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Abstract 
Highway bridges form an integral and important part of a nation’s infrastructure. Estimation of the seismic vulnerability of 
these bridges is a necessary step to identify the associated risk and ensure the safety of lifeline systems. Reinforced concrete 
(RC) dominates bridge construction around the world (along with prestressed concrete). Corrosion has been identified as a 
major degrading factor in concrete bridges, which makes these structures more vulnerable to extreme event loads, such as 
earthquake or wind forces, over their design life. Seismic vulnerability assessment of bridge structures is typically 
performed through a seismic fragility analysis in the probabilistic domain. For about two decades, researchers have been 
using this tool to effectively estimate the seismic failure probabilities of bridge structures. More recently, researchers have 
focused on the seismic fragility estimation for concrete bridges deteriorating primarily due to corrosion. However, most of 
these studies have not properly dealt with (i) the significant uncertainties in the corrosion process and (ii) the effects of 
pitting corrosion. The current paper presents a unique framework of seismic fragility estimation of corroded concrete 
bridges, incorporating a probabilistic treatment of the non-uniform corrosion process and integrating it with the Bayesian 
updating of the corrosion model based on monitored data (measurements through non-destructive testing). The time-varying 
seismic fragility of a RC bridge pier is estimated in an illustrative numerical example. Conclusions are drawn based on how 
the seismic fragility for this bridge column vary over time and on the effectiveness of the framework proposed. 
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1. Background 
Highway and railway bridges, which form an integral part of the transportation infrastructure, gradually degrade, 
primarily due to environmental effects and possible overloading. This results in degeneration of the performance 
of a structure over its lifetime. Ignoring this inevitable fact can lead to misinformed decisions regarding various 
issues, such as, inspection, maintenance, repair/rehabilitation and replacement of the structure. In reinforced 
concrete bridges, corrosion of rebars in a saline environment is the most common factor causing its degradation 
[1]. This degradation typically renders the structure more vulnerable to extreme natural events such as 
earthquakes. The vulnerability of a structural component (or, a system) to possible earthquakes at a particular 
site, is typically quantified using fragility curves/functions. The fragility function of a structure expresses the 
likelihood of its failure for any given seismic intensity, in a probabilistic framework. When properly modelled, a 
fragility curve/function can capture the “important” variabilities that exist in estimating the possible earthquake 
and in structural parameters, and also the uncertainties induced due to the use of a particular analysis model. 
Degradation of a structure over its design life obviously brings in a change in its seismic fragility function. 
However for most situations, only the “pristine” or “as-built” fragility of a structure is used for all decision-
making on and the management of a degrading structure [2]. 
 
The integration of corrosion growth modelling and seismic assessment for a structure is not trivial, as the 
existing corrosion prediction models themselves are deficient in terms of modelling capability [3]. However, this 
can be alleviated by supplanting the corrosion model with routine or planned corrosion inspections/monitoring. 
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Such inspections take place at discrete time instances, and these measurements do not provide a clear 
understanding of the degradation process in a continuous sense. These limited/sparse information, however, can 
be effectively used in conjunction with the existing corrosion growth model using Bayesian inference. Bayesian 
inference can be used to obtain an updated model, which is expected to provide a better picture of the 
degradation as a continuous time function over the structure’s life. 
 
Considering these reasons, the main objective of this study is to estimate the time-varying seismic fragility of a 
bridge due to the corrosion of its rebars, using a Bayesian framework to integrate the data obtained through 
corrosion inspection/measurements. Furthermore, the effect of pitting (non-uniform corrosion) is added to the 
updated uniform corrosion model using a pitting factor, which represents the heterogeneity (spatial variation) of 
steel loss in rebars. Our goal is to develop an overall framework to analyse the effect of time-varying pitting 
corrosion on the seismic fragility of a structure and illustrate it through the example of a typical two-span 
integral bridge. It should be noted that although corrosion in concrete is reported to affect the ductility and bond 
strength of rebars, this work considers only the loss of rebar cross-section (for both main and shear 
reinforcements) to affect the capacity of the section. 
 

