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Abstract 

Base isolation systems generally perform well under design-level ground motions to reduce both interstory drift and 

acceleration demands. During a larger than anticipated earthquake, however, large displacements in the base level may 

cause pounding between the structure and perimeter moat wall, which can lead to very high acceleration in the 

superstructure. A phased passive control system, or ‘gap damper’, was conceived to control base isolator displacement 

during extreme events while having no effect on the isolation system performance for earthquakes up to and including the 

design level. Providing passive supplemental energy dissipation at a specified gap greater than the design displacement 

allows the base isolation system to act traditionally in design level events while activating the secondary system in extreme 

events. Use of this gap damper device eliminates undesirable effects associated with large amounts of supplemental 

damping at lower intensity motions. 

This paper presents the experimental validation of a prototype gap damper developed for practical implementation in a 

seismically-isolated building. The gap damper device uses four viscous dampers, two in each direction oriented around and 

attached to a contact surface at one end and a fixed point at the other end. An isolation nub extends down from the base of 

the building to sit inside the contact surface. An initial gap is provided between the isolation nub outer surface and the inner 

contact surface. When subjected to earthquake loading, the isolation nub moves within the contact surface and the dampers 

are not activated until the displacement amplitude exceeds the system initial gap. When the gap is closed, the dampers are 

activated and impact forces transferred from the isolation nub to the contact system are absorbed.  

Shake table testing was performed at the University of Nevada, Reno to simulate the gap damper system functioning within 

a base isolated building during large motions. Two test configurations consisting of a base isolated building without and 

with a gap damper system were tested. To the extent possible, the same trials were carried out in both configurations to 

quantify the influence of the gap damper on isolator displacements and superstructure accelerations compared to the isolated 

building without a gap damper. The gap damper is found to be more effective in limiting isolator displacements during 

pulse-type motions compared to long duration cyclic motions, and in predominantly unidirectional motions compared to 

motions with a strong bidirectional component. In addition, several factors are identified that limited the effectiveness of the 

gap damper relative to predictions from numerical simulations, which are possible to overcome in the design process. 

Superstructure accelerations increased as a result of activation of the gap damper, but these high frequency acceleration 

spikes are not seen to be detrimental to the overall structural performance relative to a conventionally designed building 

without special seismic protection.  

 

Keywords: Seismic isolation; Phased System; Extreme event. 
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1. Introduction 

 Seismic isolation is recognized as one of the best ways to protect a building and its contents from a strong 

earthquake. The low horizontal stiffness of the isolation system lengthens the fundamental period of the 

structure, which substantially reduces base shear and resultant structural accelerations. The increased 

displacement demands are accommodated primarily at the isolation level. Typical seismic isolation devices 

incorporate energy dissipation mechanisms to limit displacements to an acceptable level, but the inherent 

damping may not be sufficient to control the displacement during extreme shaking such as a Maximum 

Considered Earthquake (MCE). Hall et al. [1] numerically simulated the response of an isolated structure 

subjected to beyond design level ground motions, which raised awareness for the possible consequences such as 

pounding of the structure against an outer moat wall. In recent years, the community has become increasingly 

concerned about the performance of seismically-isolated buildings during MCE level earthquakes and beyond. A 

number of numerical studies have been conducted to predict the response of isolated buildings when subjected to 

pounding [2-4], and/or predict the statistical likelihood of exceeding certain limit states, including collapse, 

under rare earthquakes [5-6]. Pounding mitigation measures such as using rubber bumpers as shock absorbers 

have also been explored [7]. These studies indicate a need to develop reliable methods to limit isolator 

displacement demands during extreme ground motions and prevent impact with the outer moat wall. 

 Various approaches for controlling isolator displacements have been investigated. The authors have 

proposed a passive approach to vary the isolation system damping with ground shaking intensity, based on 

earlier success with phased systems for different applications [8]. The concept is a phased passive system that 

triggers additional supplemental damping when a threshold displacement demand is reached. The proposed ‘gap 

damper’ provides phased behavior by combining a gap element with a hysteretic or viscous energy dissipation 

device. A physical gap damper device was designed, fabricated and tested to validate the effectiveness of gap 

damping to reduce isolator displacement demands. The concept adopted for the experimental program is shown 

in Figure 1. A single gap damper is composed of four energy dissipators – two in each direction – attached to a 

contact surface that rests on a low friction interface. A stiff member, or “isolation nub” extends down from the 

base of the building and rests within the contact surface, with a uniform gap on each side. When subjected to an 

earthquake, the bidirectional motion of the building above the isolation system is projected to the isolation nub. 

