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Abstract 
Generalized pushover analysis procedure that was previously formulated on 2D planar frames is extended to 3D systems 
with torsional coupling in the presented study. The instantaneous force distribution acting on the system when the interstory 
drift at a story reaches its maximum value during seismic response is defined as the generalized force distribution. This 
force distribution is then expressed in terms of combinations of modal forces. Modal contributions to the generalized force 
vectors are calculated by a modal scaling rule which is based on the complete quadratic combination. Generalized forces are 
applied to the mass centers of each story incrementally for producing nonlinear static response. Maximum response 
quantities are then obtained when the individual frames attain their own target interstory drift values in each story. Finally, 
internal forces and deformations of the structural members are compiled through an envelope algorithm; registered as the 
inelastic seismic response of the asymmetric-plan structure.  

  The developed procedure is tested on a plan-asymmetric, torsionally coupled eight-story structure under a set of 
ground motion records which are employed without any modification. Performance of the procedure is assessed by 
comparing the results with those obtained from nonlinear time history analysis. Seismic response parameters such as 
interstory drifts and plastic rotations are presented for selected ground motions as well as mean results calculated for the 
ground motion set. The method is deemed successful in predicting the torsionally coupled inelastic response of 3D systems 
in terms of deformation and force demands. 

Keywords: multi-mode pushover; torsional coupling; generalized forces; target drift; asymmetric structures 

1. Introduction 
Predicting the inelastic dynamic response of torsionally coupled (unbalanced) systems under strong ground 
excitations is perhaps one of the most challenging problems of earthquake engineering. Previous research 
proposed approximate methods for analysis of asymmetric-plan structures [1-2] In a comprehensive report, 
Rutenberg [3] concluded that the studies conducted can only be considered as a beginning in understanding the 
behavior of these structures. Provided that appropriate loading patterns and eccentricities are selected, he 
suggested pushover analysis as a promising alternative to the linear equivalent lateral force procedure. 
Torsionally unbalanced and irregular concrete buildings have been the subject of a study conducted by 
Kosmopoulos and Fardis [4]. According to the provisions of Eurocode 8 [5], they have developed a 
computational procedure for the analysis, evaluation and retrofitting of torsionally coupled concrete buildings. 
They have verified their approach by comparing the estimated demands for floor displacements and estimated 
member damages to the results of pseudo dynamic tests. 

Pushover analysis was first applied to torsionally coupled structures by Kilar and Fajfar [6]. Later, a novel 
procedure where three-dimensional effects induced by higher modes and torsion were considered has been 
developed [7]. The implementation of multi-mode pushover analysis procedures to torsionally coupled systems 
is fairly recent and quite limited. Chopra and Goel [8] extended their multi-mode pushover analysis procedure 
MPA [9] to unsymmetrical plan buildings where the modal force vectors are composed of lateral forces and 
torques. After conducting modal pushover analyses with modal force vectors, seismic response of the 
unsymmetrical-plan structure is obtained by employing complete quadratic combination of the modal responses. 
Fajfar et al. [10] proposed a pushover procedure for asymmetric plan buildings which is based on the single 
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mode pushover analysis N2 [11]. More recently, Kreslin and Fajfar [12] combined their previous work on 
asymmetric buildings in both plan and elevation and extended the N2 method for these types of structures. They 
concluded that the proposed extended N2 method mostly yields conservative predictions of higher mode effects. 
Barros and Almeida [13] also suggested a new multi modal load pattern based on the relative modal participation 
of each mode and tested it on two story symmetrical and asymmetric structures.  

Upon inspecting the past studies on torsionally coupled buildings, it can be concluded that there is still 
much to be developed for the seismic response prediction of these types of structures. Nonlinear time history 
analysis is still considered as too demanding both in computational and post processing efforts especially for 
analysis of simpler structures; hence there is room for simpler but reliable inelastic analysis procedures. 