2. Overall framework 
Previous studies on the seismic risk assessment of bridge structures have shown that the seismic fragility of a 
simple bridge, such as the one considered in this work, is determined by the fragility of its columns [4]. 
Therefore, the estimation of time-varying fragility in this paper focuses entirely on the pristine fragility and the 
gradual degradation of the bridge column due to corrosion. Choe et al. [5] have also shown that corrosion in 
columns reduces the capacity of a bridge and increases its seismic fragility. The overall framework adopted here 
has three major aspects as presented in Fig. 2: (i) Bayesian updating of the corrosion growth model using 
inspection data, (ii) Sampling of corroded bridge columns incorporating the effect of pitting over the an updated 
corrosion growth model, and (iii) Seismic fragility estimation of a pristine or corroded column using multi-IDA. 
 
The existing analytical models for corrosion growth over time do not provide a good estimate of the loss of steel 
in rebars [3]. Monitoring/inspection at regular intervals is expected to help in getting a better judgement of the 
existing conditions. Integration of these inspection data with an existing steel loss model using Bayesian 
inference [3] can be a suitable alternative to relying entirely either on analytical models or on discrete time 
measurements. For this study, we adopt a Bayesian MCMC scheme as presented in Fig. 1 and explained in detail 
in Section 7. Monitoring is done at discrete time instances which is assumed to represent the true picture of the 
actual degradation. The randomness present in the parameters involved in any steel loss model (for example see 
the one later in Eq. (3) results in a probabilistic distribution of steel loss at any given instant (f (W|t)). Assuming 
that the measurement techniques are not precise enough to give the steel loss due to pitting corrosion, we adopt a 
corrosion model for uniform or average corrosion in the Bayesian updating process. 

The Bayesian updating of the corrosion model results in a probability distribution of average steel loss (W) or the 
average (corroded) cross-section (Aavg). In order to propagate this variation of steel loss in rebars along with the 
randomness in the input ground motion, a stratified simulation format using Latin Hypercube sampling (LHS) is 
adopted in the seismic fragility analysis. In this, an equal number (= g) of LHS samples are generated along both 
the dimensions. Each of these samples represents a single bridge column model and incremental dynamic 
analysis (IDA) for a single earthquake sample. To incorporate the effect of pitting corrosion (elaborated in 
Section 6.1) in each bridge model, we discretize the column into ‘e’ elements of equal length along its height and 
obtain LHS samples of the pitting factor (R) for each element. This results in different minimum residual cross-
section (Amin) for each element. Assuming that the seismic demands do not change noticeably over the length of 
each element, Amin is assigned to the whole length of an element. This process is repeated for each bridge model-
ground motion combination obtained earlier. 
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Fig. 1 – A schematic showing the three major aspects of the framework proposed here 
 

Seismic fragility is typically defined as the conditional probability of a damage measure (DM) exceeding its 
threshold of limiting value (DM l), given an intensity measure (IM). Adopting a two-parameter lognormal model, 
we can express the fragility of the column (or, the bridge) as 
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where, ma is the median ground acceleration capacity and βr is the aleatory uncertainty due to the variability in 
ground motion. Seismic fragility of a given structure can be evaluated using various approaches, such as, 
judgement based, empirical, experimental, analytical and hybrid. A detailed description of these different 
approaches for bridges has been presented recently in a review paper [6]. In this work, the seismic fragilities are 
derived analytically based on results obtained by performing multi-IDA (that is for multiple ground acceleration 
records). The basic idea behind IDA [7] is that the influence of ground motion variability in structural response 
can be captured by performing multiple nonlinear response-history analyses (NLRHA) at scaled intensity levels. 
A multi-IDA can become very computation-intensive de-pending on the number of intensity levels at which 
NRLHA need to be performed and the number of different ground motion records used. In order to reduce this 
computation, we make use of Bayesian inference as used by researchers in the past [8]. Traditionally adopted 
fragility models for bridges [2] require a prior estimate of the probabilistic distribution of seismic demand, 
whereas the multi-IDA based approach followed here does not require this information. Instead, the NLRHA 
results are directly compared against the capacity of the structure defined by (deterministic) performance criteria. 
The performance limit states for the bridge column are determined by performing a pushover analysis (presented 
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in detail in Section 4) at the mean material properties with the original cross section area of rebars. The same 
limit states are considered for the degraded column as well, for the lack of any standard guideline on defining 
such limit states for corroded structures. Discrete seismic fragility data obtained from the multi-IDA analysis are 
used in a Bayesian MCMC framework to obtain a continuous fragility curve for the bridge column at every time 
instant.

