake-induced economic losses. This 
might be the first formal approach towards an optimum seismic design minimizing the ELCC of structures, 
which is the summation of the CC and the net present value (NPV) of the EAL over a period of time. Other 
researchers [6-8] also worked on optimum seismic design but focused on minimizing the CC that satisfied a 
particular seismic performance constraint. More recent studies have investigated simplified methodologies to 
calculate earthquake-induced economic losses and to implement performance-based seismic design minimizing 
these losses [9-11]. Additionally, the Applied Technology Council (ATC) through the ATC-58 project [12] 
released performance-based seismic design procedures trying to expose the practicing-engineering community to 
these new advances in loss estimation and performance-based design. However, these simplified methods are 
still not widely used in practice. Therefore, more research is needed towards developing simpler methodologies 
based on the PEER-PBEE framework that can be used in performance-based design. Consequently, this study 
develops a simplified methodology to estimate the ELCC of buildings. In particular this study focuses on low-
rise steel SMRF buildings since these structures are very flexible, first-mode dominated, and their EAL values 
are dominated by small Sa intensities where the structures are behaving linearly or under the equal displacement 
rule, resulting in a distribution of engineering demand parameters, such as PSDR, that is relatively uniform along 
the height of the structure. For the estimation of the CC, this study extends previous work by Reyes [13], and for 
the estimation of EAL, this study develops a closed-form solution based on previous work [14-16]. The proposed 
methodology can be used to analyze the variation of the ELCC as a function of the stiffness, expressed in terms 
of T1, of a low-rise steel SMRF building and, therefore, to find the value of T1 that minimizes the ELCC. 

2. Earthquake-Induced Expected Life Cycle Cost 
The ELCC analysis is defined as an economic assessment of an item, system or facility that considers all the 
significant expected costs of ownership over its economic life, in terms of equivalent dollars [17]. Focusing on 
seismic damage, the ELCC of a building is shown in Eq. (1). 

 𝐸𝐿𝐶𝐶 = 𝐶𝐶 + 𝑁𝑃𝑉(𝐸𝐴𝐿) (1) 
where ELCC and CC have been defined, NPV(EAL) is the net present value of the EAL of the building as a 
result of earthquake damage during its service life, and the EAL represents the average economic loss that is 
obtained every year from seismic damage to the building. 
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 For a specific building the CC can be estimated from available construction cost data publications, such as 
RSMeans [18], that allow the estimation of the CC for buildings with different structural configurations, 
structural materials, geometries, uses, locations, etc. These costs are representative of standard buildings, which 
are code-conforming designs that usually only meet the minimum code requirements.  

 The NPV(EAL) term is the financial function NPV() that brings to present time the future EAL for each 
year considering the service life of the building and including a real discount rate, as shown in Eq. (2). 

 𝑁𝑃𝑉(𝐸𝐴𝐿) = ∑ 𝐸𝐴𝐿
(1+𝑅𝐷𝑅)𝑖

𝑚
𝑖=1  (2) 

where RDR is the annual real discount rate (that considers the effect of future inflation/deflation), m is the  
number of years considered for the service life of the building, and the EAL is calculated as shown in Eq. (3). 

 𝐸𝐴𝐿 = ∫ 𝐸[𝐿|𝑆𝑎] �
𝑑𝜆(𝑆𝑎)
𝑑𝑆𝑎

� 𝑑𝑆𝑎
∞
𝑆𝑎=0

 (3) 

where 𝐸[𝐿|𝑆𝑎] is the expected economic loss conditioned on Sa and �𝑑𝜆(𝑆𝑎)
𝑑𝑆𝑎

� is the absolute value of the derivative 
of the seismic hazard curve considering Sa for a specific value of T1, damping, and site. 

 For alternative levels of performance of a given lateral force-resisting system, the trade-off between 
enhanced seismic performance, which reduces the NPV(EAL), and higher CC can be evaluated through the 
computation of the ELCC for each alternative, providing an effective metric to support the decision-making 
process towards the selection of a desired performance level. For instance, the minimum ELCC would be the 
optimum design for a risk neutral decision maker, whose decisions are based on expected values. 