2. Generalized Force Vectors for Torsionally Coupled Systems 
Response parameters achieve their maximum values at different time instants during seismic response. When a 
specific response parameter reaches its maximum value at tmax, there is an effective force vector acting on the 
system at that instant. This effective force vector includes contributions from all modes; therefore, it is a 
generalized force vector [14]. Upon defining the generalized force vector corresponding to a response parameter 
at tmax and applying it to the structure in a single load step, the maximum value of this response parameter can be 
obtained by performing an equivalent static analysis in a linear elastic system. In nonlinear systems however, 
generalized force vector is applied in an incremental form until a specified target response demand is attained. 
Interstory drift is selected as the target response parameter in this study since it provides a good representation of 
seismic performance of the structure at any deformation and damage state. Roof displacement is “not” employed 
as the control parameter in the generalized pushover procedure developed below.  

Generalized force vectors are derived for linear elastic MDOF systems through the application of modal 
superposition principle. The maximum value of an arbitrary response parameter can be obtained at tmax while the 
system is subjected to an earthquake ground excitation üg(t). The force vector acting on the system at tmax is 
defined by the superposition of contributions from all modes:  

∑max n maxf t f t
n

=( ) ( )  (1) 

Effective force vector at the n’th mode is given in Eq. (2) at time tmax:  
Γ ( )n max nf t mn n max= φ A t( )  (2) 

Parameters in Eq. (2) are defined below.  

Γn n n n n= L /   M L = φ M = φ φ        T T
n n nm l m  (3) 

Here φn is the n’th mode shape, m is the mass matrix and l is the influence vector. An (tmax) in Eq.(2) can be 
expressed in terms of the modal displacement Dn at tmax during seismic response:  

( ) ( )2
n max n n maxA t = ω D t  (4) 

ωn
2 in Eq. (4) is the n’th mode vibration frequency, and Dn satisfies the equation of motion of a damped system 

with a modal damping ratio of ξn at time tmax.   

( ) ( ) ( ) ( )  2
n max n n n max n n max g maxD t +2ξ ω D t +ω D t = -u t  (5) 

Since Dn (tmax) occurs at a specific time during seismic excitation, it is not possible to determine it directly from 
Eq. (5) if tmax is not known. In the proposed procedure, tmax is defined as the time when interstory drift (Δj) of the 
j’th story reaches its maximum value.  

( )j,max j maxΔ = Δ t  (6) 

The modal expansion of Δ j (tmax) is given in Eq. (7):  
( ) Γ ( )( )∑j max n n max n, j n, j-1

n
Δ t = D t φ - φ  (7) 
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where φn,j is the j’th element of the mode shape vector belonging to the n’th mode. Dividing both sides of 
Equation (7) by Δ j (tmax) results in the normalized form of this equation:  

( )
1 Γ ( )

( )∑ n max
n n, j n, j-1

n j max

D t
= φ - φ

Δ t
 (8) 

The right hand side of Eq. (8) yields the normalized contribution of each mode n to the maximum interstory drift 
of the j’th story at tmax.  

While determination of Δ j (tmax) still depends on tmax, its counterpart in Eq. (6) can be estimated through 
response spectrum analysis (RSA) by employing a modal combination rule. Complete quadratic combination 
(CQC) [15] is the best available method for combining coupled modes with closely spaced modal frequencies. 
Δ j,m a x is expressed in terms of modal spectral responses obtained with RSA, combined with CQC in Eq.(9):  

( ) Γ ( ) Γ ( )[ ][ ]2
j,max in i i i, j i, j-1 n n n, j n, j-1

i=1 n=1
Δ ρ D φ - φ D φ - φ≈∑ ∑  (9) 

Here, ρ in is the correlation coefficient. Indices i and n denote corresponding modes and ranges from 1 to N where 
N is the number of modes. Dn (or Di) is the spectral displacement of the n’th (or i’th) mode. A normalized form 
of Eq. (9) can also be derived by simply dividing both sides with (Δ j,max)2.  

