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Abstract 
It has been observed in the past that, reinforced concrete (RC) bridge columns are, very often, subjected to torsional 
moment in addition to flexure and shear during seismic vibration. However, the torsional moment is generally ignored in 
typical design practices. Previous studies have shown that, ignoring torsional moment may lead to brittle shear failure of the 
columns triggering collapse of the entire or part of the bridge structure. Therefore, rational models need to be developed to 
consider the effect of torsion in the design of RC bridge columns. Performance based seismic design is an emerging design 
concept which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and sustainable 
design under earthquake loading. However, very few investigations in the past focused on the development of analytical 
model to accurately predict the response of RC members under cyclic torsion. Though quite a good number of models are 
available for prediction of shear and flexural hysteresis, they are not readily applicable for torsion owing to significant 
pinching and stiffness degradation associated with torsional loading. Hysteresis models taking into account pinching and 
stiffness degradation effect under cyclic torsional loading are scarce. The present study aims at filling this knowledge gap 
by proposing an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular 
columns under torsion. The proposed empirical model is validated through experimental data of two circular columns tested 
under pure torsion. Close correlation is observed between the predicted and measured torque-twist curves.  
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1. Introduction 

Reinforced concrete bridge columns are subjected to torsional loading under various conditions [1]. Torsion in 
columns can be induced by skewed or horizontally curved bridges, bridges with unequal spans or column 
heights, and bridges with outrigger bents. Torsional moment needs special attention in design as it may 
otherwise trigger brittle shear dominated failure of members. Collapse of many important bridges around the 
world caused by recent earthquakes has put forth the necessity to assess the seismic vulnerability of the existing 
bridge columns under torsion. Seismic analysis of reinforced concrete (RC) structures requires hysteresis models 
that can accurately predict strength, stiffness, and ductility characteristics of the members under cyclic loading. 
Bridge columns should be properly designed to adequately dissipate seismic energy through inelastic 
deformation under vibrations during earthquakes [2-3]. The level of accuracy of seismic design depends on the 
accuracy of the hysteresis model. Owing to all these reasons, it is of utmost importance to have a proper 
hysteresis model which can accurately predict the cyclic flexural behavior of RC members considering strength 
and stiffness degradation along with the pinching effects.  

Polygonal hysteresis models are a well-established modeling approach, where the response of a member to 
cyclic loading is governed by a set of control points and paths defined by piecewise linear or nonlinear functions. 
One of the best known polygonal hysteresis models available in literature is Clough and Johnston (1966) [4] 
model, which is characterized by a bilinear primary curve. It considers strain hardening in post yielding regime 
and takes into account stiffness degradation under load reversals. Takeda model [5] represents a tri-linear 
primary curve marked by a stiffness change at cracking point. It is governed by some loading – unloading rules 
formulated based on experimental observations. In the pivot hysteresis model developed by Dowell et al. (1998) 
[6], the envelope curve under monotonic loading has four branches characterized by elastic stiffness, strain 
hardening, strength degradation and linearly decreasing residual strength. The loading and unloading are 
governed by two pivot points which determine the level of softening with increasing displacement and the 
degree of pinching on load reversal. Other notable works on PHM include Fukada (1969) [7], Aoyama (1971) 
[8], Atalay and Penzien (1975) [9], Nakata et al. (1978) [10], and Mansur and Hsu (2005) [11]. However, all 
these models were developed for shear and flexure and are incapable of predicting the behavior under torsion 
[12] owing to high degree of pinching and degradation involved in torsional loading. Very few researchers have, 
indeed, focused on the analytical modeling of the hysteresis behavior exhibited by RC members under cyclic 
torsion. Tirasit and Kawashima (2007) [13] and Wang et al. (2014) [12] have recently proposed some PHMs for 
RC columns under torsional loading. In both of the studies, a semi-empirical primary curve was used, where the 
yield torsional moment was estimated using space truss analogy [14, 15] and post-yield behavior was obtained 
from empirical relations derived on the basis of experimental observations. In this study, an entirely mechanics 
based primary curve is proposed using SMMT (softened membrane model for torsion) [16] which is more 
reliable than the empirical equations based approach. Moreover, the previous studies did not consider any slope 
change in the primary curve at the cracking point, in contrast to the actual behavior observed during 
experiments. The present study tends to eliminate this discrepancy by introducing a slope change at the cracking 
point. Loading - unloading rules are proposed based on statistical analysis of experimental data which are at 
variance with the previous models. An additional control point has been introduced in the unloading branch to 
better predict the actual behavior. It was observed that the proposed model closely predicts the measured load – 
displacement behavior.  