Closure of the gap between the isolation nub and contact surface will cause the contact surface to slide, 

activating the dampers, which will absorb the impact forces that are transferred from the isolation nub to the 

contact surface. Fig. 1 illustrates how multiple gap dampers, as needed, could be strategically located between 

isolation devices at the base of the building. Prior study on the feasibility and optimization of a gap damper has 

suggested that a gap damper system incorporating a viscous damping mechanism will be most effective in 

limiting the isolator displacement demands [9]. This study was the basis for the design of the gap damper in the 

experiment described herein. Results of initial component testing have been reported in [10]. 

 In this paper, the effectiveness of the gap damper system to reduce isolator displacement demands is 

evaluated based on a shake table test of a one quarter scale base-isolated 3-story steel frame building. The design 

of system components and the experimental setup is described. Key responses are compared and evaluated for 

system configurations with and without a gap damper (base isolated alone), and factors that influenced the 

effectiveness of the gap damper are identified and explained. Also, factors that limited the effectiveness of the 

gap damper during the experiments compared to theoretical expectations are discussed. The data described in 

this paper is archived and publicly available in the Network for Earthquake Engineering Simulation (NEES) 

Project Warehouse [11-12]. 

2. Experiment Design and Setup 

2.1 Overview 

 For the experiment, a multi-story base-isolated frame was designed to be shaken with and without a gap 

damper to directly assess the influence of the gap damper on the response. The isolated frame properties were 

specified for shaking on one of the University of Nevada, Reno (UNR) Earthquake Engineering Laboratory’s 

biaxial tables. Model to prototype scaling factors were length = 1:4, acceleration = 1:1, and time = 1:2. A one-
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bay by one-bay, 3-story steel frame was designed and fabricated. Four lead rubber bearings (LRBs) designed for 

a previous project [13] were reused to form the isolation system. The gap damper components were custom 

designed and fabricated for the experiment, including viscous dampers, the contact surface, the isolation nub, 

and connectors. The total supported structure weight assumed for design was 355.8 kN.  

 

DampersContact 

Surface

Isolation

Nub

 

Fig. 1  ̶  Design concept selected for the gap damper implementation, eccentrically oriented dampers attached to 

a sliding contact surface 

 The design procedure is summarized as follows. First, a target MCE spectrum with 1.0 s and short-

period spectral accelerations SM1 = 1.11·g and SMS = 2.2·g was scaled for the model domain. Characterized 

bearing properties and assumed specimen weight were used to identify an approximate displacement demand: 

DMCE = 107 mm. The viscous damper properties were selected based on an equivalent energy dissipation and 

optimization approach explained in [9]. The dual objectives were to reduce the isolator displacement by 20% 

from 1.375DMCE to 1.1 DMCE (to avoid moat wall collision) and to limit the floor acceleration to 3 times those 

observed in a design earthquake that does not engage the gap damper (displacement < 0.6DMCE). 

2.2 Isolation System and Gap Damper 

 A photo of one of the bearings used in gap damper system test is shown in Fig. 2(a). The bearing force-

displacement hysteresis loops from the previous test program were used to characterize the properties. A cycle 

with displacement amplitude of 152 mm – close to the target peak displacement demand for the experiment – 

was selected for characterization. The isolator properties were determined by fitting a bilinear loop to the 

recorded hysteresis loop such that the energy dissipated and peak-to-peak effective stiffness of the two loops 

were equal [Fig. 2(b)]. Table 1 summarizes the characterized bearing properties based on the test data, including 

the characteristic strength Qd, post-yield stiffness Kd, and initial stiffness Ki. In the fitting procedure, the relation 

Ki = 20Kd was assumed. Computed from the characterized bearing properties and the target spectrum, the 

effective period T and damping ratio ξ are also summarized in Table 1 for three intensities: design displacement, 

MCE displacement, and the over-moat target displacement for the base isolation configuration (1.375·DMCE). 