 
Fig. 2 – Details of the bridge considered for this study 

3. Study structure and its modelling 
The bridge considered in this study is a two-span single column box girder integral bridge having span length of 
30.0 m (Fig. 2). The design concrete strength of the substructure and superstructure is 35 MPa and 40 MPa, 
respectively. The dead weight of the superstructure is 166.67 kN/m which produces a gravity load of 5000.0 kN 
on the column. The lateral seismic forces are determined as per the current version of Indian Road Congress 
(IRC) codes [9, 10] with an assumption that the bridge lies in seismic Zone V (very severe earthquake risk) [11] 
and belongs to the seismic class of “important” bridges. 
 
This bridge column is modelled as a 2D beam/stick, with a lumped mass for the super-structure at the top. This 
idealisation is realistic owing to the fact that in case of integral bridges, the overall bridge fragility is governed 
by the nonlinear response of bridge columns. The superstructure is assumed to remain elastic during earthquakes 
and also the contribution of abutment to the overall bridge fragility is assumed to be minimal. The bridge 
column, which is expected to display inelastic responses under design earthquake intensities, is modelled with 
the NonLinearBeamColumn element in OpenSees [12] using the FiberSection approach. It models the cross-
section with circular concrete patches and circular layers of reinforcement. The concrete, both confined and 
unconfined, is modelled using the Concrete01 properties in OpenSees. The parameters for confined concrete are 
calculated based on the model proposed by Mander et al. [13], which depends on the amount of transverse 
reinforcement. For unconfined concrete, the peak compressive strength is assumed to occur at a strain of 0.002 
with its strength reducing to zero at a strain value of 0.005. The longitudinal reinforcement is modelled using 
uniaxialMaterial Hysteretic material capable of capturing pinching of force and deformation, damage due to 
ductility and energy, and degraded unloading stiffness based on ductility. The fibre based modelling of the RC 
section can only consider interaction between biaxial bending and axial force. The SectionAggregator command 
is used to “add” the shear deformation behaviour to the existing fibre section. An elastic-perfectly plastic shear 
force-deformation behaviour is assumed with an elastic slope equal to GAs, where G is the shear modulus and As 
is the effective shear area. The calculated shear strength of a section depends on the grades of concrete and steel, 
the amount of transverse reinforcement, and the axial load. The aggregated section can accommodate axial, 
bending and shear behaviours. 
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4. Performance limit states 
The performance of bridge components are typically expressed in the form of some damage states (DS) or limit 
states (LS). These limit states are described in terms of different engineering demand parameters (EDPs), that 
have been discussed in detail in a recent paper [6]. In our work, the structural capacity for each limit state is 
obtained using the mean values of structural parameters by performing a static pushover analysis of the bridge 
column. Limit states for this bridge column are defined in terms of the maximum curvature ductility. Four 
damage states are defined: ‘slight’, ‘moderate’, ‘extensive’ and ‘collapse’. These damage states are characterised 
with respect to concrete compression and steel tension limits taken from literature. Based on the work by Hwang 
et al. [14], the LS of slight damage is defined as the curvature (ϕy1) at which the longitudinal steel yields (the 
initial yield point). The idealised yield point (ϕy) is obtained using an elasto-plastic idealisation of the actual 
pushover curve such that the area under the two curves are the same. The LS of extensive damage (ϕe) is defined 
as the point at which the extreme fibre of unconfined concrete reaches a strain of 0.003, which is assumed to be 
the strain limit for the spalling of concrete cover. The derived limit states in terms of curvature are converted into 
curvature ductility (µφ) by dividing the curvature limits by the initial yield curvature. The LS of collapse is 
adopted from the work of Hwang et al. [14], which defined collapse as the extensive damage state value plus 3.0. 
This value is in terms of displacement ductility (μΔ), which is converted into curvature ductility [15]: 
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LS capacities for the pristine condition of bridge are shown in Table 1 for all four damage states. For the lack of 
any specific guideline on what limiting curvature ductilities should be considered for a corroded bridge 
column, we use the pristine LS values for all time instances over the life of the structure. 

