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Abstract 
The capacity and expected seismic damage of several types of steel buildings are assessed. Nonlinear static structural 
analysis and incremental dynamic analysis (IDA) by means of a probabilistic approach with Monte Carlo Simulation are 
used. For static analysis, an important contribution of this paper is to extend the parametric models and damage index that 
were previously proposed for reinforced concrete buildings to steel buildings. Thus, the parametric model is used to fit 
capacity curves and the expected damage is assessed by means of this new damage index. In this parametric model, the 
linear and non-linear parts of the capacity curve are separated. The linear part is defined by the initial stiffness and the non-
linear part can be parameterized by the integral of a cumulative lognormal function; the ultimate capacity point provides the 
two last parameters of the five ones that fully define this new capacity model. The damage index is defined as a 
combination of the energy dissipation and the tangent stiffness degradation. The analyzed buildings are typical of Mexico 
City and the seismic actions are selected so that they are compatible with the design spectra provided in the seismic code. 
The results show that, on average, the Park-Ang index, calculated by the IDA, is well fitted by the combination of the 
contributions to damage index of the stiffness degradation (66-71%) and the one of the energy loss (29-34%); with the 
advantage that this index can be obtained in an easy, fast and straightforward way from capacity curves. The obtained 
results show that the parametric model and the damage index are powerful tools for probabilistic assessments of seismic 
risk. 
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 1. Introduction 
Estimation of seismic vulnerability and risk of structures must take into consideration that the involved variables 
have high uncertainties. These uncertainties may be organized into two categories, the aleatory (or random) 
uncertainties and the epistemic (or knowledge) uncertainties [1,2]. Epistemic uncertainties result from lack of 
knowledge some model or parameter; aleatory uncertainty is inherent in random phenomena. Concerning 
seismic actions, aleatory uncertainties are associated to the expected ground motions, and therefore cannot be 
controlled but, certainly, they can be estimated and addressed through probabilistic approaches. Concerning 
structures, aleatory uncertainties are due to unawareness of its precise mechanical and geometrical properties. 
Because of the nonlinear response of buildings and structures to earthquakes, another important issue, related to 
uncertainties, is how they propagate, which depends on the performance of their individual elements, as well as 
on the non-linear relations between inputs and outputs. Uncertainties can be reduced by employing tests to 
determine the material properties of the structural elements. To take into account for the effect of uncertainties, 
seismic design standards recommend to perform deterministic calculations, but using values reduced for 
resistance of materials and increased actions by means of safety factors. However,  in non-linear processes it is 
well known that the confidence levels associated to the response may be different from the ones associated to the 
input variables [3].  In the last two decades, it has been emphasized  the importance of the capacity spectrum 
method (CSM) for NonLinear Static Analysis (NLSA)[4,5] and of the incremental dynamic analysis (IDA) for 
NonLinear Dynamic Analysis (NLDA) [6] from a probabilistic perspective [2]. NLDA is assumed to be the most 
appropriate tool to assess the damage in structures subjected to dynamic actions.  When used the CSM, it is 
necessary to verify that the expected damage is consistent with the results of IDA [7,8]. Both methods, static and 
dynamic, have been implemented in recent studies, using the Monte Carlo method  [3,9,10]. This fact has 
allowed to obtain an overall view of the expected performance and providing reliable results. However, 
probabilistic analyses require to perform a significant number of NLDA’s and/or NLSA’s, entailing a high 
computational cost; therefore, would be convenient to develop simplified methods allowing to compare the 
results obtained by using NLSA and NLDA.  One option that can be used for this purpose, was proposed by  
Pujades et al. [11]; in which a parametric model and a damage index were developed for reinforced concrete 
buildings; both the parametric model and the damage index were checked through probabilistic NLSA’s and 
NLDA’s. According to this parametric model, capacity curves are considered to be composed of a linear part and 
a non-linear part.  The linear part is defined by the initial stiffness or, equivalently, by a straight line whose slope 
(m) is defined by the fundamental period of vibration of the building; the normalized non-linear part represents 
the degradation of the building and can be parameterized by means of the integral of a cumulative lognormal 
function defined by two parameters (μ and σ). Considering the ultimate capacity point (Sa u and Sdu), the capacity 
model is then completely defined by five independent parameters. Fig. 1 shown an example of the capacity curve 
defined by five parameters the parametric model. Concerning to the damage index, this was defined as a 
combination of the energy dissipation and of the degradation of the tangent stiffness, relative to the one 
corresponding to the ultimate capacity point; both damage functions can be obtained from the normalized 
nonlinear part of the pushover curve in a straightforward way. This new damage index was defined and 
calibrated by means of the Park and Ang damage index obtained from the IDA.  