1 Γ ( ) Γ ( )i n
i n

  
  
  

∑ ∑ in i, j i, j-1 n, j n, j-1
i=1 n=1 j,max j,max

D D
= ρ φ - φ φ - φ

Δ Δ
 (10) 

In Eqs. (8) and (10), the normalized contributions of individual modes to the maximum interstory drift at a 
specified story are defined from dynamic response history and response spectrum analyses, respectively. Under 
the assumption of equality stated in Eq. (6), the right-hand sides of Eqs. (8) and (10) can be equated:  

( )
Γ ( ) Γ ( ) Γ ( )

( )
i n

i n
  
  
  

∑ ∑ ∑n max
n n, j n, j-1 in i, j i, j-1 n, j n, j-1

n i=1 n=1j max j,max j,max

D t D D
φ - φ = ρ φ - φ φ - φ

Δ t Δ Δ
 (11) 

Re-introducing Eq. (6) for the denominator terms of modal responses on both sides, and leaving out similar 
terms in Eq. (11) results in a simplified form:  

( ) Γ ( )[ ]n
n max ni i i i, j i, j-1

i=1 j,max

D
D t = ρ D φ - φ

Δ∑  (12) 

The terms in brackets in Eq. (12) is Δ j,i, or the i’th mode contribution to the maximum interstory drift at the j’th 
story determined from RSA. Inserting Δ j,i for the bracket term in Eq. (12) yields a further simplified expression 
for Dn(tmax):  

( )
 
 
  
 

∑ in j,i
i=1

n max n
j,max

ρ  Δ
D t = D

Δ
 (13) 

Eq. (13) describes Dn (tmax) independent of tmax through RSA, accompanied with CQC. This equality is 
designated as the modal scaling rule, since modal displacement amplitude of the n’th mode at tmax is obtained by 
the multiplication of spectral displacement of this mode by a scale factor. The modal scaling factor is defined as 
the ratio of modal contribution to any response parameter to the maximum of this response parameter calculated 
at the j’th story. Interstory drift in the equation is the response parameter selected for this derivation.  

An(tmax) can also be determined from Eq. (13) by multiplying both sides with ωn
2:  

( )
 
 
  
 

∑ in j,i
i=1

n max n
j,max

ρ  Δ
A t = A

Δ
 (14) 
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An is the pseudo-spectral acceleration of the n’th mode and obtained from An = ωn
2Dn, similar to Eq. (4). fn 

(tmax) can be rewritten via Equation (14) in a form that is independent of time. Substituting An (tmax) from Eq. 
(14) into Eq. (1) yields:  

   n
n

ϕ
 
 = Γ 
 

∑
∑maxf t m

in j,i
i=1

n
j,max

 ρ  Δ  
A

Δn( )  (15) 

As previously stated, formulation presented herein is based on interstory drift at the j’th story. Consequently, 
f(tmax) in Eq. (15) is the generalized force vector that acts on the system when the j’th story interstory drift 
reaches its maximum value. Therefore, f(tmax) will be denoted as fj in the remaining part of the formulation.  

Summation for all modes in Eq. (15) over all terms in the parentheses and regrouping leads to a final form 
of the generalized force vector:  

( )
1

   
i

n

N

i
n

ϕ
=
≠

   Γ      
∑ ∑jf m j,n j,i

n in
n j,max j,max

Δ Δ
= A + ρ  

Δ Δn  (16) 

The generalized force vector that maximizes the j’th story interstory drift is presented in Eq. (16). This is, in fact, 
the force vector which is applied on the structure in an incremental form until the target interstory drift demand 
at the j’th story is obtained.  

3. Target Interstory Drift Demand for Torsionally Coupled Systems 
Maximum interstory drift demand Δ j (tmax) during ground motion excitation was defined as a function of Dn 
(tmax) in Equation (7). Δ j (tmax) can also be expressed with the implementation of modal scaling rule by 
substituting Dn (tmax) from Eq. (13) into Eq. (7):  

( ) Γ ( )
 
 
  
 

∑
∑

in j,i
i=1

j max n n, j n, j-1 n
n j,max

 ρ  Δ  
Δ t = φ - φ D

Δ
 (17) 

As discussed previously, Eq. (17) expresses target drift at the j’th story of a linear elastic system which 
reaches its maximum value when the corresponding generalized force vector f j is acting on the system. The 
effect of nonlinearity on Dn can be considered however, which is explained in the second step of the generalized 
pushover (GPA) algorithm given in the following section.  

