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Abstract

Pulse-like ground motions are a special class of ground motions that are particularly challenging to characterize for
earthquake hazard assessment. These motions are characterized by a “pulse” in the velocity time history of the motion,
and they are typically very intense and have been observed to cause severe damage to structures in past earthquakes. So
it is particularly important to characterize these ground motions. Previous studies show that the severe response of
structure is not entirely accounted for by measuring the intensity of the ground motion using spectral acceleration of the
elastic first-mode period of a structure (Sa(T;)). This paper will use several alternative intensity measures to
characterize the effect of pulse-like ground motions in vulnerability assessment. The ability of these intensity measures

to characterize pulse-like ground motions will be evaluated.

Pulse-like ground motions and ordinary ground motions are selected as input to carry out incremental dynamic
analysis. Structural response and vulnerability are estimated by using Sa(T);) as the intensity measure. The impact of
pulse period on structural response is studied through residual analysis. By comparing the difference between the
structural response and vulnerability curves using pulse-like ground motions and ordinary ground motions as the input,
the impact of velocity pulse on vulnerability is investigated and the shortcoming of using Sa(T;) to characterize
pulse-like ground motion is analyzed. Then, vector-valued ground motion intensity measures(Sa(T;)&Rr 12,
Sa(T)&Rpgv s.) and inelastic displacement spectra(Sdi(T,)) are used to characterize the damage potential of pulse-like
ground motions, the efficiency and sufficiency of these intensity measures are evaluated. The study shows that: the
damage potential of near fault ground motions with velocity pulse is closely related to the pulse period of strong motion
as well as first mode period of vibration and nonlinear features of the structure. The above factors should be taken into
account when choosing a reasonable ground motion parameter to characterize the damage potential of pulse-like ground
motions. Vulnerability curves based on Sa(T;) show obvious differences between using near fault ground motions and
ordinary ground motions, as well as pulse-like ground motions with different pulse periods as the input. When using
vector-valued intensity measures such as Sa(T|)&Rr; 12, Sa(T|)&Rpgyv s, and inelastic displacement spectra, the results
of vulnerability analysis are roughly the same. These ground motion intensity measures are more efficient and sufficient

to characterize the damage potential of near fault ground motions with velocity pulse.
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1. Introduction

The serious damage of engineering structures in the near fault zone of 1994 Northridge earthquake,
1995 Kobe earthquake and 1999 Chi-Chi earthquake has aroused strong concern of scientists and engineers
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in earthquake engineering. Strong ground motion data and earthquake damage experience shows that near
fault pulse-like ground motion is one of the main reasons causing the failure of engineering structures [1-5].
These motions, which are characterized by a pulse in the velocity time history, are a special class of ground
motions that are particularly challenging to characterize for seismic vulnerability assessment.

It is important to understand the effects of near fault pulse-like ground motions on structures, because
they have been observed with great damage potential. These ground motions usually have larger PGV values
and have on average larger elastic spectral acceleration values at moderate to long periods than ordinary
ground motions[6]. Additionally, the great damage potential of these motions to nonlinear
multi-degree-of-freedom structures can’t be entirely accounted for by using spectral acceleration of the
elastic first-mode period of a structure, Sa(T1) as the intensity measure of the ground motion[7,8].Several
alternative intensity measures that are better able to characterize the effect of pulse-like ground motions were
sued in this paper for response prediction and vulnerability assessment.

2. Structure model and ground motions

A regular eleven-story RC frame structure designed according to the Chinese Seismic Design Code
(GB50011-2001) was used for the case study. Geometrical characteristics of the structure are shown in
Fig.1. Section dimensions of structural members and materials are list in Table 1. A modified version of the
DRAIN-2DX [9] program was used to establish the finite element model and perform the nonlinear
dynamic response history analysis. The structural components were modeled by -elastic-plastic
beam-column element. A 2% strain-hardening ratio was considered to model the cyclic behavior of the
structural components. P-A effect was considered by adding a geometric stiffness matrix to the stiffness
matrix of each element. Different yield surfaces were specified to beam members and column members to
distinguish the different mechanic behaviors. The fundamental period of vibration of the structure is 1.6s.

A set of 70 near-fault pulse-like ground motions collected by Tothong and Cornell [10] was utilized in
this study. This set is an aggregation of records identified in three previous papers [11-13]. All ground
motions were recorded on firm soil or rock sites and at least one of the referenced authors has identified a
pulse in the velocity time history. The processed ground motions came from the Next Generation
Attenuation project database, and were oriented in the fault-normal direction. A set of 70 ‘ordinary’ ground
motions with no velocity pulses was also used for comparison with the pulse-like record set.
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Fig.1 - The 11-story case-study RC frame
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Table 1 - Section dimension and material of beams and columns

Center

Srory Side column Beam
column Concrete  Steel bar
number (mm>xmm) (mm>xmm)
(mmXmm)
1-6 600 X 600 650700 300X 700 C30 HRB335
7-11 550 X550 600 X 650 300X 700 C30 HRB335