3. ELCC Assessment: Full Methodology Implementation  
To develop this simplified methodology, six additional SMRF designs of a code-conforming testbed 4-story steel 
SMRF building are developed with varying degrees of lateral stiffness. While designs are code-conforming, the 
variation in lateral stiffness affects the ELCC of the structure. The EAL and CC of each structure are obtained 
using the PEER-PBEE framework and the RSMeans construction database [18], respectively.  

3.1 Testbed building, alternative SMRF designs and construction costs 
The testbed building used in this study is a four-story code-conforming steel prototype office building designed 
by Lignos and Krawinkler [19] for vertical and lateral loads. The structural system is an A992 Grade 50 steel 
SMRF with fully restrained reduced beam sections. Dimensions are 36.4 m by 27.3 m in plan (see Fig.1(a)). The 
first story is 4.6 m tall, and the rest of the stories are 3.7 m tall (see Fig.1(b)). Values of T1 are 1.33 s and 1.22 s 
for the east-west (EW) and north-south (NS) directions, respectively. The seismic performance of the building is 
evaluated using a two-dimensional model of the SMRF in the EW direction, which is highlighted in Fig.1(a) and 
shown in elevation in Fig.1(b). 

  

Fig. 1 –Testbed building geometry: a) plan highlighting EW SMRF; b) elevation of EW SMRF evaluated  
(a)                                                                                                                 (b)  

3 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

 Although the performance simulations of this study are limited to EW frames, alternative SMRF designs 
are developed in both directions to perform cost-benefit analyses since frames in the NS direction should have a 
stiffness consistent with the EW direction. Thus, the CC for each alternative design incorporates the variation in 
steel and foundation costs for the EW as well as NS frames. The alternative SMRF designs are based on the 
PSDR desired for the design basis earthquake (DBE). Miranda [20] proposed Eq. (4) to estimate the elastic 
PSDR. 

 𝑃𝑆𝐷𝑅 = 𝛽1𝛽2
𝑆𝑑

𝐻𝑟𝑜𝑜𝑓
 (4) 

where β1 is a shape factor that depends on the lateral resisting system, the height of the building and the load 
distribution, β2 is a concentration factor that converts average story drift ratio to the PSDR that the building 
undergoes at any story, Sd is the elastic spectral displacement corresponding to T1 of the building, and Hroof is 
the height of the building. Eq. (4) is based on a multi-degree-of-freedom system application of the equal 
displacement rule, which is a reasonable assumption for a low-rise steel SMRF building. Using Eq. (4) and the 
design response spectrum for the selected site (33.996, -118.162, and class D) obtained from the United States 
Geological Survey (USGS) [21] the PSDRs for the DBE at different values of T1 are estimated as shown in 
Table 1. These seven levels of PSDR are associated with particular target values of T1 that were used to develop 
specific SMRF designs (except for the testbed building that was already designed). The actual values of T1 as 
well as the CCs (normalized by the CC of the testbed building) for each SMRF design are also in Table 1. Note 
that the most flexible design (T1=1.86 s) has a PSDR larger than 3% at the DBE, which does not meet code 
requirements and was designed only for research purposes. For further information see Araya-Letelier [22]. 

Table 1 – Design response spectrum for selected site (33.996, -118.162, and class D), corresponding estimation 
of PSDR as a function of target values of T1 and actual values of T1 and CC for each SMRF design 

# Target T1 [s] Sa [g] Sd [cm] PSDR [%] Actual T1 [s] CC (US$) CC (%) 

1 0.52 1.16 7.90 0.9% 0.49 8,234,448 109.8% 

2 0.60 1.01 9.07 1.1% 0.63 7,936,015 105.8% 

3 0.70 0.87 10.57 1.2% 0.73 7,783,672 103.7% 

4 0.80 0.76 12.07 1.4% 0.82 7,682,648 102.4% 

5 1.00 0.61 15.09 1.8% 1.04 7,579,729 101.0% 

6 1.30 0.47 19.63 2.3% 1.33 7,502,976 100.0% 

7 1.80 0.34 27.18 3.2% 1.86 7,385,144 98.4% 

 