 
Fig. 1. Capacity curve defined by five independent parameters. 
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In addition to the fully probabilistic approach to the structural seismic performance of steel buildings, an 
important contribution of this this article is to check for the parametric and damage models when applied to steel 
buildings subjected to seismic actions expected in Mexico City; it is worth noting that these models, as proposed 
in Pujades et al. [11], where tested and used only for reinforced concrete buildings subjected to seismic actions 
with response spectra compatible with the ones provided in the Eurocode EC-08. Thus, a suite of accelerograms 
for dynamic analyses has been selected in such a way that their response spectra are compatible with the design 
spectra recommended for soft soils in this area in the Mexican seismic code [12]. As pointed out above, the 
analyses, both static and dynamic, are performed by means of a probabilistic approach that uses the Monte Carlo 
method for sampling and the Latin Hypercube Sampling (LHS) technique to optimize the number of samples. 
The strength and ductility of beams and columns are considered as random variables; the seismic actions are also 
considered in a probabilistic way. This fully probabilistic approach allows quantifying the expected uncertainties 
in the structural responses and induced damage by the uncertainties in the seismic actions and the ones related to 
the material properties of the structures. The obtained results show how uncertainties increase when the severity 
of seismic actions increases, as expected. Moreover, it is also shown that the parametric model and the damage 
index also hold for steel structures, allowing to represent capacity curves by means of a simple model and to 
analyze the expected damage directly from capacity curves, in a very straightforward way, thus avoiding the 
large amounts of computations involved on dynamic simulations. 

2. Mechanical models 
Three steel buildings types are analyzed: high-rise (13 story), mid-rise (7 story) and low-rise (3 story) with 
Special Moment Frames (SMF) configured with W sections (American wide flange section) for beams and 
columns joined by means of prequalified connections [13] type Fully Restrained (FR). Buildings were designed 
as office buildings on the basis of the provisions of  NTC-DF-2004 [12] and AISC-2010 [14] seismic codes for 
the México City area. Buildings have rectangular floors, and they have 3 beams of 5 m, in the transversal 
direction and 4 beams of 6 m in the longitudinal direction (see Fig. 1). Our focus will be on the central frame in 
the longitudinal direction for each building. The design of the SMFs satisfies the AISC criterion of strong 
column-weak beam.  Fig. 2 sketches the three 2D models (SMF 3, SMF 7 y SMF 13). 

 
Fig. 2. 2D building models. 

NLSAs and NLDAs were performed with Ruaumoko 2D [15] software . The weight of the structure, as 
well as that of the architectural finishes and facilities were considered as dead loads (DL), while the live load 
(LL) was set according to NTC-DF-2004 [12] for office use. Total gravity load for nonlinear analysis is 
established as 1.0DL + 0.2 LL [16]. Beams and columns were modeled with FRAME type members, with plastic 
hinges at their ends. The plastic hinges follow the Bi-Linear Hysteresis rule with hardening and strength 
reduction based on its ductility factor (see Appendix A - Ruaumoko 2D [15]). Due to limitations of the model 
adopted, which only reproduces the failure by bending moment and shear force, the interaction between moment 
and axial force is not considered. In addition, it is expected that most of the damage for this type of buildings is 
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expected to occur at the ends of the elements, mainly due to the combined effects of moment and shear. 
Therefore, the interaction of yield surface is defined for columns and beams by the bending moment - angular 
deformation diagram. Moreover, the values of strength and ductility for the rule of hysteresis were calculated 
according to the modified Ibarra–Medina–Krawinkler (IMK) model [17,18]; this model establishes strength 
bounds on the basis of a monotonic backbone curve (Fig. 3a). The backbone curve is defined by three strength 
parameters [My= effective yield moment, Mc= capping moment strength (or post-yield strength ratio Mc/My), 
and residual moment [Mr= κ·My, κ=0.4] and four deformation parameters [θy= yield rotation, θp= pre-capping 
plastic rotation for monotonic loading (difference between yield rotation and rotation at maximum moment), 
θpc= post-capping plastic rotation (difference between rotation at maximum moment and rotation at complete 
loss of strength), and θu= ultimate rotation capacity] [18]. The columns of the moment-resisting bays were 
assumed to be fixed at their bases. P–Delta effects were also considered. The panel zones were modeled in a 
simplified way by the rotational stiffness in the connections, obtained according to the model proposed by 
Krawinkler [19] and presented in FEMA 355C  [20], and it was input into the model as flexibility at the ends of 
the beam. In all cases, it was assumed a 2% Rayleigh damping (damping recommended for steel structures [21]). 
The fundamental periods of the models are 0.632 s, 1.22 s and 1.92 s respectively for SMF3, SMF7 and SMF13 
buildings.  