2. Experimental Program 
The specimens used for formulation and validation of the proposed model were tested at University of Missouri 
[17] under pure cyclic torsion. The geometric configuration and reinforcement content of the specimens are 
summarized in Table 1. The cross sectional details are shown in Fig. 1. Cyclic torsional loading was generated 
by controlling two horizontal servo-controlled hydraulic actuators.  The axial compressive load was applied by a 
hydraulic jack on top of the load stubs as shown in Fig. 2.  
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Table 1 - Specimen Details 

Specimen Id/ Parameters H/D(3)-T/M((∞)-1.32% H/D(6)-T/M(∞)-0.73% 
Section Shape Circular Circular 

Diameter/Width (mm) 610 610 
Clear Cover (mm) 25 25 

Total Column Height (m) 2.74 4.55 
Effective Column Height 

(m) 1.83 3.65 

Cylinder Strength of 
Concrete (MPa) 27.97 37.90 

Longitudinal Steel 
Yield Strength (MPa) 462 462 

Transverse Steel 
Yield Strength (MPa) 457 457 

Transverse Steel Ratio 
(percentage) 1.32 0.73 

Longitudinal Steel Ratio 
(percentage) 2.1 2.1 

Axial Force (kN) 600.51 600.51 
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Fig. 1 - Specimen Cross Section [17] Fig. 2 - Test Set-up [17] 

 

3. Hysteresis Model Description  
Any PHM is governed by primary (backbone) curve (Fig. 3 and 4) and loading/unloading rules (Fig. 5). A 
number of control points (Figs. 5(b) and 5(d)) are fixed which regulate the hysteresis loops. Paths joining 
successive control points are called branches ((Figs. 5(a) and 5(c))). Transition from one control point to another 
is governed by a set of rules which are determined empirically from experimental data (Figs. 6-12). The details 
of the model are described below. 
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(a) H/D(6)-T/M(∞)-0.73% (b) H/D(3)-T/M(∞)-1.32% 

Fig. 3 - Primary Curve under Torsion [18] 

 

 

Fig. 4 - Idealized Primary Curve 
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(a) Definition of parameters ( ymc θθθ ~~~
<< ) (b) Hysteresis paths ( ymc θθθ ~~~

<< ) 

  

(c) Definition of parameters ( ym θθ ~~
> ) (d) Hysteresis paths ( ym θθ ~~

> ) 

Fig. 5 Characteristics of hysteresis loops 

 

3.1. Primary Curve 
Primary curve is the envelope of the cyclic torque– twist behavior. It is assumed to be identical to the behavior 
under monotonic loading. In previous studies [12, 13], the primary curve was estimated using a semi-empirical 
model, where the yield torsional moment was calculated using space truss analogy. However, in the present 
study, a more rational analytical model, known as SMMT (Softened Membrane Model for Torsion), was used to 
obtain the backbone curve. The details of SMMT are nicely explained in Ganganagoudar et al. 2016 [18]. The 
authors used the same specimens as used in this study to show that SMMT can accurately predict backbone 
curve under cyclic torsion. Therefore, the backbone curves (Fig. 3) are directly adopted from the aforementioned 
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study without any alteration. A change in slope in primary curve at the cracking point has been introduced in this 
model which was ignored by the previous researchers [12, 13]. The primary curve obtained from SMMT is 
idealized as piecewise linear functions representing elastic stiffness, strain hardening, yield plateau, and strength 
deterioration as shown in Fig. 4. 

 

3.2. Unloading Rules 

1. The unloading path follows the initial stiffness of the primary curve (path 01→ , 05→ ) if torsion at the 
beginning of the unloading is less than the cracking torsion ( cm TT ~~ ≤ ), and cT~  has not been previously 
exceeded in either direction.  

2. After cracking, the unloading path becomes a function of internal variables such as displacement 
(rotational) ductility ( cm θθ ~~

 for ymc θθθ ~~~
<< , ym θθ ~~

 for ym θθ ~~
> ) and current deformation level. From 

a given unloading point on the primary curve ( mm T~,~θ ), the hysteresis path is directed towards ( 11
~,~

urur Tθ ) 
(path 32 → , 76 → , 1211→ , 1615→ , ba → , gf → , nm → , ut → ) which is estimated using 
the expressions shown in Eq. 1 (Figs. 6 and 7).  

( ) 0498.1~~0028.0~~
1 +−= cmmur θθθθ  for ymc θθθ ~~~

<<  (1a) 

( ) 0047.1~~0004.0 +−= ym θθ  for ym θθ ~~
>  (1b) 

( ) 8527.0~~0009.0~~
1 +−= cmmur TT θθ  for ymc θθθ ~~~

<<  (1c) 

( ) 8623.0~~0006.0 +−= ym θθ  for ym θθ ~~
>  (1d) 

3. In case of unloading beyond the yield point ( ym θθ ~~
> ), from ( 11

~,~
urur Tθ ), the unloading path leads to 

( 22
~,~

urur Tθ ) (path cb → , hg → , on → , vu → ), which is given by Eq. 2 (Fig. 8). 

