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Abstract 
Fragility curves are one of the essential tools in seismic risk assessment. Various source of uncertainties such as material, 
geometric and ground motion have to be considered in the generation of fragility curves for regional risk assessment of 
bridges. The identification of parameters that have a significant effect on the seismic demand or fragility curves often 
requires computationally expensive and time-consuming screening methods. This paper proposes an approach to identify 
the significant variables using an advanced regression technique called Lasso regression. The proposed approach helps to 
identify and remove the less significant parameters during the generation of fragility curves without any reiteration. The 
proposed approach is demonstrated in this paper through the case study of a two span box girder bridge with rigid 
diaphragms. Although the approach is illustrated with one specific bridge type, the methodology and approach is relevant to 
other structural systems. 
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1. Introduction 
Recent earthquakes have attracted considerable attention amongst the researchers for the seismic vulnerability 
assessment of bridges. An effective and increasingly popular technique to determine effects of ground motions 
on various bridge system components is fragility analysis. A fragility curve is defined as a conditional 
probability that gives the likelihood that a structure or component will meet or exceed a certain level of damage 
for a given ground motion intensity (IM). 

Uncertainties such as geometric, material or component response parameters exist in a bridge port-folio 
due to structure-to-structure variation [1]. The source of uncertainties can be either due to lack of knowledge 
(epistemic) or due to inherent randomness (aleatoric). The number of parameters which are potentially variable 
in the bridge portfolios for regional risk assessment is very high [2,3]. Hence, the high number of uncertain 
parameters necessitates a sensitivity study to identify the influence of various modeling parameters and 
uncertainties on the seismic response of bridges. Such a study will provide insight in quantifying whether the 
variation of uncertain parameters should be treated explicitly or to be neglected.   

There have been a number of studies in the past to evaluate the seismic sensitivity of bridge components 
(mainly for columns and bearings) to input parameter variation [4, 5] through design of experiments. However, 
such studies are often challenged with selecting a prudent level of uncertainty treatment while balancing the 
simulation and computational effort [1]. One of the objectives of the current study is to identify critical modeling 
parameters whose variability has a significant influence on the seismic bridge fragilities during the generation of 
seismic demand models or fragility curves with less computational effort. The identification of critical modeling 
parameters is achieved through the use of an advanced regression technique called Lasso regression [6, 7]. Lasso 
regression has the advantage of setting the non-significant coefficients to zero during the regression analysis, i.e., 
it performs variable selection. Also, it is more stable and computationally feasible for high-dimensional data [8]. 

The current study follows the generation of fragility curves through multi-parameter demand models [9-
11]. The multi-parameter demand model has the ability to address the effect of uncertainty on the fragility curves 
and to incorporate field instrumentation data [10, 12]. The current study differs from the previous studies in 
using Lasso regression in the generation of fragility curves. The proposed approach is demonstrated in the 
current study through the case study of a two span box girder bridges with rigid diaphragms. Although the 
method is illustrated with one specific bridge type (concrete box-girder bridge), the proposed method is relevant 
and applicable to other bridges or structural systems. 

2. Lasso Regression 
Although an in-depth discussion on the Lasso regression algorithm and its advantages can be found elsewhere 
[6, 7], a brief summary is presented herein. Consider a set of data 1 2( , ,..., , ), 1,..., ni i ip ix x x y i=  , where the xij’s are 
the regressors and the yi is the response variable of the ith observation. Lasso regression minimizes the residual 
sum of squares subject to the sum of absolute values of the coefficient being less than a constant, i.e., 
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Eq. (2) will force some regression coefficients to be zero due to the nature of constraints. It is noteworthy to 
mention that Lasso sacrifices a little bias to reduce the variance of the predicted valued and improve the overall 
prediction accuracy. 

3. Proposed approach  
Recently, previous studies [9, 10, 11] developed and used parameterized component and system fragility curves 
of highway bridges using multi-parameter demand models in conjunction with logistic regression techniques. 
The major modification of the proposed approach lies in using the Lasso regression instead of least square 
regressions (or surrogate models) for the generation of fragility curves. As mentioned before, Lasso regression 
identifies the non-significant input parameter and set their corresponding regression coefficients to zero. A brief 
outline of this method is given in line with the input parameters (p1,…,pn, IM)  and the output measures 
(k1,…,km)  used in the current study. 