Stability analysis based on the overlapping area method [14] suggested that for the expected axial loads, the 

bearing displacement should be limited to 102 mm; however, recent studies on bearing stability [e.g., 15] 

suggest that the overlapping area method to estimate the critical load capacity of bearings is conservative. 

Therefore, a test plan was developed to cautiously ramp up to an isolator displacement demand of 147 mm. 

 A single prototype gap damper device was designed and used in both component and system tests [Fig. 3]. 

The gap damper was assembled from four viscous dampers, a contact surface, and an isolation nub. Each viscous 

damper was 870 mm in length with a 244.6 kN force capacity and +/-76 mm stroke capacity. The viscous 

dampers were designed using an equivalent energy dissipation approach and optimization procedure [9, 10]. The 

dampers with coefficients of 8.14 and 7.13 N·s/m were oriented in the East/West (x) direction and North/South 

(y) directions, respectively. The contact surface consisted of four HSS 152×152×13 mm members welded at the 

diagonals to form a square box. The dampers were attached to the contact surface at one end and a reaction 

support at the other end with pin and clevis connections. The contact surface slid freely on a low friction steel 
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base plate. The isolation nub was comprised of a 460 mm long 152×152×19 mm built-up box section that was 

reinforced using four stiffeners (16 mm thick plates). 
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Fig. 2  ̶  (a) Photo of lead-rubber bearing, and (b) bilinear loop fitted to the recorded bearing hysteresis loop for 

selected cycle 

 Table 1  ̶  Characterized Properties of Bearings Based on Recorded Hysteresis Loop 

Bearing Properties Value Effective Properties Design MCE Over-Moat 

Characteristic Strength (Qd)  8.63 kN Displacement D - mm  53  107  147       

Post-yield Stiffness (Kd) 178.6 kN/m  Period T - s 1.02 1.18 1.23 

Initial Stiffness (Ki) 357.2 kN/m Damping Ratio, ξ - % 29.6 19.9 15.6 

Yield Disp. (Dy) 2.5 mm     
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Fig. 3 ̶  Gap damper system configuration on shake table 

2.3 Steel Frame System and Mass 

 The 3-story steel frame designed and fabricated for the experiment had the following model dimensions: 

bay widths = 2.4 m in both directions, story height = 1.2 m, overall frame height = 3.6 m. Lateral resistance was 
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provided by concentric braces in the North-South direction and moment frames in the East-West direction (Fig. 

4). The majority of the specimen mass was provided by supplementary steel plates and lead baskets attached to 

the frame. Each lead basket was filled with solid lead weights topped with steel plates and constrained by 

horizontal anchors. The weights on the base, 2nd floor, 3rd floor, and roof were 88.6, 86.2, 87.1 and 77.6 kN, 

respectively, leading to a total specimen weight of 339.5 kN after the final design was finalized. 

 The design lateral loads were estimated based on numerical simulation of the simplified structural model 

with optimized damping coefficient. Using specified geometry and applicable load combinations of ASCE 7-10 

[16], the frame was analyzed and designed using SAP 2000.  Due to the uncertainty of the impact loading and to 

ensure safety during the test, all components were designed for a factor of safety of 3 against yielding 

(demand/capacity ratio ≤ 1/3). These design assumptions produced a test structure that was much stiffer and 

stronger than a building designed for code-compliance under comparable seismicity.  

2.4 Instrumentation 

 Instruments were installed to record the desired displacements, accelerations, and forces during the 

shaking experiments. Load cells installed beneath each bearing measured axial force, shear force in x and y, and 

moment about x and y directions. Four stringpots attached to the NW and SE bearings and anchored to reference 

frames on the table measured the bearing displacements in perpendicular directions. For the gap damper 

configuration, stringpots were attached to each damper in the axial direction to record the damper stroke, and in 

the orthogonal direction to record the damper transverse displacement. Unidirectional load cells positioned 

behind each damper recorded the damper axial force. Tri-directional accelerometers, glued to the bottom of the 

moment frame girders in the NE and SW corners of all floors, recorded the superstructure floor accelerations and 

the shake table acceleration (for reference). Accelerations on each floor were averaged over the two sensors and 

filtered using a Butterworth low pass filter with a 25 Hz cutoff frequency. Further details about the 

instrumentation and data processing are available in [17]. 