3.2 Site and seismic hazard curves 
The testbed building is located in southern California (33.996, -118.162). This site is classified as class D and 
has been analyzed by previous researchers [22, 23] because it is a typical urban site in California with high 
seismicity, located within 20 km of seven faults, but not subjected to near fault directivity effects [23]. The 
design spectrum for the DBE at the site, shown in Fig.2, and the seismic hazard curves (λ(Sa(T1,5%))), shown in 
Fig.3, were obtained using data from the USGS [21]. Linear interpolation in the log-log domain was used to 
obtain the seismic hazard curves for values of T1 not listed by the USGS. This interpolation is assumed to be 
adequate since the T1 values of the SMRFs are mostly located within the descending branch of the design 
spectrum where the variation of Sa is inversely proportional to T1. Additionally, 7th-order polynomials are fitted 
in the log-log domain to represent the seismic hazard curves as continuous functions for later numerical 
integrations. 
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Fig. 2 –Design spectrum for selected site Fig. 3 – Seismic hazard curves for SMRF designs  

3.3 Seismic response simulations 
The seven SMRF designs were subjected to incremental dynamic analyses (IDAs) using the OpenSees platform. 
These IDAs consisted of a set of 80 ground motions with Sa increments of 0.1 g, from zero all the way to 
collapse for each ground motion. Engineering demand parameters (EDPs) of interest for each SMRF design are 
PSDRs, residual story drift ratios (RSDRs) and peak floor accelerations (PFAs) for each value of Sa for each 
ground motion, as well as Sa intensity at collapse for each ground motion. The results of the simulations were 
processed and analyzed to fit lognormal probability distribution functions for PSDRs, RSDRs and PFAs for each 
value of Sa (when collapse has not occurred yet), and to estimate the collapse capacity for each SMRF. As an 
example, Fig.4 shows the estimated medians for PSDR (χPSDR) as a function of λ(Sa(T1,5%)) for each SMRF at 
the 1st story, and Fig.5 shows the collapse fragility curve for each SMRF versus λ(Sa(T1,5%)), demonstrating 
that for the DBE the probability of collapse of most SMRF designs is very small (0.9% for the testbed building). 

  
Fig. 4 –χPSDR for SMRF designs at first story  Fig. 5 – Collapse fragility curves for SMRF designs 

3.4 Loss estimation results 
The full PEER-PBEE loss estimation methodology was implemented for each SMRF design using an inventory 
of structural and non-structural components corresponding to office building occupancy, with fragility functions 
and repair costs developed in previous studies [12, 22, 25]. The E[L|Sa] versus λ(Sa(T1,5%)) curves for each 
SMRF design are shown in Fig.6, and it can be seen that for the service level earthquake (SLE), with a mean 
annual frequency of exceedance of 0.0139 [1/year], losses range from $352,640 (5% of the CC of the testbed 
building) to $1,688,170 (23% of the CC of the testbed building). In particular, the testbed building (T1=1.33 s) 
has a loss of 13.1% (of the CC of the testbed building) for the SLE, highlighting that code-conforming designs 
are aimed at protecting human life but not intended to minimize losses. The EALs of each SMRF are in Fig.7 as 
well as the partial contributions to the EALs from the demolition (EALDem), collapse (EALCol), and repair cases. 
The repair case was divided into partial contributions to the EAL from non-structural acceleration-sensitive 
components (EALNSAS), structural drift-sensitive components (EALSDS), non-structural drift-sensitive 
components (EALNSDS), and EALDS (the summation of EALSDS and EALNSDS). Fig.7 shows that as the structure 
becomes stiffer the reduction in EAL decreases since the EALNSAS increases rapidly while the EALDS decreases 
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marginally. This is important since the EAL might increase for very stiff structures. Fig.7 also shows that for T1 
values from 0.7 s to 1.4 s the EAL is dominated by the EALDS and that the EAL of the testbed building is 0.95%, 
demonstrating the significant EALs of code-conforming designs.  