  Generalized force vectors and their accompanying target interstory drift demands are determined by using 
the eigenvectors defined at the diaphragm centers of mass of a 3D structural system. In a 2D frame, all structural 
members are in the same frame including the center of mass, resulting in consistent deformations and member 
forces at the target interstory demand. Similar to the behavior of 2D frames, response of 3D plan-symmetric 
structures also shows no variation within a story since torsional effects are not present. Consequently, 
deformations and forces of all structural members in a story can be estimated accurately by employing a single 
demand control mechanism, namely using one target interstory demand for each story. However, this is not the 
case for 3D buildings where some forms of torsional rotation components exist. 

It is known from structural dynamics theory that due to strong coupling of modes and torsional effects in 
unsymmetrical-plan buildings, maximum values of deformations and forces at different frames within a story 
occur at different instants, i.e., at different tmax values during dynamic response. The n’th mode interstory drifts 
of Frame k in Fig. 1 in the direction of ground excitation is related to the center mass displacements via the 
distance of frame to the center of mass, xk along with both translational and rotational components of 
eigenvectors at the j’th story. Considering this relation, Eq. (7) is rewritten as:  

( ) ( )( ) Γ ( ) k θ θ  ∑k k
j max n n max ny, j ny, j-1 n , j n , j-1

n
Δ t = D t φ - φ + x φ - φ  (18) 
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Fig. 1 – Location of Frame k with respect to the center of mass 

Δ j
k(tmax) is the maximum value of the j’th interstory drift of Frame k and Dn

k(tmax) is the modal displacement 
amplitude which satisfies Eq. (5) at time tmax, when Δ j

k reaches its maximum value.  Normalized form of this 
equation with respect to Δ j

k(tmax) is given in Eq. (19):  

( ) ( )( )
1 Γ

( ) k θ θ  ∑
k
n max

n ny, j ny, j-1 n , j n , j-1k
n j max

D t
= φ - φ + x φ - φ

Δ t
 (19) 

Similarly, the combined modal response, Δ j,max which is obtained from RSA through CQC is defined for Frame k 
in Fig. 1:  

( )[ ] ( )[ ]( ) Γ Γ  ∑ ∑k 2

j,max in i i iy, j iy, j -1 k iθ, j iθ, j -1 n n ny, j ny, j -1 k nθ, j nθ, j -1
i=1 n=1

Δ = ρ D (φ - φ )+ x (φ - φ ) D (φ - φ )+ x (φ - φ )
 

(20) 

Eq. (20) can also be normalized with respect to (Δ j,max)2:  

( ) ( )1 Γ Γ
( ) ( )

  
   
   
   

∑ ∑ i n

in i iy, j iy, j -1 k iθ, j iθ, j -1 n ny, j ny, j -1 k nθ, j nθ, j -1k k
i=1 n=1

j,max j,max

D D
= ρ (φ - φ )+ x (φ - φ ) (φ - φ )+ x (φ - φ )

Δ Δ
 (21) 

The relation defined in Eq. (6) holds true as in the case of 2D formulation. Taking this into account, right-hand 
sides of Eqs. (19) and (21) can be equated:  

( ) ( )[ ]

( )

( )
Γ

( )

Γ Γ
( ) ( )

                                           

  

k θ θ
=

 
 
 

∑

∑ ∑

k

n max

n ny, j ny, j -1 n , j n , j -1k
n

j max

i n

in i iy, j iy, j -1 k iθ, j iθ, j -1 n ny, j ny, j -1 k nθ, j nk k
i=1 n=1

j,max j,max

D t
φ - φ + x φ - φ

Δ t

D D
ρ (φ - φ )+ x (φ - φ ) (φ - φ )+ x (φ - φ

Δ Δ
( )

 
 
 

θ, j -1
)  

(22) 