3. Probabilistic variables 
For structural models the mass and damping are assumed to be deterministic and only the strength and ductility 
of structural elements are considered in a probabilistic way. All the strength parameters of the modified IMK 
model can be obtained from two properties of the sections: plastic modulus, Z, and expected yield strength, fy. In 
this research only fy is considered as a random variable for the LHS simulations with normal distributions. The 
mean (μ) value, standard deviation (σ) or coefficient of variation (COV) and the assumed probability 
distributions are shown in Table 1. 

Ductility of structural sections is defined by the deformation parameters θy, θp and θpc of the modified 
IMK model and, for W sections, they can be determined by means of the multi-variable empirical equations 
developed by Lignos & Krawinkler [18]. (See the following Eqs. (1) (2) and (3) respectively). 
θy= My ko⁄ = 1.17Zfy EI⁄  (1) 
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where ko is the initial elastic stiffness; E is the modulus of elasticity; I is the inertia; c1
unit and c2

unit are 
coefficients for units conversion; h/tw is the ratio of the web depth over thickness; L/d is the ratio between the 
span and depth beam; bf/2tf is the width/thickness ratio of the beam flange, and σIn is the standard deviation 
assuming a lognormal fit of experimental data. Finally, the ultimate rotation capacity is estimated as θu =1.5(θy + 
θp), based on the recommendation by PEER/ATC 72-1 [16]. For this study θy is considered with a dependent 
variable of fy. The mean (μ) values, standard deviations (σIn) and function types used for θp and θpc are shown in 
Table 1. For the LHS simulations, both normal distributions of fy and lognormal distributions of θp and θpc were 
truncated at both ends, the lower and upper limits being determined by the mean value ± 2 times the standard 
deviation (μ ± 2σ). The purpose of this truncation is to avoid underestimates or overestimates of the capabilities 
of the elements with samples without physical meaning. 

Two types of correlations are considered: intra- and inter-element. The intra-element correlation is given 
by the relation between the three parameters simulated for the same hinge; these correlations are derived from 
Eqs. (2) and (3) [22]. This intra-element correlation is defined in Table 2. On the other hand, the inter-element 
correlation is attributed to the consistency in workmanship and material quality between different element 
sections. In research conducted by Idota et al. [23] and Kazantzi et al. [10] it was proposed a value of 0.65 for 
yield strength of beams and columns of the same production lot. Therefore, based on these researches, an inter-
element correlation of 0.65 is proposed for the same type section, and a null correlation is assumed for different 
sections. 
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Table 1 – Probabilistic mean of the strength and ductility variables  
Type Variable Mean (μ) Standard deviation(σ) Function Upper limit  Lower limit  

Strength fy 375.76 Mpa* 26.68 (COV=0.071*) Normal distribution 429.14 Mpa 322.4 Mpa 
Ductility θp θp  by Ec. 2 σ ln =0.32 Lognormal distribution θp  by Ec. 2 +2 σ ln θp  by Ec. 2  - 2 σ ln 
Ductility θpc θpc  by Ec. 3 σ ln =0.25 Lognormal distribution θpc  by Ec. 3 +2 σ ln θpc  by Ec. 3  - 2 σ ln 
* Based on the report by Lignos & Krawinkler [22] for statistics of material yielding strength, obtained from flanges-webs tests for steel 
A572 grade. 