  
Fig. 6 – E[L|Sa] versus λ(Sa(T1,5%)) for SMRF designs Fig. 7 – EAL for SMRF designs 

3.5 Expected life cycle cost of SMRF designs  
Fig.8 shows the CC, NPV(EAL), and ELCC for each SMRF design, considering a 3.9% RDR and a 50-year 
service life. This figure shows that the ELCCs range from 113.9% ($8,543,935) to 133.8% ($10,035,151) of the 
testbed CC, and the value for the testbed design was 120.8% ($9,066,127). It is important to notice that although 
the maximum ELCC was associated with the most flexible SMRF (T1=1.86 s), the minimum ELCC was not 
associated with the stiffest SMRF. The minimum ELCC corresponds to T1=0.73 s and would be the optimum 
design for a risk neutral decision maker. These findings show two things. First, the trade-off between stiffer 
buildings and higher construction costs becomes more expensive for very stiff structures. Second, it can be 
inferred that modern building codes do not provide an optimal design solution in terms of minimizing the ELCC. 

 
Fig. 8 – CC, NPV(EAL), and ELCC for SMRF designs  

4. ELCC Assessment: Simplified Methodology  
This simplified methodology was developed based on the results presented in the previous section and is 
recommended for low-rise steel SMRF buildings. Therefore, its application to other materials/structural systems 
should be further evaluated. This methodology expands Eq. (1) making it T1 dependent, as shown in Eq.(5), 
allowing estimation of the T1 value that minimizes the ELCC. 

 𝐸𝐿𝐶𝐶(𝑇1) = 𝐶𝐶(𝑇1) + 𝑁𝑃𝑉(𝐸𝐴𝐿(𝑇1)) (5) 
 
 This simplified methodology is focused on how the stiffness, expressed as T1, is associated with the 
variation of the CC and NPV(EAL) because: 1) there are previous formulations that associate T1 with the CC; 2) 
steel SMRF buildings are flexible structures and, consequently, their losses are dominated by small Sa intensities 
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where the structures behave linearly or under the equal displacement rule. Therefore, for the EALs the stiffness 
of the structures is significantly more important than the strength; 3) low-rise steel SMRF buildings are first-
mode dominated structures; and 4) seismic hazard curves are expressed conditioned on T1.  

4.1 Construction cost as a function of T1  
The CC of a building is a function of several variables (e.g., location, area, number of stories, materials, 
structural system, finishes, and occupancy). However, when only the seismic performance of a building is under 
study and the rest of the design variables are fixed, fewer variables have to be analyzed to account for the trade-
off between improved performance and higher construction costs. Some strategies to improve the seismic 
performance might be the improvement of the lateral resisting system (e.g., stiffer frames or seismic protection 
systems) and/or the improvement of the performance of non-structural components and contents. In any case, the 
increment in the CC is often relatively small since most of the CC is not affected by the improvement of the 
seismic performance. This section focuses on the variation of the CC when the T1 value of a SMRF of a steel 
low-rise building is improved over the minimum code requirements. This challenge was addressed before by 
Reyes [13], who proposed Eq. (6). 

 𝐶𝐶(𝑇1) = 𝐶𝐶𝐺𝐿 + 𝑚𝑘(𝑇𝐺𝐿 − 𝑇1)𝛽𝑘 (6) 
where CC(T1) and T1 have been defined, TGL is fundamental period of vibration if the building were designed 
only for gravity loads, CCGL is the initial construction cost of the building designed only for gravity loads, and 
mk and βk are empirically-derived parameters. This study extends Eq. (6), proposing Eq. (7) for low-rise steel 
SMRFs. 