Normalized form of Eq. (20) with respect to (Δ j,max
k)2 is inserted into the right hand side of Eq. (22) where left 

hand side represents the normalized form of Δ j
k(tmax) in terms of modal contributions. Leaving out similar terms 

yields Dn
k(tmax) derived for Frame k: 

( )( ) Γ    ∑k n
n max in i i iy, j iy, j-1 k iθ, j iθ, j-1k

i=1 j,max

D
D t = ρ D (φ - φ )+ x (φ - φ )

Δ
 (23) 

The term in brackets on the right hand side is the i’th mode contribution to the j’th story interstory drift of Frame 
k, i.e. Δ j,i

k. Then,  

( )
 
 
  
 

∑ k
in j,i

k i=1
n max n k

j,max

ρ  Δ
D t = D

Δ
 (24) 
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The modal expansion of the j’th interstory drift occurring at tmax in Frame k, i.e. Δ j
k(tmax) was already defined in 

Eq. (18). If Dn
k(tmax) is substituted from Eq. (24) into Eq. (18), then Δ j

k(tmax) can be expressed in terms of modal 
spectral responses by employing the modal scaling rule:  

( ) ( )( ) Γ
 
      
 

∑
∑

k
in j,i

k i=1
j max n ny, j ny, j-1 k nθ, j nθ, j-1 n k

n j,max

ρ  Δ
Δ t = φ - φ + x φ - φ D

Δ
 (25) 

This is in fact the target interstory drift value of Frame k in the j’th story. Similar to 2D formulation, it can be 
labeled as Δ jt

k and expressed in open form in Eq. (26):  

( ) ( )Γ
1

N

i
i n
=
≠

  
          

∑ ∑
k k
j,n j,ik

jt n n ny, j ny, j-1 k nθ, j nθ, j-1 ink k
n j,max j,max

Δ Δ
Δ = D φ - φ + x φ - φ + ρ

Δ Δ
 (26) 

The formulation given above is valid for two-way asymmetry, however the target interstory drift in Eq. (26) is 
defined for the frames oriented in the y direction. When the subscripts y are replaced by x in modal vectors and 
the moment arm xk is replaced by yk, Eq. (26) becomes valid for the x direction frames as well.  

Eq. (26) yields the target interstory drift demand of Frame k at the j’th story under ground motion 
excitation. A similar force vector f j

k can also be defined for Frame k by following the same procedure above. 
Therefore, f j

k and Δ jt
k would constitute the generalized force distribution and the target interstory demand pair 

for the k’th frame in the system. This, however, creates a significant amount of workload. The procedure can be 
simplified by applying the GPA force vectors at the centers of mass (Eq. 16) rather than at each frame 
individually, while tracking the target interstory drifts of each frame separately (Eq. 26). Along a story, different 
frames reach their target interstory drifts at different analysis steps. However, the member responses obtained at 
these steps are virtually the same as the ones that are achieved when performing a full, frame by frame analysis. 
Application of generalized force vectors defined at the center of mass significantly reduces the computational 
effort. To illustrate on the 8-story, 4-frame structure, only 8 pushover analyses are performed and 32 target 
interstory drift ratios are searched from the frame interstory drifts. Due to the simplicity offered by this approach 
and the ability to produce results with similar accuracy compared to frame-by-frame analysis, the GPA 
procedure is implemented in this simplified form.  

4. Generalized Pushover Analysis Algorithm 
1. Eigenvalue analysis: Periods (Tn), mode shapes (φn) and associated modal properties of the structure are 

determined.  
2. Response spectrum analysis: Spectral accelerations (An) and displacements (Dn) of each mode are 

determined from the corresponding linear elastic response spectrum. Then, Δ j,n and Δ j,max for the center of 
mass are obtained from Eq. (9), and Δj,n

k and Δ j,max
k

 for each frame k are obtained from Eq. (20) by using 
these spectral quantities.  

3. GPA force vectors: GPA force vectors f j are determined according to Eq. (16).  
4. Target interstory drift demands: Frame target interstory drift demands (Δ jt

k) are also determined by using 
Eq. (26).  