Table 2–Intra-element correlation for random variables of beams and columns. 
 fy θp θpc 

fy 1 0 0 
θp 0 1 0.69 
θpc 0 0.69 1 

To better represent the physical randomness of the problem for each structural element (column or beam), 
a random sample of the three parameters used (fy, θp and θpc) is generated. Then the properties of strength and 
ductility on the hinges of each element is estimated. It is assumed that hinges at both ends of elements are the 
same. Thus, the 3-storey model, with 27 elements (15 columns and 12 beams) has 81 random variables; the 7-
storey building model with 63 elements (35 columns and 28 beams) has 189 random variables and the 13-storey 
model with 117 elements (65 columns and 52 beams) has 351 random variables. In order to assess the seismic 
behavior of these three buildings, with a probabilistic approach, 200 NLSA’s and 200 NLDA’s are performed for 
each structural model, resulting a total of 600 NLSA’s and 600 NLDA’s. It is worth noting that the same 
structural models are used for both structural analyses, static and dynamic. Fig. 3b shows an example of the 
modified IMK model used in the structural section (W16x89) of the SMF3 probabilistic models. 

 
Fig. 3. (a) Modified IMK model: monotonic curve [18]; (b) an example of the modified IMK model used 

in the structural section (W16x89) of the SMF3 probabilistic models. 

4. Probabilistic approach for IDA 
To preform IDA, a set of accelerograms representing the characteristics of the study area are needed.  The way 
for obtaining these data set with a probabilistic approach is explained first and the method is then applied to the 
case of Mexico City. In a first step, a random set of response spectra are generated by means of LHS 
simulations. The generated response spectra fulfill the following two conditions: i) the mean value is a target 
spectrum and ii) the standard deviation at each period must be a predefined value. After that and in order to 
avoid unrealistic -un-correlated response spectra, a new collection of response spectra is obtained by arranging 
the ordinates of the former spectra at each period. This way, the new sorted spectra also fulfill the required 
conditions but, they also fulfill the correlation features of actual response spectra. Then, a spectral matching 
technique, as proposed by Hancock et al. [24], is used to match the response spectrum of a real accelerogram 
with each one of the simulated spectrum, thus obtaining a set of accelerograms that fulfill the following 
conditions: i) the mean spectrum matches well the target spectrum, ii) the obtained set of spectra has a 
predefined standard deviation; and iii) the corresponding accelerograms are representative of the seismic actions 
expected in the area, that are represented by the selected seed accelerogram.  In this study, the design spectrum 
for  the area IIIb of the NTC-DF [12] in Mexico DF has been taken as target spectrum. Moreover, the standard 
deviation has been set to 1% for periods from 0 to 2 s, corresponding to the range where the periods of the 
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buildings are located, and 5% for periods greater than 2 s. Concerning to the seed accelerograms, the selection 
method proposed by Vargas et al. [3] was applied to a database of 2554 accelerograms (three component) 
recorded in the Mexico City area. This way, four accelerograms with response spectra compatible with the target 
spectrum were selected. Fig. 4 shows the selected seed accelerogram, the matched ones and the corresponding 
response spectra. It is worth noting that this large database of Mexican accelerogram was previously analyzed by 
Diaz et al. [25]. Table 3 shows the characteristics of the selected accelerograms and corresponding earthquakes. 
For each seed accelerogram, the spectral matching is used to get 5 new accelerograms fulfilling the three 
probabilistic conditions described above. This way a set of 20 accelerograms were obtained. This number of 
accelerograms was considered adequate as the Mexican seismic code [12] suggests to use at least four 
accelerograms; this number of 20 acceleration time histories was also considered suitable to deal with the 
uncertainties in the seismic actions as they represent well the assumed probabilistic distributions (see Fig. 5). An 
example of the application of the spectral matching technique for single selected accelerograms is shown in Fig. 
4 and the whole set of response spectra corresponding to the 20 compatible accelerograms is shown in Fig. 5. 
The excellent matching obtained can be observed in both figures. 