(a) (b)

 

Fig. 4 ̶ (a) Photo and (b) 3-dimensional rendering of steel frame specimen assembled on the shake table (lead 

weights in baskets not shown). 

2.5 Selection, Scaling and Sequencing of Input Motions 

 The test program included the following types of input accelerations: unidirectional sine waves and 

earthquake records. Two overarching principles governed the selection and scaling of motions, which were: 1) 

all motions – to the extent possible – were applied identically to both the base-isolated and gap damper 

configurations, and 2) motions were scaled to target the over-moat isolator displacement of 147 mm in the base-

isolated configuration, which was approached safely through a ramp-up sequence of increasing intensities. 
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 The sine wave (SINE) was defined as a harmonic acceleration signal with a 1 s period and amplitude of 

0.26 g in its largest of 10 cycles. Three earthquake record horizontal component pairs were selected for both 

unidirectional and bidirectional tests; for each pair the stronger component was applied during the unidirectional 

test (see Table 2). The motions recorded during 1989 Loma Prieta at Los Gatos Presentation Center (LGP), 1995 

Kobe at Takatori Station (TAK) and 2010 Chile at Concepcion Station (CONC) were selected for this 

experiment. For SINE and each earthquake record, Table 2 lists the scale factors (X, Y and XY-dir relative to the 

100% target) that were successfully applied identically to both base-isolated and gap damper configurations. The 

earthquake records were generally applied as a three-record sequence with comparable scale factors consistent 

with the ramp-up plan to reduce the overall test time. The latter two trials in each sequence thus started with a 

small residual displacement, while the contact surface was recentered after each individual trial or sequence. 

Further information about the test program including a complete test log is provided in [17]. 

Table 2  ̶  Trials (Motions and Intensities) Replicated in Base Isolated and Gap Damper Configurations 

X-dir % of Target Y-dir % of Target XY-dir % of Target 

SINE-X 30, 60, 80, 100 SINE-Y 60, 80, 100 - - 

LGP-X 40, 60, 70 LGP-Y 60 LGP-XY 40, 60, 80, 100 

TAK-X 40, 60, 80, 100 TAK-Y 60, 80 TAK-XY 40, 60, 80, 100 

CONC-X 40, 60, 80, 100 CONC-Y 60, 80 CONC-XY 33, 49, 66, 80, 100 

 

3. Gap Damper System Test Results 

3.1 Summary of Test Results 

 The effectiveness of the gap damper system is examined by comparing the bearing lateral displacements 

and base and roof level accelerations observed for the suite of motions applied to both base-isolated and gap 

damper system configurations. A displacement reduction factor (% Reduction) of the peak bearing displacement 

in the gap damper relative to the base isolation configuration was computed as follows: 

                    (1) 

where DBI and DGD are peak displacements observed in any isolator in the base-isolated and gap damper 

configurations, respectively. Fig. 5 presents the displacement reduction factor [Eq. (1)] as a function of intensity 

scaling factor for the different motions considered in the test program. The markers represent individual trials; an 

open marker indicates the gap damper was not activated. For x-direction trials [Fig. 5(a)], the displacement 

reduction factor generally (with the exception of CONC-X) increased with increasing intensity scaling factor, 

which means that the gap damper system was more effective at reducing the displacement for larger intensity 

motions. During the largest intensity x-direction SINE (100%), LGP (70%), and TAK motions (100%), 

displacement reductions of 9.2%, 15.2% and 13.9% were observed. The peak x-direction bearing displacements 

ranged from 127.5 mm to 148.6 mm. Displacement reduction factors at peak scaling intensities in the y-direction 

ranged from 4.4% to 10.5%. In both x and y-directions, the gap damper system was not effective in reducing the 

peak displacement for the CONC motion. For bidirectional trials [Fig. 5(c)], peak resultant displacements in the 

base isolation configuration at 100% intensity were near 142 mm for all motions. Reductions in displacement 

due to the gap damper were observed only for LGP (reduction factor of 10% at 100% scaling intensity); 

displacements increased in the gap damper configuration for both TAK and CONC motions. Generally, during 

bidirectional motions with strong displacement demands in both x and y-directions (e.g. TAK), the gap damper 

system was not as effective in reducing the displacement.  