5. Nonlinear static analysis: f j are acted upon the system in an incremental form until Δ jt calculated in step 4 is 
exceeded. Then the interstory drift record of frame k is searched for Δjt

k. The analysis step that yields Δ jt
k is 

used to compile the member deformations and internal forces at the j’th story of frame k (target analysis 
step). Nonlinear static analysis is repeated for each story, j = 1 to N.  

6. Determination of structural responses: Using the target analysis steps obtained in the 5th step, deformations 
and internal forces of all members at each frame are determined directly from the deformation state of the 
structure at the target interstory drift demand. Entire response of the system is then compiled by employing 
an envelope algorithm where absolute maxima of these internal forces and deformations are selected for 
every structural member without using any modal combination rule. These results are registered as final 
response estimates. 

6 
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GPA procedure is implemented to an eight story torsionally coupled frame building under fifteen ground 

motions in the case study presented below. 

4. Eight Story Frame Building 
The story plan of the eight story moment resisting frame building is shown in Fig 2. The building is designed in 
compliance with the Turkish Earthquake Code [16] by employing the capacity design principles, with an 
enhanced ductility level (R=8). The design spectrum for soft soil conditions is shown in Fig 3. Concrete and 
steel characteristic strengths are 25 MPa and 420 MPa, respectively. Uniform member dimensions are selected in 
the design of beams and columns. Beams are 30x55 cm and columns are 50x50 cm throughout the building. Slab 
thickness at all floors is 14 cm and live load is 2 kN/m2. Ground story height is 3.5 meters whereas the height of 
other stories is 3 meters. Asymmetry and the resulting torsional coupling are provided by offsetting the mass 
center of the building from the center of stiffness by 15% of the plan dimension. Thus, asymmetric mass 
distribution is obtained along the direction of analysis (Y-axis in Fig. 2). Frames of the structure in the direction 
of analysis are named according to their expected deformation patterns. 

The structure is modeled by using the OpenSees software [17]. A linear elastic model is developed for 
performing linear elastic response spectrum analysis, and a nonlinear structural model is prepared in order to 
perform nonlinear response history analysis, generalized pushover analysis and conventional (single mode) 
pushover analysis. Linear elastic model is composed of “ElasticBeamColumn” elements where the gross 
moments of inertia of the beams and columns are multiplied by 0.4 and 0.6 respectively, in order to account for 
the cracked section stiffnesses of reinforced concrete members. “BeamwithHinges” element is employed in the 
nonlinear structural model both for beams and columns. Plasticity is lumped along the plastic hinge length which 
is half of the section depth at all members. Moment-curvature relationships are assigned to the beam ends with 
elasto-plastic hysteresis relations whereas fiber sections are selected in order to introduce plasticity in the 
column ends. P-Delta effects are considered in the analytical models. Rayleigh damping is used in both models 
where the damping coefficients are obtained from the 1’st and 3’rd modes that are assigned 5% viscous 
damping.  

 
Fig. 2 Plan view of the eight-story unsymmetrical-plan structure (all units in meters). 

Free vibration periods of the first four coupled modes are 1.62, 1.03, 0.52 and 0.33 seconds. The first and 
third modes are translation dominant whereas the second and fourth modes are rotation dominant. Hence, the 
structure is torsionally stiff. Translational modes in the x-direction are not considered. 

Fifteen ground motion records have been randomly selected from the PEER Strong Motion Database [18] 
and used without employing a scaling or any other modification to the original data. These ground motions 
produce different levels of inelastic deformation demands and higher mode effects (both in elevation and plan) in 
the frame structure. Their acceleration spectra and record properties are given in Fig. 3 and Table 1, respectively. 

7 
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The linear elastic design spectrum (unreduced) and the mean spectrum of fifteen ground motions are also shown 
in Fig. 3. The selected ground motions do not represent any commonality or membership to a family. 