Table 3– Characteristics of the 4 seed accelerograms selected by of their compatibility with the target spectrum. 

Accelerogram Station Date Duration 
(seg) 

Epicenter Magnitude 
(Mw) Component PGA 

(cm/s2) 

Epicentral 
distance 

(km) 

Azimut 
Sta-Epi Latitude Longitude Depth 

(Km) 
acc1 TH35 20/03/2012 227.47 16.25 N 98.52 W 16 7.4 S00E 49.6 340.58 171.34 
acc2 AE02 30/09/1999 383.74 15.95 N 97.03 W 16 7.5 N90W 21.3 442.48 150.64 
acc3 PCSE 11/01/1997 209.97 17.91 N 103.04 W 16 6.5 S65W 14.6 442.84 248.35 
acc4 DM12 14/09/1995 263.94 16.31 N 98.88 W 22 7.3 N00E 19.3 347.79 176.20 

 

 
Fig. 4. Target spectrum, and response spectra of the seed and matched accelerograms (right). Seed and 

matched accelerograms (left). 
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Fig. 5. Response spectra of the 20 accelerograms; mean and standard deviations are also depicted. 

 

5. Parametric model 
In this section, the parametric model for capacity spectra [11] is applied to steel buildings. The deterministic and 
probabilistic cases are analyzed. Mean values of strength-ductility of the sections are used for the deterministic 
approach and, as pointed out above; 600 models generated by LHS are used for the probabilistic approach.  

5.1. Capacity curves  

The capacity curves are obtained by means of an adaptive pushover analysis (PA) [15,26]. Fig. 6 shows these 
capacity curves. The 50th percentiles (median) match well the deterministic curves for SMF3 and SMF7 models; 
for SMF13 building and for large displacements, the deterministic curve is a little bit greater than the median 
one; this fact is attributed to a greater impact of the uncertainties of the mechanical properties in the nonlinear 
behavior of the structures; note also that SMF13 buildings are high-rise buildings, thus having more structural 
elements than low-rise and mid-rise buildings. The ultimate displacements (Du) of all the capacity curves show 
that the deterministic approach is conservative, according to the use of mean values; Table 4 shows the weights 
and normalized modal participation factors used to transform capacity curves into capacity spectra. 

Table 4 – Weights, wi, and normalized modal participation factors, Φ i1. 
  Storey 1 2 3 4 5 6 7 8 9 10 11 12 13 

SMF3 wi (KN) 885.9 881.4 605.6 
          Φ i1 0.4 0.775 1         

      
SMF7 wi (KN) 902.6 890.6 890.6 889.6 881.4 881.4 605.6 

      Φ i1 0.133 0.313 0.489 0.647 0.803 0.929 1             

SMF13 
wi (KN) 924.5 909.7 909.7 909.7 909.7 903.2 890.6 890.6 890.6 889.6 881.4 881.4 605.6 

Φ i1 0.057 0.135 0.219 0.303 0.384 0.463 0.563 0.664 0.755 0.832 0.906 0.965 1 

 

 
Fig. 6. Deterministic, probabilistic and percentiles of the capacity curves obtained. 

5.2. Parameters of the capacity model 
The parametric model considers that the capacity curve F(δ) is composed of a linear part FL(δ) and a nonlinear 
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behavior and it is represented by a straight line whose slope (m) is defined by the period of the fundamental 
mode of vibration of the structure. The slope (m) is the first parameter of the parametric model. FNL(δ) would 
contain strictly the nonlinear response of the building and can be obtained by subtracting the true capacity curve 
from the linear curve with Eq. (4). 
𝐹𝑁𝐿(δ)=𝐹𝐿(δ) - F(δ)=mδ - F(δ) (4) 