Step 1: Evaluate the linear regression coefficients (β li) by performing Lasso regression analysis for each 
component (ki, i = 1,…,m) with the input parameters (p1,…,pn, Sa). The entire predictor variables are 
assumed to be statistically independent. This step helps to identify the variables which have a 
significant effect on the seismic demand.  

Step 2: Generate a large number of demand estimates (N, 1 million in this study) for each component, ki, using 
their respective regression model by generating N values of randomly generated input parameters based 
on their probabilistic distribution (Table 1, Latin hypercube sampling technique).  

Step 3: Generate N capacity values for a specific damage state for each bridge component, ki, based on the 
assumed distribution of the limit states (Table 2).  

Step 4: Obtain the binary survive-failure (N × 1) vector by comparing the capacity values (step 3) with the 
demand values (step 2). If a demand value is less than the associated limit state value (or capacity 
value), the associated element of the vector is zero (survival); otherwise, it is a unity (failure).  

Step 5: Conduct a Lasso logistic regression on the survive-failure vector to determine the kth component 
probability model, conditioned on the input parameters as 
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where, θk,0, θk,sa, and θk,j’s (j = 1,…,nl) are the Lasso logistic regression coefficient’s of the kth bridge 
component. This step helps to identify the sensitivity of bridge component fragility curves to the 
uncertain input parameters, which are not identified in step 1. 

Step 6: Assuming that the bridge failure is a series system (the system fails if one or more components fail), 
estimate the binary survive-failure vector.  The system level failure probability can be obtained by the 
Lasso logistic regression analysis for the system level binary-survive failure vectors. This step helps to 
identify the sensitivity of bridge system fragility to the uncertain input parameters 
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where, θSYS,0, θSYS,sa, and θSYS,j’s (j = 1,…, ns) are the Lasso logistic  regression coefficient’s for the 
system failure.  

Step 7: For a particular bridge with input parameters, 1,...,
snp p  , the classical one-dimensional fragility curves 

can be obtained as 
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where  f(p1),…, f(p9) are the probability density parameters for parameters, 1,...,
snp p .  

 

 
Fig. 1–  Numerical model for the selected bridge 
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4. Sensitivity study with example bridge class 
The application of the proposed approach is demonstrated in this study through the case study of two span box 
girder bridges with rigid abutments. The adopted bridge is one of the most common bridge types in California 
[13]. Although a detailed explanation of the analytical modeling of the bridge can be found elsewhere [2, 13], 
the general approach is presented herein. Three dimensional numerical modeling is carried out with the help of 
the finite element package OpenSees [14] incorporating both geometric and material nonlinearities. Longitudinal 
deck elements are modeled using elastic beam-column elements as they typically remain elastic during a seismic 
event. The columns and bent caps are modeled using fiber elements and foundations with rotational and 
translational springs. The contact element developed by Muthukumar and DesRoches [15] is used to model the 
pounding between the decks. The passive response of the abutment backwall is simulated using the hyperbolic 
soil model proposed by Shamsabadi and Yan [16]. Trilinear springs stemming from the recommendations of 
Mangalathu et al. [13] are used to model the piles. The typical configuration of the selected box-girder bridge 
and associated numerical model of various bridge components are shown in Fig. 1. 