 As illustrated here, the observed displacement reduction induced by the gap damper system was lower 

than the 20% targeted during design for all motions (e.g. 15% for LGP-X). Fig. 6 illustrates force vs 

displacement in the NE and SW bearings (compared for the two test configurations) as well as the East and West 
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dampers during the largest cycle of LGP-X 70%. The energy dissipation of each component over the selected 

cycle is also indicated. The reduction in isolator displacement [Fig. 6(a), 6(b)] is apparent in the bearing force-

displacement loops, but the effective yield force and size of the loop decreased at the smaller displacements, 

which means that less energy was dissipated by the isolator than theoretically accounted for during design. The 

damper force-displacement loops show the activation of the damper when the gap is closed, at about 64 mm in 

+x but 0 mm in –x due to the translation of the contact surface. The initial slope of the damper force-

displacement indicates a flexibility associated with damper activation, whereas a perfectly rigid gap element was 

numerically assumed. Finally, note that the viscous damper damping coefficients were lower than expected due 

to loss of the damper preload. These factors likely contributed to the shortfall in the observed relative to 

predicted displacement reduction. 
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Fig. 6 ̶ Largest cycle force vs displacement in (a) SE bearing, (b) NW bearing, (c) East damper, and (d) West 

damper during LGP-X 70% 

 

 An acceleration ratio (Ratio-AX), which represents the amplification of peak floor acceleration at a given 

location in the gap damper configuration relative to the base isolation configuration, was computed as  

         (2) 
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where AX-BI and AX-GD are x-direction floor accelerations in the base-isolated and gap damper configurations, 

respectively. (Accelerations observed in the y-direction were similar.) Base and roof acceleration ratios as a 

function of intensity scaling factor for the different motions in the test program are illustrated in Fig. 7. An  

acceleration ratio = 1.0 means the gap damper was not activated in the x-direction. Larger acceleration ratios 

were consistently observed at the base level compared to the roof level. Due to the local impact effect, the base 

acceleration ratio varied widely from 1 to 4.5, while the range of the roof acceleration ratio was limited to 1 to 

2.5. Acceleration ratios increased with increasing intensity scaling, more so for base acceleration than for roof 

acceleration. Acceleration ratios were similar for unidirectional motions [Fig. 7(a), 7(c)] and bidirectional 

motions [Fig. 7(b), 7(d)]. 1.18 g was the largest superstructure acceleration observed at the base level, which 

should not be of the intensity to cause structural or even much nonstructural damage. Fig. 7 also indicates the 

range of realized isolator displacement as a function of DMCE in the base-isolated configuration for each target 

scale factor. This shows that floor accelerations are amplified even for motions that would not have reached 

DMCE, which is a drawback to the gap damper system. 
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Fig. 7 ̶ X-direction acceleration ratio vs intensity scaling factor of: base level during (a) unidirectional (x-dir) and 

(b) bidirectional motions; and roof level during (c) unidirectional (x-dir) and (d) bidirectional motions. Labels 

indicate range of realized displacement in base-isolated configuration, as a fraction of DMCE. 

3.2 Cyclic Effects 

 The CONC motion was recorded during a long duration subduction earthquake that produced many cycles 

of strong shaking, distinguishing it from the near-fault TAK and LGP motions that were dominated by a single 

fling pulse. The cyclic response characteristics observed in the LGP and CONC motions are compared to 

provide further insight of the system dynamics. Fig. 8 illustrates the x-direction NW bearing displacement and 

velocity histories (derived by numerical differentiation of the damper stroke using a backward difference 

approximation) and the West damper displacement history during LGP-X 70% and CONC-X 100%.  

 During LGP-X 70%, the cycle producing the largest displacement demand [Fig. 8(a)] coincided with the 

first gap damper activation [Fig. 8(e)]. The gap damper was centered with a gap of 63.5 mm on all sides when 

activated in this cycle. The velocity upon damper activation was likely close to the bearing peak velocity of 

799.3 mm/s [Fig. 8(c)], and produced a large stroke of 59.6 mm across the damper [Fig. 8(e)]. In contrast, during 

CONC-X 100%, the gap damper system was activated several times [Fig. 8(f)] as the motion intensity built up to 

the peak isolator displacement [Fig. 8(b)]. During the first full cycle, the displacement demand was reduced in 

the presence of the gap damper. However, in the second cycle, the displacement amplitude continued to build up 

and no reduction in the bearing displacement was observed. Due to asymmetries in the damper stroke in the 

positive and negative direction [Fig. 8(f)], the displacement history of the NW bearing displacement shifted in 

the negative direction compared to that for base isolation alone, which may have contributed to a larger negative 
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displacement peak. In summary, the gap damper system was more effective in reducing displacements during 

motions with a single large cycle compared to motions that gradually build up to a peak intensity.   