( ) 7101.0~~0363.0~~
2 += cmmur θθθθ  (2a) 

( ) 3243.0~~0126.0~~
2 +−= cmmur TT θθ  (2b) 

4. Next, the hysteresis loop proceeds straight towards ( 0,~
suθ ) on the zero load axis (path 43 → , 87 → , 

1312 → , 1716 → , dc → , ih → , po → , wv → ). The reloading point ( 0,~
suθ ) can be calculated as 

shown in Eq. 3 (Fig. 9). 

( ) 2358.0~~0015.0~~
+−= cmmsu θθθθ  for ymc θθθ ~~~

<<  (3a) 

( ) 0848.0~~1012.0 += ym θθ  for ym θθ ~~
>  (3b) 
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(a) ymc θθθ ~~~
<<  (b) ym θθ ~~

>  

Fig. 6 - Dependence of mur θθ ~~
1  on ductility ratio 

 

  

(a) ymc θθθ ~~~
<<  (b) ym θθ ~~

>  

Fig. 7 - Dependence of mur TT ~~
1  on ductility ratio 

 

 

 

  

Fig. 8 - Dependence of mur θθ ~~
2  and mur TT ~~

2  on ym θθ ~~
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(a) ymc θθθ ~~~
<<  (b) ym θθ ~~

>  

Fig. 9 - Dependence of msu θθ ~~
 on ductility ratio 

 

 

3.3. Loading/reloading Rules 

1. Initial loading and reloading follow the primary curve (path 01→ , 05→ ) until the load is reversed at a 
level higher than the cracking load.  

2. After cracking, the first loading in the opposite direction is directed towards the cracking load in the 
opposite direction (path 54 → ).  

3. When cracking load on both directions has been reached, the reloading path, till yielding, follows a 
straight line (path 98 → , 1413→ ) having a slope given by Eq. 4 (Fig. 10). 

( ) 786.0

11
~~7513.0~~ −

= cmTTr kk θθ  (4) 

4. After yielding, reloading path up to crθ~  ( ji → , qp → ) follows a straight line passing through ( pm T~,~θ ), 
which is estimated using Eq. 5 (Fig. 11). 

)0037.00782.0()~~)(0766.00067.0(~~
+++−= nn ymmcr θθθθ  (5a) 

1)~~)(9425.00783.0(~~ )3943.11155.0( ≤+−= −n
ymmp nTT θθ  (5b) 

where, n  is counter indicating number of cycles repeated at unloading point mθ
~

. n  is assigned a value of 

1 when first unloading takes place at a given deformation level ( mθ
~

) and incremented every time load is 

reversed from any deformation level falling within the range of mθ
~)05.01( ± . n  is computed separately 

for each direction of loading. 

5. After ( crcr T~,~θ ), the loading path heads towards ( mm T~,~ ′θ ) (path kj → , rq → ). Calculation of mT~′  is 
governed by Eq. 6 (Fig. 12). 

)9842.00177.0()~~(05557.0~~ ++−=′ nTT ymmm θθ  (6) 
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6. Beyond the intersection of reloading branch with primary curve, the loading path follow the primary curve 
(path ml → , ts → ). 

 
Fig. 10 - Dependence of 11

~~
TTr kk  on cm θθ ~~

 

 

  

Fig. 11 - Dependence of mcr θθ ~~
 and mp TT ~~

 on ym θθ ~~
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Fig. 12 - Dependence of mm TT ~~′  on ym θθ ~~  

4. Results and Discussion 
4.1. Predictions of Torque-Twist Behavior 
The torque-twist behavior predicted by the analytical model are presented and compared with experimental data 
in Fig. 13. It is observed that, the model predicted the experimental response of the columns reasonably well. It 
can also be seen from the graphs that the model was able to capture complex phenomena like strength and 
stiffness degradation along with pinching with appreciable accuracy.  

  
(a) H/D(6)-T/M(∞)-0.73% (b) H/D(3)-T/M(∞)-1.32% 

Fig. 13 Prediction of Torsional Hysteresis 
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5. Conclusions 
An improved PHM is proposed in this study for reinforced concrete circular columns subjected to torsion. 
Unloading and reloading rules are derived based on experimental observations. Primary curve is proposed to be 
estimated from SMMT. A slope change has been suggested at the cracking point unlike in the previous models. 
An additional point is also introduced in the unloading branch for more accurate prediction of the hysteresis 
loops. The analytical torque – twist behavior showed close correlation with experimental data. The proposed 
model can be extended in future to predict the hysteretic response of bridge columns under combined loading 
including torsion. Future studies could also focus on computer implementation of this hysteresis model to realize 
its utility fully on seismic analysis of bridge systems under torsional loading. 
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