The first derivative of the capacity curve and, indeed, that one of the nonlinear part, is related to the 
tangent stiffness and to the progressive degradation of the strength of the structure; therefore, the parametric 
model is based on the fit of the normalized nonlinear part of the capacity curve; the same model is valid for 
capacity spectra, as it is based on normalized roof displacements and base shears. Fig. 7(top) shows F(δ), FL(δ) 
and FNL(δ) of the 50th percentile(median) of capacity spectra; Fig. 7(bottom) shows the corresponding 
derivatives: dF(δ)/dδ, dFNL(δ)/dδ y dFL (δ)/dδ = m. From Eq. (4) it follows that the function dFL(δ)/dδ fulfils 
the equation (5): 
𝑑
𝑑δ
𝐹𝑁𝐿(δ)=m - 

𝑑
𝑑δ
𝐹𝐿(δ) (5) 

The normalized first derivative of the nonlinear part is well represented by a cumulative lognormal 
function as defined in Eqs. (7) and (8) by the parameters μ and σ (note that also a Beta function can be used) 
[11]. That is, the scaled first derivative Ψ′and the derivative of this Ψ′′ satisfy the following equations: 

Ψ' (Aδ)=B
𝑑𝐹𝑁𝐿(δ)
𝑑δ

   0 ≤ Aδ ≤ 1 (6) 

Ψ'' (Aδ)=
1

 (Aδ)𝜎√2𝜋 
𝑒
−(ln(𝐴𝛿)−ln(𝜇))2

2𝜎2    0 ≤ Aδ ≤  1 (7) 

Ψ'  (Aδ)=� Ψ''(𝜉)𝑑(𝜉)
𝐴𝛿

0
    0 ≤ Aδ ≤  1 (8) 

𝐹𝑁𝐿  (Aδ)=
1
𝐵
� Ψ'(𝜉)𝑑(𝜉)
𝐴𝛿

0
    0 ≤ Aδ ≤  1 (9) 

where A is 1/δmax and 1/B is 1/(m-m*); m* being the final slope of the capacity curve or the capacity spectrum. 
Parameters μ and σ can then be estimated by means of a least squares fit.  FNL(Aδ), function allows to determine 
the two parameters of the model. In addition to μ and σ, capacity spectra also depend on the following 
parameters: i) the slope m of the linear part; ii) the ultimate spectral displacement, Sdu; and iii) the spectral 
acceleration, Sau, of the ultimate capacity point. Therefore, a capacity curve (or a capacity spectrum) is entirely 
defined by the following five independent parameters: μ, σ, m, Sdu and Sau. Consequently, families of capacity 
spectra may have the same lognormal model. The construction of these curves is simple and straightforward 
undoing the steps explained above (see Eqs. 6 - 9). Fig. 7 summarizes the procedure to obtain the parametric 
model for a capacity spectrum; results of the target and fitted capacity spectrum together with its first derivative, 
are shown. The differences are very small and always below 3%. This parametric model has been tested with a 
significant number of capacity spectra, with excellent results in all the cases (see Fig. 8). The five parameters of 
deterministic models, probabilistic percentiles and the % mean error between target and fitted are given in Table 
5. It is worth noting that this values, may be also useful for probabilistic assessments of seismic risk. 
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Fig. 7. Linear part, nonlinear part, first derivative and lognormal fits for probabilistic 50th percentile (median) of 

the models a) SMF 3, b) SMF 7 and c) SMF 13. 
 

Table 5 – Parameters of the parametric model for deterministic and probabilistic percentiles of the capacity 
spectra. 

 SMF3 SMF7 SMF13 

 
m 

(g/m) 
Sdu 
(m) 

Sau 
(g) µ σ %Mean 

error 
m 

(g/m) 
Sdu 
(m) 

Sau 
(g) µ σ %Mean 

error 
m 

(g/m) 
Sdu 
(m) 

Sau 
(g) µ σ %Mean 

error 
Deterministic 10.05 0.33 1.31 0.37 0.25 0.17 2.70 0.67 0.78 0.40 0.10 0.77 1.10 0.97 0.55 0.49 0.10 0.06 
5th percentile 9.44 0.23 1.21 0.48 0.10 0.25 2.55 0.48 0.72 0.58 0.15 0.65 1.04 0.63 0.49 0.70 0.05 0.01 

 Median 9.96 0.29 1.30 0.39 0.20 1.18 2.68 0.58 0.77 0.48 0.10 0.55 1.08 0.88 0.53 0.51 0.10 0.93 
95th percentile 10.67 0.38 1.40 0.30 0.15 2.74 2.84 0.69 0.83 0.39 0.10 0.84 1.12 1.09 0.57 0.46 0.15 1.26 

 

 
Fig. 8. Capacity spectra target and fitted of the deterministic and probabilistic models of the buildings. 