3.3 Unidirectional versus Bidirectional Excitation 

 According to Fig. 5, the displacement reduction was highly variable and the gap damper system was 

generally less effective for bidirectional trials. Fig. 9 compares the NW bearing displacement traces 

(displacement in x-direction vs. displacement in y-direction) in the base-isolated and gap damper configurations 

during LGP-XY 100% and TAK-XY 100%. The gap damper reduced the displacement by 10% compared to 

isolation alone for LGP-XY 100% [Fig. 9(a)], but did not reduce displacement for Kobe-XY 100% [Fig. 9(b)]. 

LGP consisted of one strong and one weak component which led to a large bearing displacement demand in the 

x-direction [139 mm peak in the base-isolated configuration] compared to small y-direction displacement 

demands [45.7 mm peak]. Therefore, the bearing moved predominantly in the x-direction [Fig. 9(a)]. In contrast, 

both components of TAK were strong, which led to the bearing reaching its peak displacement along a diagonal 

[Fig. 9(b)]. Classifying the LGP motion as effectively unidirectional and the TAK motion as bidirectional, the 

evidence suggests that the gap damper system is considerably more effective for unidirectional motions. The 

isolation nub can move up to 89 mm in a 45° diagonal direction compared to 63.5 mm in a horizontal direction 

(an increase of 40%) before reaching the contact surface. Activating the gap damper at a larger displacement 

relative to the target limited the ability to reduce the isolator displacement. 

-150
-100

-50
0

50
100
150

(a)

D
is

p
. 

(m
m

) 148.8 126.2

-1000

-500

0

500

1000
(c)

V
el

. 
(m

m
/s

)

-772.7 -799.3

3 4 5 6 7 8
-150
-100

-50
0

50
100
150

(e)

Time (s)

D
is

p
. 

(m
m

)

62.5

(b) 127.4

-128.7

(d)
790.9 882.8

 

 
BI

GD

10 11 12 13 14 15

(f)

Time (s)

-62.5

40

-24.5
-41.2

45 53.3
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Fig. 9 ̶ NW bearing displacement trace in the base-isolated (BI) and gap damper (GD) configurations during: (a) 

LGP-XY 100% and (b) TAK-XY 100% trials 
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 The impact angle is also believed to reduce the effectiveness of the gap damper in bidirectional motions. 

Fig. 9(b) shows that during the strongly bidirectional TAK motion, the NW bearing, and by association the 

isolation nub, moved mainly in a circular or diagonal direction. At the instant the isolation nub first impacted the 

contact surface, the bearing was oriented at 42° with respect to the x-direction. On the cycle of the peak 

displacement, the nub impacted at 30° and slid along the contact surface rather than sustain hard impact. 

4. Factors that Limited the Experimental Gap Damper Effectiveness 

4.1 Bearing Instability 

 During some motions for the gap damper system test, unusual localized loss of strength in the bearing 

hysteresis loops was observed. This localized loss of strength imposed large horizontal displacement demand on 

the bearings. Fig. 10 presents select x-direction responses of the NW bearing during the cycle of the bearing 

peak displacement for the LGP-X 70% motion. In the NW bearing hysteresis loop [Fig. 10(a)], localized loading 

and unloading of the bearing was observed (area enclosed by green rectangle). A localized loss of strength was 

also observed in the bearing hysteresis loop at displacement ranging between 102 mm to 127 mm during the trial 

with gap damper system. The localized loss of strength is enclosed by a blue circle [Fig. 10(a)], and corresponds 

to the peak bearing displacement and shear force at 4.76 s [Fig. 10(b), 10(c)].  