Table 1 – Curvature ductility (µφ) limit states (LS) of bridge column 

LS Slight Moderate Extreme Collapse 

µφ 1 1.35 4.66 8.73 

 

5. Selection of a suite of ground motions 
The selection of ground motions plays an important role in the development of fragility curves for a structure. 
Several studies in the past showed that the record-to-record variability of ground motions is the primary 
contributor to the (aleatory) randomness. Since the number of recorded ground motion suitable for fragility 
analysis for Northeast India (Zone V) is insufficient, recorded acceleration time-histories from other parts of the 
world having similar fault mechanism, site condition and seismic potential are selected, in addition. The initial 
selection criteria for ground motion are decided based on the (i) maximum earthquake magnitude potential (5.0 - 
7.5 Mw), (ii) distance from the nearest fault (10-30 km), (iii) fault mechanism (normal, strike-slip, reverse) and 
(iv) site conditions (shear wave velocity Vs = 180-1500 m/s). These criteria are selected based on past literatures 
in order to represent Northeast India. The next criterion is based on the minimum seismic intensity level, and 
ground motions having PGA < 0.05g and PGV < 0.15 m/s are not considered. The last criterion applied is 
limiting the number of records per each earthquake event to two to avoid event based bias. A total of 32 ground 
motions are thus selected from the PEER NGA database. Further, eight records are randomly selected from past 
earthquakes records of Northeast India, after applying the criteria of PGA > 0.05g with not more than two 
records selected from a single event. 

 
The selected 40 records are normalised based on FEMA (2009) guidelines. As per this method individual records 
of a given set are normalised by their peak ground velocities (PGV). A normalisation by PGV is an easy and 
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simple way to remove the unwarranted variability among records (those due to inherent difference in event 
magnitude, source type, site condition, and source distance), while still maintaining the inherent record-to-record 
variability necessary for accurately estimating the fragility. After normalisation, the records are scaled to 
different hazard levels (0.1g to 1.5g) to perform multi-IDA. 
 

6. Corrosion model 
The mass loss of steel due to uniform corrosion is expressed as [16]: 

 2
corr2 w srW Di A tπ α=  (3) 

 
where, D is the pristine diameter of the rebar and icorr is the mean annual rate of corrosion. In this equation, Aw 
and αsr are related to the corrosion process and the amount of rust generated, respectively. Performing a 
regression analysis on available data, for D measured in mm, icorr in µA/cm2, W in mg/mm and t in years, 
Bhargava et al. [16] found: Aw = 2.486 and αsr = 0.6131. To take into account the corrosion initiation period 
(t in), the equation can be modified as 
 

 ( )2
corr in2 w srW Di A t tπ α= −      int t>  (4) 

Deterministic relationships, such as Eq. (4), are inadequate in capturing the corrosion phenomenon properly, 
because of the parameter uncertainty and scatter in actual steel loss data [3]. However, in a probabilistic setting, 
such deterministic models can be “completed” by introducing “correcting” random variables [17] into the model, 
as in 
 

 ( )2
corr inln ln 2 w srW Di A t t Eπ α= − +       (5) 

 
Where, (0, )E N σ  is the correcting random variable. The reason for using a logarithmic transform of the 
original form of Eq. (4) is to ensure that the distribution of W has a positive support. Eq. (5) can be written in an 

alternate form as ( )2
corr in2E

w srW e Di A t tπ α= − . This implies that the mass loss at an instant t follows a 

lognormal distribution: ( )( )2
corr in2 ,w srW LN Di A t tπ α σ− . 