 

6. Damage 
The damage index DICC as proposed by Pujades et al. [11], is obtained from the capacity curve or capacity 
spectrum by means of simple and straightforward calculations; and has been calibrated so that it is equivalent to 
the well-known Park-Ang damage index DIPA[27]. DICC is based on the combination of a stiffness degradation 
function K(δ) and an energy dissipation function E(δ) relative to the residual stiffness and total energy at the 
ultimate capacity point. E(δ) is easily obtained from the integration of the nonlinear part (Eq. 10). 

𝐸(𝛿)=� 𝐹𝑁𝐿(𝜉)𝑑(𝜉)
𝛿

0
;         0 ≤ δ ≤  𝛿𝑢;          0 ≤ 𝐸(𝛿)≤ 𝐸(𝛿𝑢)  (10) 

E(δ) is related to the energy dissipated by the structure when it reaches a displacement δ. It is useful to 
work with the function normalized in abscissae and in ordinates. Thus the following equation can be used  

𝐸𝑁(𝛿𝑁)=
𝐸 �𝛿 𝛿𝑢� �

𝐸(𝛿) ;         0 ≤ 𝛿𝑁 ≤  1;          0 ≤ 𝐸𝑁(𝛿𝑁)≤ 1  (11) 

EN(δΝ) is the ratio between the energy dissipated as a function of the relative displacement δΝ=δ/δu, and 
the total energy that the structure has dissipated at the ultimate displacement E(δu). 

K(δ) is related to tangent stiffness and it is defined by the following Eq. (12), which also can be 
transformed into another one varying between 0 and 1 and also can be normalized for displacements KN(δN) to 
Eq. (13) 
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𝐾(𝛿)=
�𝐹(𝛿)

𝛿� �
𝑚𝑎𝑥

− 𝐹(𝛿)
𝛿�

�𝐹(𝛿)
𝛿� �

𝑚𝑎𝑥
− �𝐹(𝛿)

𝛿� �
𝑚𝑖𝑛

;         0 ≤ δ ≤  𝛿𝑢;          0 ≤ 𝐾(𝛿)≤1      (12) 

𝐾𝑁(𝛿𝑁)=𝐾 �𝛿 𝛿𝑢� � ;         0 ≤ 𝛿𝑁 ≤  1;          0 ≤𝐾𝑁(𝛿𝑁)≤ 1 (13) 

KN(δN) is the ratio between the stiffness variation with respect to the maximum, and the total variation of 
stiffness.  

The damage index DICC (δN) is defined by the following two equations  
𝐷𝐼𝐶𝐶(𝛿𝑁)=𝛼𝐾𝑁𝑁(𝛿𝑁)+(1 - 𝛼)𝐸𝑁𝑁(𝛿𝑁) ≅ 𝐷𝐼𝑃𝐴 (14) 

Where 
𝐾𝑁𝑁(𝛿𝑁)=𝐷𝐼𝑃𝐴(𝛿𝑢)𝐾𝑁(𝛿𝑁),  𝐸𝑁𝑁(𝛿𝑁)=𝐷𝐼𝑃𝐴(𝛿𝑢)𝐸𝑁(𝛿𝑁)  and  for  𝛿𝑁 = 1, (15) 

Thus, DIPA can be used to calibrate the value of the parameter α.  DICC(δN) is calculated from the capacity 
curves analyzed and calibrated by respective DIPA of IDA. For the Probabilistic IDA’s the set of 20 matched 
accelerograms has been used; where is selected one for each model with a uniformly random distribution. For 
the deterministic IDAs the four matched accelerograms shown in Fig. 4, are used and the mean value is obtained. 
The roof displacements δ-DIPA for models are shown in Fig. 9. Observe that deterministic DIPA’s are 
conservative compared with probabilistic 50th percentile (median); similar behavior has been observed for the 
capacity curves. 