 
Table 1. Strong ground motions and their properties 

GM No. NGA Code Earthquake Mw PGA (g) Site Geology 
GM1 H-E04140 Imperial Valley - 1979 6,5 0,485 D 
GM2 ERZ-EW Erzincan - 1992 6,9 0,496 D 
GM3 CLS090 Loma Prieta - 1989 7,0 0,479 A 
GM4 SPV270 Northridge - 1994 6,7 0,753 D 
GM5 PCD254 San Fernando - 1971 6,6 1,160 B 
GM6 BOL000 Duzce - 1999 7,1 0,728 D 
GM7 ORR090 Northridge - 1994 6,7 0,568 B 
GM8 ORR360 Northridge - 1994 6,7 0,514 B 
GM9 B-PTS315 Superstition Hills - 1987 6,6 0,377 D 
GM10 IZT090 Kocaeli - 1999 7,4 0,220 A 
GM11 DZC270 Kocaeli - 1999 7,4 0,358 D 
GM12 LCN275 Landers - 1992 7,3 0,721 A 
GM13 G066090 Morgan Hill - 1984 6,1 0,292 A 
GM14 NPS210 N. Palm Springs - 1986 6,2 0,594 D 
GM15 STG000 Loma Prieta - 1989 7,0 0,513 D 

 

 
 

Fig. 3 Acceleration response spectra of the fifteen ground motions and the design spectrum (T1-Y, T2-θ, T3-Y, 
T4-θ indicate the first four modal periods and the dominant response directions) 

Two different types of results are presented in the following paragraphs. The first type includes response 
results to three individual ground motions selected from Table 1. These ground motions produce different levels 
of inelastic deformations, from lower to higher. The second type of results includes statistical evaluation of the 
responses to the total set of fifteen ground motions. All results in the two categories are assessed with reference 
to the results of benchmark nonlinear response history analysis (NRHA). 

For purposes of brevity, two sets of response results of varying intensity are presented for each selected 
ground motion in Figs. 4-5. These are the height-wise variations of interstory drift ratio, mean beam-end plastic 
rotations and story shears given for each frame separately. The results of GPA are compared with the results of 
benchmark NRHA in all figure boxes.  

8 
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FE: Flexible edge exterior, FI: Flexible edge interior, SE: Stiff edge exterior, SI: Stiff edge interior. 

Fig. 4 The distribution of interstory drift ratios, mean beam-end plastic rotations and story shears in 
each frame under the IZT090 ground motion. 

The results of conventional (single mode) pushover analysis (PO) are also provided in each figure for 
observing the contribution of higher modes. First mode load pattern in PO includes torsional moments and first 
mode inelastic response is employed in calculating the target roof displacement. Moreover, interstory drift ratios 
obtained by the linear elastic response spectrum analysis (RSA) are presented along with the results of nonlinear 
procedures in order to assess the validity of linear elastic models with cracked section properties in predicting 
the interstory drift distributions in a torsionally coupled system which undergoes different levels of inelastic 
deformations.  

The results obtained under the IZT090 ground excitation are shown in Fig. 4. This is the weakest intensity 
ground motion in Table 1; however, it produces interstory drift ratios of 1.8% and mean beam plastic rotations of 
0.014 radians at the middle stories of the flexible edge exterior (FE) frame, as calculated by NRHA. GPA 
predicts the interstory drifts and beam plastic rotations quite well, and story shears perfectly in all frames. The 
improvement of GPA over PO is also notable in all frames, particularly at the stiff edge frame (SE) for all three 
response parameters. Interstory drift distributions predicted by RSA are fairly acceptable for this ground motion 
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since the inelastic deformations are not so far into the plastic range as observed in the second column boxes of 
Fig. 4. Negligible yielding of columns occurs at the base sections, with maximum plastic rotations not exceeding 
0.1%. 

   

   

   

   
FE: Flexible edge exterior, FI: Flexible edge interior, SE: Stiff edge exterior, SI: Stiff edge interior. 

Fig. 5 The distribution of interstory drift ratios, mean beam-end plastic rotations and story shears in each frame 
under the SPV270 ground motion. 