 
6.1 Pitting model 
 
The uniform corrosion model of Eq. (4) is a simplistic assumption, whereas a realistic failure assessment of a 
structure due to corrosion needs to account for pitting effects, as well. Here we use the pitting factor R [18], 
which relates the minimum rebar area (Amin) to the rebar area based on uniform corrosion (Aavg): 
 

 avg

min

A
R

A
=       (6) 

 
R expresses the area spatial heterogeneity. Zhang et al. [18] created a time varying probabilistic (Gumbel) model 
for R, where the parameters of its distribution are expressed as functions of the mass loss ratio (η t) at time t. This 
ratio is defined as 
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0

t
W
W

η =       (7) 

 
where, W0 is the mass per unit length of an uncorroded bar and W is obtained from Eq. (4). The average residual 
area of a rebar can be now expressed in terms of η t : 
 

 0 (1 )avg tA A η= −       (8) 
 
where, A0 is the original cross-sectional area of a rebar. Zhang et al. [18] derived the statistics of R for rebars of 
diameter of 14 mm and 20 mm. In order to use these statistics for a 36 mm diameter rebar, we use linear 
extrapolation for the distribution parameters for an element length of 150 mm. It should be noted here that such 
linear extrapolation of the parameter of an Extreme-type distribution is usually cautioned against. However, for 
the lack of necessary data we follow linear extrapolation of parameters here. For any given location, all rebars 
are assumed to be fully correlated in terms of minimum corroded area. Also, corrosion in the tie and the main 
reinforcements, at any specific location, are assumed to be in the ratio of their original cross-sectional areas, 
accounting for the difference in cover concrete. 
 

7. Bayesian inference 
We assume that a routine NDT scheme is used for monitoring corrosion in the column and only steel loss (W) 
data are available at discrete time instances. Generally, it is not possible to measure the model parameters: θ = 
[Aw αsr t in σ]T. These parameters remain unobservable, and need to be “updated” through an inverse 
analysis by Bayesian inference, using the observations on W. Using Bayes’ theorem, the prior information – 
described by the joint probability density function (PDF), f(θ), when combined with the monitored data – 
quantified by a likelihood function, f (Dn|θ), results in an updated distribution, f(θ|Dn): 

 ( ) ( ) ( )n nf D f D f∝θ θ θ       (9) 

In the present scenario, the model parameters, θ, are updated using observations Dn = [d1  d2, ..., di, …,
 dn]T. Note that each di  represents the pair [Wi, ti]. The likelihood for such a single pair of data can be 
obtained using Eq. (5). 
 

 ( ) ( )2
corr inln ln 21, i w sr

i i
i

W Di A t t
f W t

W
π α

σ σ

 − −
 =
  

θ       (10) 

 
For n observations, with the assumption that they are statistically independent, we have 
 

 ( ) ( )
1

,
n

n i i
i

f D f W t
=

= ∏θ θ       (11) 

 
Through a compilation of data reported in literature, Jamali et al. [19] reported the values of αsr to be in the 
range of 0.348 to 0.778, corresponding to various possible corrosion products. In the absence of any further 
information on the composition of rust products, we conservatively adopt a uniform distribution for the prior 
probability model of αsr: 

 ( )0.348,0.778sr Uα       (12) 

Based on experimental results sourced form literature, Bhargava et al. [16] estimated the parameters of the steel 
loss model. The prior distribution of Aw, is based on the 28 samples obtained from the same test data. The prior 
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probability model for Aw is obtained by fitting this statistic using the Kolmogorov-Smirnov goodness-of-fit test. 
A lognormal distribution is found suitable to model this parameter: lnAw ~ N (0.9073, 0.6752). The use of a 
lognormal distribution is also justified based on Eq.  (4), which requires Aw to be non-negative. To ensure that 
even after updating, the values of Aw remain positive, we adopt the transformation Aw = ea, where 
 

 ( )0.9073,0.6752a Ν  (13) 

 
              Fig. 3 - Rebar mass loss data, normalised to icorr = 1.0 µA/cm2 

 
The corrosion initiation time t in is the third random variable in our treatment. t in has to be in the range between 
zero to the time of first non-zero measurement of steel loss due to corrosion (t1, here). We adopt a uniform prior 
for t in 
 