4.1 Uncertainty in bridge parameters 
Mangalathu et al. [13] have identified the likely ranges in the modeling parameters and is used in the current 
study. The sources of uncertainty evaluated in this study can generally be classified as ground motion, gross 
geometry and modeling parameter uncertainty. The ground motions developed by Baker et al. [17] are used to 
assess the uncertainty in ground motions.  It consists of 120 ground motions associated with moderate-to-strong 
earthquakes at small distances and 40 ground motions with strong velocity pulses characteristics of sites 
experiencing near-fault directivity effects. The spectral acceleration at 1.0 sec (Sa-1.0s) is considered as the IM in 
the current study. The geometric configuration can differ from bridge to bridge and the span length, deck width, 
column height and abutment wall height is considered as the uncertain geometric parameters. There are a large 
number of analytical modeling parameters which are potentially variable and are given in Table 1. The abutment 
soil backfill (ST), girder type (GT) and earthquake direction (ED) follows the Bernoulli distribution. For 
convenience, ST = e (where e is the Euler’s number) if the backfill is sand. Otherwise, ST = e2 (ln(e) = 1 and 
ln(e2) = 2). In similar fashion, Bernoulli variables are assigned to GT (e for reinforced and e2 for pre stressed) 
and ED (e for fault normal component applied to global X axis and e2 otherwise). 

Having identified the uncertain parameters for the regional risk assessment, statistically significant yet 
nominally identical 3-D bridge models are generated by sampling across the range of parameters using Latin 
Hypercube Sampling. One hundred and sixty analytical bridge models are generated consistent with the number 
of ground motions and are paired randomly. Non-linear time history analysis (NLTHA) is carried out on each 
bridge model and the peak component responses are noted to determine the relationship between the peak 
demands and the input parameters. 

4.2 Engineering demand parameters and associated limit states 

Five engineering demand parameters such as column curvature ductility (µφ), deck displacement (δd), abutment 
displacement in active (δa), passive (δp) and transverse direction (δp) are considered in the current study and the 
associated limit states are shown in Table 2. The capacity models are described by a two-parameter lognormal 
distribution with median, Sc and dispersion, βc (βc is assigned as 0.35 in a subjective manner due to lack of 
sufficient information and adopted as same across the components and the respective damage states). 
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Table 1 – Uncertainty (modeling) parameters and their probability distribution [13] 

Parameter 
Probability distribution 

Type
§ 

Parameters† 
α β1 

Material properties    
   Concrete compressive strength, fc (ksi) N 3.90 0.48 
   Rebar yield strength, fy (ksi) LN 4.21 0.08 
Superstructure    
   Span length, L (ft) LN 4.61 0.27 
   Deck width Dw (ft)  
   Girder type, GT (Reinforced vs. Prestressed) 

LN 
B 

3.45 
– 

0.20 
– 

Interior bent (single-column)    
   Column clear height, Hc (mm)  LN 10.33 0.13 
   Column longitudinal reinforcement ratio, ρc U 0.01 0.04 
   Column diameter D (60 vs 72) B – – 
   Translational stiffness of a pile group, Kft (×103 kip/in.) N 1.70 0.80 
   Rotational stiffness of a pile group, Kfr (×107 kip-in./rad) N 4.10 1.20 
Exterior bent (diaphragm abutment on piles)    
   Abutment height, Ha (ft) LN 2.35 0.15 
   Backfill type, ST (sand vs. clay) B – – 
   Pile stiffness, kp (kip/ft) LN 1.79 0.35 
Other parameters    
   Mass factor, mf U 1.1 1.4 
   Damping, ξ N 0.045 0.01 
   Earthquake direction (fault normal FN vs. parallel FP), ED B – – 
§ N = normal, LN = lognormal, U = uniform, and B = Bernoulli distribution. 
 †α and β1 represent parameters of the respective distribution. These denote mean and standard 
deviation for a normal distribution, lower and upper bound in the case of uniform distribution and mean 
and standard deviation of the associated normal distribution in the case of a lognormal distribution 

 

Table 2 – Limit state models for EDPs of bridge components [18] 

Component 
LS1  

(slight) 
LS2  

(moderate) 
LS3  

(extensive) 
LS4  

(complete) 
SC βC SC βC SC βC SC βC 

Colum curvature ductility, μφ 0.8 0.35 0.9 0.35 1.0 0.35 1.2 0.35 
Deck displacement, δd (in.) 4.0 0.35 12.0 0.35 – – – – 
Abutment 
displaceme
nt (in.) 