 
Fig. 9. Roof displacement (δ)-DIPA by IDA’s of the models a) SMF 3, b) SMF 7 and c) SMF 13. 

The functions of tangent stiffness, KNN(δN), Energy, ENN(δN) and damage DICC(δN) obtained from of the median 
capacity curve are shown in Fig. 10. DICC(δN) has been calibrated by using the DIPA (median). The parameter α, 
was obtained by means of a least squares fit of Eq. (14). The value of α is directly related to the percentage of 
contribution to damage of the stiffness degradation, while their complement in the Eq. 14 corresponds to the 
contribution of the energy dissipation. For the cases discussed here, α varies between 0.66 and 0.71. Damage 
indices IDCC obtained for deterministic and percentiles capacity curves and the corresponding IDPA are shown in 
Fig. 11. α values  are 0.71, 0.66 and 0.67 for SMF3, SMF7 and SMF13 respectively; it is a similar range to the 
one obtained for the IDCC (median) and similar range was also reported by Pujades et al. [11] for reinforced 
concrete buildings. In conclusion, The Park and Ang damage index DIPA(median) based on dynamic analysis is 
well represented by the new damage index DICC(median) obtained directly from capacity curves. In this case the 
contributions to damage of the stiffness degradation are in the range 66-71%, while the a one of the energy loss 
in the range 29-34%. 

7. Summary and discussion 
In this paper it is presented a probabilistic approach allowing quantifying the uncertainties on the seismic 
response and performance of buildings produced by uncertainties on their mechanical properties (strength and 
ductility) and on the seismic actions. Concerning seismic actions they  are selected according to the seismic 
hazard of the Mexico City area; thus, four accelerograms recorded in this area have been selected an modified to 
match the design response spectra provided by the Mexican code for the area; moreover a set of 20 
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accelerograms have been also obtained by means of spectral matching techniques allowing to obtain 20 
accelerograms with predefined mean values and standard deviations, thus providing acceleration time histories 
compatible with predefined design spectra and predefined dispersion. The procedure is applied to high-rise (13 
story), mid-rise (7 story) and low-rise (3 story) steel buildings with Special Moment Frames (SMF); 
Deterministic and probabilistic NLSA and NLDA have been performed, allowing also the comparison of the 
deterministic and probabilistic results of both static and dynamic analyses. The main conclusions of this work 
are as follows. i) The use of mean values in deterministic simplified approaches are conservative; because the 
obtained expected damage in Fig. 9 and Fig. 11, show that may be lower than the one obtained 50th percentile 
approach. ii) A recently proposed parametric model and damage index has been implemented for steel buildings. 
The parametric model allows to define capacity curves by means of five independent parameters. The damage 
index can be easily obtained from capacity curves, and takes into account the tangent stiffness degradation and 
the energy loss. This damage index is calibrated with the Park and Ang damage index obtained from dynamic 
incremental analysis. For the buildings analyzed the contribution to the damage of the stiffness degradation and 
the one of energy loss are about 70 and 30% respectively. This contribution to damage of the energy dissipation 
processes is about a 10% higher than the one obtained by Pujades et al. [11] for a reinforced concrete building. 
This increase on the damage, due to energy dissipation, is attributed to the long duration of the accelerograms 
used here due to the long epicentral distances of the earthquakes and to the soft soils of the Mexico City study 
area. Longer durations imply a bigger number of hysteresis cycles for the same spectral displacements, thus 
increasing the dissipation of energy. iii) Finally, the parametric model and the capacity based damage index have 
been tested for a large number for steel buildings and seismic actions, with excellent results, thus corroborating 
their usefulness, simplicity, versatility and robustness. Both, the parametric model and the capacity based 
damage index, maybe especially useful in probabilistic approaches as they reduce significantly the computation 
time and provide reliable results. 

 
Fig. 10. The energy and stiffness functions and calibration of the DICC(δN) from the capacity curve (median) 

of the models a) SMF 3, b) SMF 7 and c) SMF 13. 

 
Fig. 11. DICC and DIPA of the deterministic and percentiles models a) SMF 3, b) SMF 7 and c) SMF 13. 
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