 ( )1in 0,Ut t  (14) 

The standard deviation of the correction term, E (Eq. 5), must always be positive. We adopt a transformation, σ 
= es, and assume a standard normal prior distribution: 
 

 ( )0,1s N  (15) 

The joint prior distribution is taken as the product of the densities of individual parameters, by assuming each 
parameter to be independent of the other: 
 

 ( ) ( ) ( ) ( ) ( )insrf f a f f t f sα=θ  (16) 

The data used for the present study is sourced form Azad et al.’s work [20]. From their experiment on 
accelerated corrosion, we select three test specimens, BT1-2-4, BT1-2-6 and BT1-2-8, which were subjected to a 
corrosion rate of 2000 µA/cm2 for 4, 6 and 8 days, respectively. However, we normalise these data to scale down 
the corrosion rate to 1.0 µA/cm2, which is classified as ‘moderate’ by Dhir et al. [21]. Keeping mass loss 
observations the same, the time instants of observation are changed to 21.92, 32.88 and 43.84 years, as presented 
in Fig. 3. 
 
7.1 Delayed rejection adaptive Metropolis algorithm  
 
One of the popular methods for drawing random samples from an unknown posterior distribution us-ing the 
Markov chain is the Metropolis algorithm [22]. As the posterior is unknown, in this algorithm samples are drawn 
from a Gaussian proposal distribution q (·|·), which can be a multivariate function depending on the number of 
parameters of a model. Further details on this commonly adopted algorithm can be found in the original paper by 
Metropolis et al. [22]. A significant challenge which arises while adopting this algorithm, typically in high 
dimensions, is the tuning of the proposal distribution for an efficient sampling. To alleviate this challenge, in the 
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present study we adopt the delayed rejection adaptive Metropolis (DRAM) technique [23], which is an 
application of the adaptive Metropolis (AM) algorithm within the delayed rejection (DR) algorithm. 
 
In AM, the proposal automatically adapts based on the history of the chain of samples. The proposal at the mth 
state can be chosen as a Gaussian distribution centered at θm with the covariance matrix Cm+1, such that 
 

 
1 0m+ =C C            om m≤  

                         ( )mp ps ε= + IC     om m>  
(17) 

where we choose a strictly positive definite covariance matrix C0, for the initial “non-adaptive” states upto m0. 
sp =2.382/p, where p is the number of parameters. ε > 0 is a very small number which ensures that 1m+C does not 

become singular (in the case all samples are rejected) and Ip is a p-dimensional identity matrix.  mC  is the 
empirical covariance matrix computed as 
 

  ( )( )
1

1
1

m T
m m mi i

im =
= ∑ − −

−
θ θ θ θC  (18) 

where, 
1

1 m

i
im =

= ∑θ θ and p
i ∈θ is a column vector. At any mth state of the chain positioned at x = θm, if a 

candidate y1 generated form the proposal (“first stage”; obtained using AM so far) is rejected, another proposal 
distribution is used to generate the sample (“second stage”). If the candidate is rejected even at this stage, the 
process can be repeated l times (upto lth stage) until a candidate is accepted. In the present study, a Gaussian 
proposal depending only on the last rejected sample with a scaling of the covariance matrix at the lth stage as 
Cm/2l, is adopted [24]. The acceptance probability at the lth stage DR algorithm becomes [24] 
 

 ( )
( ) ( ){ }

( ) ( )

*

1 *

max 0,
, ,....., min 1,

l n n

l l
n n

f D f D
A

f D f D

  −  =  
−  

x y y
x

y y

y
 (19) 

where, ( )* arg max j n
j l

f D
<

=y y . Once the sample is accepted, we set θm+1 = y l. 

The tuning of the proposal covariance matrix is stopped after a predefined burn-in of 2000 samples, after which 
there is no significant change in Cm. For the initial non-adaptive state upto m0, C0 = spIp and m0 = 5. In this 
state, Cm is updated at every 5th sample and the DR is run until a sample is accepted. After the DRAM algorithm 
is completed, the generated covariance is used in the conventional Metropolis algorithm to generate 5000 
samples of each parameter, which were found adequate as per Geweke’s convergence criteria [25]. It should be 
noted that while generating the samples for t in and αsr, care is taken that any sample falling outside [0, t1] and 
[0.348, 0.778], respectively, is discarded. 