Passive action, δp 3.0 0.35 10.0 0.35 – – – – 
Active action, δa 1.5 0.35 4.0 0.35 – – – – 
Tangential action, δt 1.0 0.35 4.0 0.35 – – – – 

 
 
 
 
 
 
 
 

6 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

 

4.3 Identification of significant predictor variable 
The predictor variables that have a significant effect on the seismic demand and the fragility curves are identified 
through the above mentioned approach (section 3). The advantage of the proposed approach is that it helps to 
identify the significant variables during the generation of fragility curves, i.e, only one iteration is needed for the 
generation of the fragility curves and the identification of the significant predictor variables. The proposed 
approach also helps to identify the significant parameters depending upon the limit state under consideration. It 
is seen from Table 3 that out of the seventeen input parameters with uncertainty, the parameters which has a 
significant effect on the system or component fragilities are ground motion intensity measure (IM), span length 
(L), soil type (ST), girder type (GT), column diameter (D), reinforcement ratio (ρc), pile stiffness (kp), mass 
factor (mf) and foundation translation stiffness (Kft). IM, and L seem to have a significant effect on all the EDPs 
in all the considered limit states. Column vulnerability is significantly affected by the parameters D, ST, ρc and 
fc. It is also noted that the seismic demand and the seismic fragilities are less affected by the ED, fy, Ha, Dw, Hc 
and ξ. 

Table 3 – Significant parameters for demand models 

EDPs 
Significant input parameters 

Slight Moderate Extensive Collapse 
μϕ IM, ST, L, D,  ρc, 

fc 
IM, ST, L, D,  ρc, 

fc 
IM, ST, L, D,  ρc, fc IM, ST, L, D,  ρc, 

fc 
δd IM, ST, L, kp, Kft IM, ST, GT, L, kp, 

Kft, mf 
– – 

δp IM, ST, L, GT IM, ST, L, GT – – 
δa IM,, L, kp, Kft IM,, L – – 
δt IM,, L, kp IM,,ST, L, kp, Kft – – 

 

4.4. Multi-dimensional fragility curves  
The multi-dimensional fragility curves for various components are generated through the approach outlined in 
section 3 (steps 1 - 5) based on the survive-failure vector using the identified significant parameters. The multi-
dimensional system fragility is derived based on a series system assumption (step 6, section 3). The one-
dimensional fragility curves (connection IM and probability of damage exceeding a specified limit state) can be 
generated through the integration of multi-dimensional fragility through the domain of uncertain input 
parameters (Eq. (5)). The integrated fragility curves can be used for the regional risk assessment of bridge 
inventory. Fig. 2 shows the comparison of the system fragility curves considering all the uncertain input 
parameters and the significant input parameters. It is seen that the fragility curves generated by considering only 
the significant parameters are fairly in good agreement with the fragility curves generated by considering all the 
uncertain input parameters. 
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Fig. 2 – Comparison of system fragility curves for various damage states 

 

5. Conclusions   
The current study suggests an approach to identify the uncertain input parameters which have a significant 
influence on the seismic demand as well as the fragility curves. Such an approach helps to gain insight in 
quantifying whether the uncertain parameter variations should be treated explicitly or to be neglected.  The 
proposed approach identifies the significant parameters during the generation of the fragility curves. The 
approach also helps to identify the significant parameters depending upon the limit state under consideration. 

The proposed approach is demonstrated in this paper through the case study of a two span box girder 
bridge with diaphragm abutments. Three dimensional finite element models are developed in OpenSees platform 
accounting for the material, geometric and modeling parameter uncertainties, and are paired randomly with the 
ground motions. Non-linear time history analysis is carried out for each model and the peak responses are noted. 
The significant input parameters are identified through Lasso regression in the generation of multi-dimensional 
fragility curves. The parameters which have a significant effect on the system or component fragilities are 
ground motion intensity measure, span length, soil type, girder type, column diameter, reinforcement ratio, pile 
stiffness, mass factor and foundation translation stiffness. Ground motion direction, steel yield strength, height 
of column, deck width, abutment height, and damping ratio have less influence on the seismic demand and the 
fragilities. The seismic demands, as well as the fragilities, were found to be particularly sensitive to the 
uncertainty in the geometric parameters. Although shown here with a specific bridge, the proposed approach is 
relevant and applicable to other structural systems 
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