A significant higher mode response is observed in Fig. 5 under SPV270, accompanied with large inelastic 
deformations. Maximum values of interstory drift ratios and mean beam plastic rotations calculated by NRHA 
are 2.6% and 0.022 radians, respectively. GPA generally predicts both the interstory drifts, mean beam plastic 
deformations and story shears of all frames successfully, with an under-estimation of deformations by about 30% 
at the middle stories of the SI frame. RSA analysis gives reasonable interstory drifts at the lowest three stories, 
but completely misses the upper stories where higher modes contribute significantly. This is a result of the 
quadratic combination of linear elastic modes which is usually a poor assumption when the first mode is not 
dominant. Mean rotation ductilities of the beam ends are in the 10-25 range in the 1st story, in the 15-40 range in 
the 3rd story (maximum), and around 3 in the top story under SPV270. Maximum rotation ductility demand at the 
base of the first story column of the flexible edge frame is 1.7. 
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The second type of results provide comparisons of the statistical distributions of interstory drift ratios, 
beam plastic rotations and story shears under fifteen ground motions. The statistical distribution of interstory 
drift ratios calculated by NRHA and GPA at the four frames is shown in the left-hand side four-plot set of Fig. 7. 
It can be observed that the distributions obtained at the FI and SE frames are matching perfectly well whereas 
those obtained at the FE and SI frames are in reasonably good agreement. Moreover, mean interstory drift 
distributions are also calculated under the mean spectrum of fifteen ground motions shown in Fig. 3. These 
results are fairly close to the mean of fifteen interstory drift distributions obtained under fifteen ground motions 
separately. Therefore, it can be concluded that GPA conducted under a mean spectrum of ground motions 
produces acceptable estimates of the statistical mean of interstory drift ratios obtained under a set of ground 
motions. Accordingly, GPA can be employed as an effective nonlinear analysis tool under a site specific design 
spectrum representing the mean spectrum of ground motions expected at a site. 

    

    
FE: Flexible edge exterior, FI: Flexible edge interior, SE: Stiff edge exterior, SI: Stiff edge interior. 

Fig. 7 The distribution of interstory drift ratios and mean spectrum GPA results and distribution of mean beam-
end plastic rotations in each frame. 

  The mean distribution of beam plastic rotations obtained under fifteen ground motions calculated by 
NRHA, GPA and PO are compared in right-hand side of Fig. 7. It has to be reminded that beam plastic rotations 
are also the mean values over the beam ends in each story. The results in Fig. 7 reveals that mean GPA and mean 
NRHA results match perfectly well in the FI and SE frames, and match reasonably well in the FE and SI frames.  

4. SUMMARY AND CONCLUSIONS 
Generalized pushover analysis procedure is extended to 3D torsionally coupled systems in this study. Modal 
contributions to the generalized force vectors and target interstory drifts are calculated by a modal scaling rule 
which is based on the complete quadratic combination. Generalized forces are applied to the mass centers of 
each story incrementally for producing nonlinear static response. Maximum response quantities are obtained at 
the loading increments when the individual frames attain their own target interstory drift values in each story. 
GPA requires (N) pushovers in each direction where N is the number of stories.  

GPA is non-adaptive; hence it can be implemented conveniently with any general purpose nonlinear static 
analysis tool. Also it does not suffer from the statistical combination of inelastic modal responses which leads to 
violation of force equilibrium. Convergence is the basic advantage of GPA as well as all nonlinear static 
procedures over the nonlinear response history analysis procedure. NRHA suffers from convergence problems 
when the size of the model is large as in a 3D structure, when the model involves computationally demanding 
elements such as fiber elements, and when the ground motions drive the system far into significant inelastic 
deformation range. 
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GPA predicts the results of NRHA fairly well, as demonstrated under several ground motions employed in 
this study. Moreover, GPA conducted under the mean spectrum of a set of ground motions produce results which 
are very close to the mean of individual GPA results. This is an indication that GPA can be employed as an 
effective nonlinear analysis tool under a site specific design spectrum. 

The basic limitation of the GPA procedure arises from the local accumulation of plastic deformations 
during actual dynamic response, which leads to significant changes in the modal deformation shapes. The non-
adaptive GPA algorithm cannot track these changes and hence its results may deviate from the results of NRHA 
when such localized nonlinearities dominate the overall deformation pattern of the system. 
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