8. Results and conclusions 
As discussed in Section 2, the fragility of the bridge column is obtained at its pristine condition and after each 
corrosion measurement at t = 21.92, 32.88 and 43.84 years. The seismic fragility of the corroded column is 
obtained from a sequential Bayesian updating of the mass loss (W) at each of these instances. For all the three 
time instances, updated samples of W are best fitted with generalised extreme value (GEV) distributions. The 
fitted distribution of W after the third updating is presented in Fig. 4. For modelling the corroded column, W is 
resampled using the LHS scheme only in the range (0, W0). Similarly in the sampling of the pitting factor, R, all 
samples less than 1.0 are rejected. 
 
At any instant, the seismic fragility parameters ma (median acceleration capacity) and βr (lognormal standard 
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deviation of aleatory uncertainty) are obtained by “fitting” the lognormal model of Eq.  (1) to the discrete multi-
IDA fragility values for curvature ductility.  
 

 
 

Fig. 4 – Posterior distribution of mass loss W after the third update 
 
 

ma and βr values obtained for the four time instances are presented in Table 2. The ma values show a gradual 
deterioration of the median ground acceleration capacity over time for all the four limit states considered. 
Adopting a service life of 100 years [9] for this bridge, this deterioration in ma is obtained for the whole service 
life by fitting quadratic curves to this data-set. For example, for LS4 we obtain the following relation, with an R2 
value of 0.9764: 
 

 ( ) 6 2 68.450 10 1.602 10 1.515am t t t− −= − × − × +  (20) 

 
Table 2 – Seismic fragility parameters for four limit states at four different time instances 

 
Limit 
State 

Fragility 
parameters Pristine t1 t2 t3 

LS1 
ma 0.6612 0.6552 0.6528 0.6506 
βr 0.1816 0.1839 0.1792 0.1790 

LS2 
ma 0.8912 0.8840 0.8789 0.8744 
βr 0.1758 0.1793 0.1841 0.1831 

LS3 
ma 1.4035 1.395 1.397 1.392 
βr 0.1504 0.1549 0.1657 0.1680 

LS4 
ma 1.514 1.511 1.503 1.498 
βr 0.1197 0.1287 0.13180 0.1412 

 

Fig. 5 presents the time-varying trend of the median acceleration capacity. There is no such trend in the time-
variability of βr. An average βr (for example 0.1352 for LS4) is therefore proposed here for estimating seismic 
fragility throughout the bridge’s service life. It should be noted here that there is no significant change in this 
bridge’s seismic fragility due to degradation even after 100 years of service. The primary reason for this could be 
the fact that the rate of corrosion adopted in this work is moderate, which typically should not pose any 
challenge for the bridge’s life management.  
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Fig. 5 – Variation of the median acceleration capacity over time 

We have presented in this paper a general framework for obtaining the time-varying seismic fragility of an 
integral bridge, deteriorating due to corrosion. The most important aspect of this framework is that instead of 
relying upon the available corrosion growth models – that typically result in predictions far off from the reality, 
it augments these models with monitored data through a scheme of Bayesian updating. This framework is also 
able to address the issue of pitting or non-uniform corrosion through a spatial heterogeneity factor. The case 
study of a simple integral bridge in the highest seismic region in India shows that, at a moderate corrosion rate of 
1.0 µA/cm2, corrosion does not have a significant effect on the seismic fragility. However, as one would expect, 
it shows a gradual deterioration of the structure throughout its service life. This framework can be applied to any 
deteriorating structure where monitoring is performed on a routine basis. The seismic fragility analysis using 
multi-IDA makes this process severely computation-heavy. However, adopting less demanding comptutational 
approches to fragility analysis, such as the ‘cloud analysis’, may reduce the computational cost. Bayesian 
inference using the DRAM algorithm is found to be very effective while updating many parameters. 
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