3. Shortage of Sa(T1) to characterize pulse-like ground motions

IDA was performed subjecting to pulse-like ground motion as well as ordinary ground motion set. The
response parameter considered here is the maximum inter story drift ratio, denoted by ¢..., observed in
any story. Fig.2 shows the 16", 50" and 84" IDA curves based on Sa(T)) as the intensity measure. As seen in
the figure, in the sense of statistics, the structural response observed from pulse-like ground motions is larger
than that of ordinary ground motions for the same ground motion intensity level characterized by Sa(T)).
Fig.3 shows the vulnerability curves based on Sa(T;) as the intensity measure by using pulse-like and
ordinary ground motions as the input. As shown in the figure, pulse-like ground motions cause larger
exceeding probability of every limit state than ordinary ground motions. It follows that Sa(T;) does not

completely account for the larger structural responses observed from pulse-like ground motions.

An important property of pulse-like ground motions is the period of the velocity pulse, denoted by Tp,
following Alavi and Krawinkler [8], Tp is measured as the period associated with the maximum of the
velocity response spectrum. An important parameter of pulse-like ground motions that affects structural
response is the period of the velocity pulse with respect to the modal period of the structure, denoted by
Tp/T1[14-19]. Fig.4 and fig.5 respectively shows the 50th IDA curves and vulnerability curves based on
Sa(T1) as the intensity measure by using pulse-like ground motions of different Tp/T1 values as the input. As
shown in the figures, significant difference can be observed between median IDA curves and vulnerability
curves, which means that the effects of the period of the velocity pulse are not well predicted by traditional
intensity measure of ground motion intensity such as Sa(T1). If an improved intensity measure can better
distinguish between the pulse-like records with different Tp/T1 values, then the problems of Sa(T1) might be
addressed and IM-based structural vulnerability assessments would be feasible even when pulse-like ground
motions are considered.

===:84th IDA curve for ordinary records
= 50th IDA curve for ordinary records
------- 16th IDA curve for ordinary records
===84th IDA curve for pulse-like records|
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Fig.2 - IDA curves based on Sa(T;) by using pulse-like and ordinary ground motions as the input
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Fig.4 - Median IDA curves based on Sa(T)) by using pulse-like ground motions of different T,/T,
values as the input
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4. Alternative intensity measures for pulse-like ground motions

Several alternative intensity measures were considered to characterize the effect of pulse-like ground

motions in vulnerability assessment. The first one is a vector intensity measure based on spectra acceleration
values at two periods, denoted by Sa(T;)&Rr; 12, R o= Sa(T,) /Sa(T,), where T, is constrained to equal the
first-mode period of the structure and T, is chosen to capture important characteristics of the spectrum’s
shape, here T,=2T,. The second one is also a vector intensity measure based on spectra acceleration values
and peak ground velocity PGV, denoted by Sa(T;)& Rpgy.ss, Regv.sa=PGV/Sa(T;). The third one is inelastic
spectra displacement, denoted by Sdi(T;). Incremental dynamic analysis and vulnerability assessment were
performed by using these three alternative intensity measures. Fig.6 shows vulnerability curves based on
Sa(T;) and Ry 1, by using pulse-like ground motions of different T,/T, values as the input , where
Rr112=0.45 for example. Fig.7 shows vulnerability curves based on Sa(T;) and Rpgys, by using pulse-like
ground motions of different T,/T; values as the input , where Rpgvs, =0.2 for example. Fig.8 shows
vulnerability curves based on Sdi(T,) by using pulse-like ground motions of different T,/T, values as the
input. As shown in these figures, the differences between vulnerability curves by using pulse-like ground
motions of different T,/T, values as the input are significantly decreased, comparing with intensity measure
Sa(T;). These ground motion intensity measures are more effective to characterize the damage potential of
near fault ground motions with velocity pulse.
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5. Conclusions

Near-fault pulse-like ground motions are of particular concern to engineers because of their potential to
cause large structural response. But, their effects are not well characterized by traditional ground motion
intensity measure such as elastic spectral acceleration Sa(T;). Several alternative intensity measures has been
considered to characterize the effect of pulse-like ground motions. The results show that IDA curves and
vulnerability curves based on Sa(T;) show obvious differences between using near fault ground motions and
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ordinary ground motions, as well as pulse-like ground motions with different pulse periods as the input.
When using vector-valued intensity measures such as Sa(T;)&Rri1; and Sa(T;)&Rpgvs., and inelastic
displacement spectra Sq(T;), the results of vulnerability analysis are roughly the same. These alternative
ground motion intensity measures are more effective to characterize the effects of near-fault pulse-like
ground motions. These suggest that when using the alternative ground motion intensity measures, it is less
important to carefully identify representative pulse-like records as, and it is less important that the ground
motions used in dynamic analysis be exactly representative of some expected earthquake event.
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