  𝐶𝐶(𝑇1) = 𝐶𝐶0 + 𝐶𝐶𝑆𝑀𝑅𝐹−𝐶𝐶𝐵 �
𝑇1−𝐶𝐶𝐵
𝑇1

�
1.33

+ 𝐶𝐶𝐹−𝑆𝑀𝑅𝐹−𝐶𝐶𝐵 �
𝑇1−𝐶𝐶𝐵
𝑇1

�
1.33×2

3 (7) 

where CC0 is the fixed CC of the building without considering its SMRFs and the corresponding foundations of 
the SMRFs, CCSMRF-CCB is the CC of the SMRFs of a code-conforming design that meets only the minimum 
seismic requirements, CCF-SMRF-CCB is the CC of the foundation corresponding to the SMRFs of a code-
conforming design, and T1-CCB is the fundamental period of vibration of a code-conforming design. This 
formulation was developed based on: 1) the shape of the relationship between steel weight of SMRFs and their 
corresponding stiffness investigated for a set of 328 cruciform assemblies with strong-column weak-girder ratios 
between 1.0 and 1.8; 2) the direct relationship assumed between the steel weight of these SMRFs and their CC; 
and 3) the variation of the foundation area needed to take the additional moment from a SMRF with larger 
capacity, assuming a square foundation. For further information see Araya-Letelier [22]. The implementation of 
Eq. (7) using the testbed building as the required code-conforming design is shown in Fig.9. As seen in this 
figure, the proposed model provides reasonably accurate results for the variation of CC as a function of T1. 

 
Fig. 9 – CC for SMRF designs from actual data and proposed model  

4.2 Expected annual loss as a function of T1  
Reversing the terms of Eq. (3), Jalayer [26] presented the alternative calculation of the EAL shown in Eq. (8).  
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 𝐸𝐴𝐿 = ∫ �𝑑𝐸[𝐿|𝑆𝑎]
𝑑𝑆𝑎

� 𝜆(𝑆𝑎)𝑑𝑆𝑎
∞
𝑆𝑎=0

 (8) 

 Eq. (8) is used in this study since enables the implementation of a closed-form solution for the integral 
when the E[L|Sa] curve is represented with a lognormal formulation and the λ(Sa) curve is represented with a 
2nd-order polynomial function (in the log-log domain) as shown later. Additionally, this study develops T1-
dependent formulations for the E[L|Sa] curves and the λ(Sa) curves as described later. 

4.2.1 Expected loss conditioned on Sa as a function of T1  
The E[L|Sa] curve is approximated from the E[LDS|PSDR] curve (expected loss of drift-sensitive (DS) 
components conditioned on PSDR) for a specific building (whose T1 is the only unknown variable) without the 
need of IDAs. These PSDRs can be associated with Sa intensities as a function of T1 using Eq. (9), proposed by 
Miranda [20], where all the terms have been defined previously. The use of Eq. (9) to estimate a uniform value 
of PSDR along the height for each value of T1 is a reasonable simplification for first-mode-dominated structures. 

  𝑃𝑆𝐷𝑅 ≈ 𝛽1𝛽2
𝑇12𝑆𝑎

4𝜋2𝐻𝑟𝑜𝑜𝑓
 (9) 

 It is important to highlight that, although the losses from drift-sensitive components represent the majority 
of the EAL, the approximation of the E[L|Sa] from the E[LDS|PSDR] curve does not consider the contribution 
from collapse, demolition and losses from non-structural acceleration-sensitive components (NSAS). This 
limitation is discussed later in this study.  

 The calculation of the E[LDS|PSDR] curves requires large databases, but it is numerically easy to 
implement. Additionally, Ramirez and Miranda [4] have provided the E[LDS|PSDR] curves for several buildings. 
Eq. (10) shows the proposed three-parameter lognormal representation of the E[LDS|PSDR] curves. 

 𝐸[𝐿𝐷𝑆|𝑃𝑆𝐷𝑅] = 𝜌𝑃𝑆𝐷𝑅Φ�𝐿𝑛(𝑃𝑆𝐷𝑅)−𝐿𝑛(𝜒𝑃𝑆𝐷𝑅)
𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)

� (10) 

where 𝜌𝑃𝑆𝐷𝑅 is a scale factor that multiplies the lognormal representation, Φ is the normal cumulative 
distribution function, 𝜒𝑃𝑆𝐷𝑅 was defined previously, and 𝜎𝐿𝑛(𝑃𝑆𝐷𝑅) is the standard deviation of the natural 
logarithm of the PSDR. Eq. (10) is fitted to the actual data of E[LDS|PSDR] from the SMRF designs and 
provides a good representation as shown in Fig.10. 