 The bearing axial force history [Fig. 10(d)] provides insight as to why a localized loss of strength occurred 

in the NW bearing only during the trial with gap damper system. The NW bearing experienced a peak 

compressive force of 211.2 kN at 4.65 s during this trial [Fig. 10(d)], which corresponded to horizontal 

displacement of 102 mm at the start of the localized loss of strength. Therefore, the observed localized loss of 

strength was due to a bearing instability resulting from the combination of large compression force and lateral 

displacement demand that was unique to the gap damper configuration. Axial force variation in the bearings due 

to overturning was expected, but Fig. 10(d) shows additional localized axial force variation in the gap damper 

configuration. In particular, a large axial force spike (increasing axial force in the bearing) was timed with the 

damper activation at 4.65 s. Therefore, the impact force upon gap damper activation appears to induce additional 

overturning that is manifested as increasing axial force demand on the bearings. 
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Fig. 10 ̶ For peak bearing cycle: (a) bearing force vs. displacement, (b) displacement history, (c) shear force 

history and (d) axial force history for NorthWest bearing, during LGP-X 70% in x-direction 

 The localized loss of strength due to bearing instability affected the gap damper performance in two ways. 

First, the energy dissipation provided by the bearings was reduced since the enclosed area of the bearing shear 

force versus displacement loop decreased. Less energy dissipation leads to larger displacement demands on 

bearings. Also, once the instability limit was reached in a bearing, there was no instantaneous stiffness to resist 

the bearing movement. So, the bearing instability that leads to increasing bearing displacements can work 
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against the gap damper potential to reduce bearing displacement. This effect can be mitigated in real applications 

by designing the bearings to have sufficient reserve capacity to sustain the level of displacement associated with 

the gap damper activation. 

4.2 Bearing Degradation 

 To investigate the consistency of the bearing response over the test program, some trials without the gap 

damper system were repeated at the end of the test program. LGP-X 60% is presented here as a sample repetition 

trial. Fig. 11 presents and compares the SE and NW bearing shear force versus horizontal displacement history 

during LGP-X 60% and LGP-X 60% - Repeat trials. During the repetition, the peak displacement increased by 

3.3 mm (2.7%) in the SE bearing and 12.7 mm (10.7%) in the NW bearing [Fig. 11]. From the hysteresis loops, 

the energy dissipation provided by the bearings was reduced during the repetition compared to the same cycle in 

the original trial. The bearing hysteresis loops suggest that bearing strength and stiffness may have gradually 

decreased over the course of the experiments. These changes in bearing properties led to a longer effective 

period and smaller hysteresis loops (smaller damping ratio) for trials later in the test sequence, which included 

the gap damper trials. In general, the gap damper system performance will be affected by bearing degradation if 

the response during an excitation is sensitive to changes in stiffness and damping. 
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Fig. 11 ̶ Bearing peak cycle hysteresis loops: (a) SE and (b) NW subjected to LGP-X 60% and LGP-X 60% -

Repeat 

5. Conclusions 

 In this study, the effectiveness of the gap damper to reduce isolator displacement demands in extreme 

earthquakes was experimentally evaluated during shake table testing of a quarter scale base-isolated frame. 

Displacements were reduced by up to 15% relative to the configuration with base isolation. Superstructure floor 

accelerations increased by factors ranging from 2 to 4 due to damper activation, but were limited to a peak of 

about 1.18g over the whole test program. Several factors influenced the effectiveness of the gap damper.   

  The gap damper is more effective in reducing displacements during motions with a single large cycle 

compared to motions that build up to a peak intensity over several cycles.   

  The gap damper is significantly more effective for unidirectional motions, or motions with a strong 

unidirectional component, compared to strongly bidirectional motions, because the gap damper activates 

at a larger displacement when the base moves diagonally rather than along a single axis.  

  Bearing instability and degradation were found to limit the gap damper system performance observed in 

the experiment by decreasing the energy dissipated in the bearing hysteresis loops. These factors tended 

to increase bearing displacements and counteracted the gap damper potential for displacement reduction. 

 This was the first implementation of a phased damping concept as a backup system to control isolator 

displacements during very large intensity motions, which could mitigate concerns about the fate of isolated 

structures during beyond-MCE events. The following would be required before practical implementation of a 

gap damper is possible: 1) improvement on the physical design of the gap damper, and 2) reliable simulation of 
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the influence of gap damper activation on the structural acceleration, as compared to impact against a hard stop 

(moat wall). 
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