 
Fig. 10 – Lognormal representation and actual E[LDS|PSDR] curve 

 Substituting Eq. (9) into Eq. (10), the E[L|Sa] curve (considering only DS components) can be estimated 
as shown in Eq. (11), whose application to actual data from the SMRF designs is shown in Fig.11, demonstrating 
an adequate representation, especially for the small Sa intensities that dominate the EAL calculation. 
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  𝐸[𝐿𝐷𝑆|𝑆𝑎, 𝑇1] = 𝜌𝑃𝑆𝐷𝑅Φ�
𝐿𝑛�𝛽1𝛽2

𝑇1
2𝑆𝑎

4𝜋2𝐻𝑟𝑜𝑜𝑓
�−𝐿𝑛�𝜒𝑃𝑆𝐷𝑅�

𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)
� (11) 

 
Fig. 11 –λ(Sa(T1,5%)) versus E[LDS|Sa,T1] from actual data and from Eq. (11) 

 Taking the partial derivate of Eq. (11) with respect Sa, Eq. (12) is obtained, where all the terms have been 
defined previously. Eq. (12) will be used to calculate the EAL values using Eq. (8) later in this study. 

   𝜕𝐸[𝐿𝐷𝑆|𝑆𝑎,𝑇1]
𝜕𝑆𝑎

= 𝜌𝑃𝑆𝐷𝑅
1

𝛽1𝛽2
𝑇1

2𝑆𝑎
4𝜋2𝐻𝑟𝑜𝑜𝑓

�2𝜋𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)
22

𝑒𝑥𝑝 �
�𝐿𝑛�𝛽1𝛽2

𝑇1
2𝑆𝑎

4𝜋2𝐻𝑟𝑜𝑜𝑓
�−𝐿𝑛�𝜒𝑃𝑆𝐷𝑅��

2

2𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)
2 � (12) 

4.2.2 Seismic hazard as a function of T1  
The representation of the seismic hazard curves in the full methodology was implemented using continuous 7th-
order polynomials in the log-log domain. Although these representations can be very accurate, they do not allow 
the implementation of a closed-form solution for solving Eq. (8). A simpler method to represent the seismic 
hazard curve was proposed by previous researchers [14-16], which is based on a linear representation in the log-
log domain shown in Eq. (13). 

   𝜆(𝑆𝑎) = 𝑘0(𝑆𝑎)−𝑘 (13) 

where 𝑘0 and 𝑘 are empirical constants obtained from adjusting the linear model to Sa with λ of 0.0021 [1/year] 
(DBE) and 0.0004 [1/year] (MCE). Eq. (13) allows the use of a closed-form solution, but it overestimates the 
hazard for a large range of Sa values as shown in Fig.12(a). This figure also shows the actual data from the 
USGS [20], a 7th-order polynomial representation and a 2nd-order polynomial representation that allows the use 
of a closed-form solution for Eq. (8), which is proposed by this study in Eq. (14), where the ai values are 
empirical constants derived for a given site. Fig.12(b) shows the implementation of the proposed seismic hazard 
representation for three T1 values. 

  
Fig. 12 –λ(Sa) curves for selected site (33.996, -118.162): a) T1=1.33 s; b) T1=[0.5 s; 1.0 s; 2.0 s] 
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     𝜆(𝑆𝑎) = 𝑒𝑥𝑝�∑ 𝑎𝑖𝐿𝑛(𝑆𝑎)𝑖2
𝑖=0 � (14) 

 To make the representation of the seismic hazard curves T1 dependent, this study assumes that the 
curvature (a2 and a1 parameters in Eq. (14)) of each 2nd-order polynomial is fixed for a selected site but the 
position (a0 parameter in Eq. (14)) is a function of T1, as shown in Eq. (15). 

 𝜆(𝑆𝑎,𝑇1) = 𝑒𝑥𝑝�𝑎2𝐿𝑛(𝑆𝑎)2 + 𝑎1𝐿𝑛(𝑆𝑎) − 𝛿𝑇1
𝜂� (15) 

where 𝛿 and 𝜂 are empirical constants obtained performing a power fitting to the actual pairs of a0-T1  values. 
For further information see Araya-Letelier [22]. Fig.13 shows the implementation of Eq. (15). 

 
 

Fig. 13 – λ(Sa) curve representations for selected site (33.996, -118.162): a) T1=1.04 s; b) T1=1.33 s 

 Substituting Eq. (12) and Eq. (15) into Eq. (8), a closed-form solution for calculating the EAL is obtained 
and shown in Eq. (16), where each term has been previously defined.  

 𝐸𝐴𝐿(𝑇1) = 𝜌𝑃𝑆𝐷𝑅�
1

�1−2𝑎2𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)
2 �

2 𝑒𝑥𝑝

⎝

⎜
⎛2�−𝛿𝑇1

𝜂�+2𝑎2�𝐿𝑛�
4𝜋2𝐻𝑟𝑜𝑜𝑓𝜒𝑃𝑆𝐷𝑅

𝑇1
2𝛽1𝛽2

��

2

−4�−𝛿𝑇1
𝜂�𝑎2𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)

2 +2𝑎1𝐿𝑛�
4𝜋2𝐻𝑟𝑜𝑜𝑓𝜒𝑃𝑆𝐷𝑅

𝑇1
2𝛽1𝛽2

�+�𝑎1𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)�
2

2−4𝑎2𝜎𝐿𝑛(𝑃𝑆𝐷𝑅)
2

⎠

⎟
⎞ (16) 

 Fig.14 compares the EALDS values obtained from the simplified methodology to actual values (from the 
full methodology), showing that predictions are reasonably accurate for values of T1 from 0.7 s to 1.5 s, where 
most of the alternative designs will be for low-rise steel SMRF buildings. Notice that Eq. (16) only calculates the 
EALDS. Although EALDS represents the majority of the EAL, the other components, especially EALNSAS, still 
need to be incorporated in the methodology. Fig.15 compares CC, NPV(EAL) and ELCC values obtained from 
the simplified methodology to actual values, showing again very good predictions for values of T1 from 0.7 s to 
1.5 s.  

  
Fig. 14 – EALDS of SMRF designs (full and simplified 

methodology)  
Fig. 15 – CC, NPV(EAL) and ELCC values of 

SMRF designs (full and simplified methodology)  
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5. Conclusions 
This study develops a simplified methodology to estimate the ELCC of low-rise steel SMRF buildings as a 
function of the stiffness (T1). These structures are flexible and first-mode dominated, and their EALs are 
dominated by small Sa values where the structures behave linearly or under the equal displacement rule with a 
relatively uniform PSDR distribution along the height. This simplified methodology is based on actual results of 
EALs and CCs from seven 4-story steel SMRF buildings designed with varying degrees of lateral stiffness, 
including a testbed building that only meets the minimum code requirements. These numeric results show 
significant losses for the testbed building, implying that modern building codes do not provide an optimal design 
in terms of minimizing the ELCC. 

The proposed simplified methodology provides two equations to estimate the CC(T1) and EAL(T1), both 
required components of ELCC(T1). To estimate the CC(T1) a previous formulation was extended incorporating 
the additional cost of SMRFs and their corresponding foundations, and it provides good prediction results when 
compared to the actual results developed from construction cost databases. The EAL(T1) formulation requires 
the estimation of E[L|Sa,T1] and λ(Sa,T1). This study proposes a lognormal representation of the E[L|Sa,T1] 
curve obtained using the E[LDS|PSDR] curve and a simple formulation that relates the PSDRs to the Sa 
intensities as a function of T1, eliminating the need for IDAs. Regarding λ(Sa,T1), this study proposes a 2nd-
order polynomial representation (in log-log domain) that is T1 dependent and represents the hazard significantly 
better than a linear representation previously proposed. The proposed formulations for E[L|Sa,T1] and λ(Sa,T1) 
lead to a closed-form solution for the calculation of the EAL(T1), eliminating the need for numerical 
integrations. 

Values obtained from the simplified methodology are compared to actual values, and predictions are 
shown to be very good for values of T1 from 0.7 s to 1.5 s, where most of the alternative designs will be for low-
rise steel SMRF buildings. 
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