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Abstract 
During earthquake ground shaking earth pressures on retaining structures can cyclically increase and decrease as a result of 
inertial forces applied to the walls and kinematic interactions between the stiff wall elements and surrounding soil. Limit 
equilibrium analysis imposes a pseudo-static inertial force to a soil wedge behind the wall (the mechanism behind the 
widely-used Mononobe-Okabe method), which is a poor analogy for either inertial or kinematic wall-soil interaction. Many 
basement walls and retaining structures are dominated by kinematic soil-structure interaction (SSI) effects arising from 
differences in displacement between the wall and the free-field soil. Kinematic SSI solutions are often formulated for 
uniform soil conditions, but the shear modulus of most soils is known to increase with mean effective stress, and therefore 
with depth. We examine the influence of vertical heterogeneity of shear modulus on kinematic SSI for rigid walls. An 
existing free-field displacement solution is presented first, followed by analysis of earth pressure increments using a 
Winkler assumption. Vertical heterogeneity is shown to reduce seismic earth pressures compared with a uniform soil case 
(for a given frequency and peak ground surface displacement) because free-field displacements are largest near the surface, 
where the soil is softest and Winkler stiffness is lowest. The proposed Winkler solution is then compared with an exact 
analytical solution for vertically heterogeneous soil over a rigid base and retained between two opposing rigid walls. The 
agreement is imperfect, but reasonable, with differences likely due to assumptions regarding the dynamic Winkler stiffness 
intensity. 
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1. Introduction 
The increment of lateral earth pressure that should be applied to a retaining wall to account for earthquake 
effects is currently a source of confusion among design professionals. Current guidelines documents (e.g., 
NCHRP 2008) utilize a limit equilibrium analysis in which a pseudo-static coefficient acts upon an active 
Coulomb-type wedge in frictional soil. Based on the classical work of Okabe [2] and Mononobe and Matsuo [3], 
this approach is widely known as the Mononobe-Okabe (M-O) method. [4], [5], [6], [7] and [8] have all 
proposed vVariants of the M-O method have been proposed by [4], [5], [6], [7] and [8], all of which are rooted 
in the limit equilibrium analysis framework.  

Recent experimental research has challenged the M-O method as being overly conservative (e.g., [9], [10]), 
while elastodynamic solutions have found seismic earth pressures may significantly exceed those prescribed by 
the M-O method (e.g., [11], [13], [12], [17], [18], [20]). These conflicting findings have driven much of the 
confusion among the engineering community regarding seismic earth pressures. A fundamental problem with the 
M-O method is that it does not adequately reflect the manner in which vibrating soil interacts with a retaining 
structure. Though the elastodynamic solutions are better equipped to capture this interaction, they are often 
formulated for conditions where a rigid base underlies an elastic soil layer being retained by a rigid wall over its 
full thickness (i.e., a “bathtub” condition). These boundary conditions result in significant amplification at the 
resonant modes of the soil column, which in turn produce large relative wall-soil displacements and seismic 
earth pressures.  

[14] developed a A kinematic soil-structure interaction solution developed by [14] that demonstrates that 
kinematic seismic earth pressures are fundamentally controlled by relative wall-soil displacements, which in turn 
are controlled by the ratio of the wavelength of the vibrating free-field soil column, λ, to the height of the wall, 
H. When λ/H is large, the free-field shear strain acting along the wall height is small, the wall and free-field soil 
move nearly in tandem, and the kinematic earth pressures are also small. Walls resting on thick soil layers 
excited by earthquake ground motions typically exhibit large λ/H ratios, resulting in small earth pressures. This 
was the condition in the recent experimental studies for which smaller-than-M-O pressures were measured. 
Conversely, the bathtub condition results in significant energy at the first mode frequency of the soil column 
(which occurs at λ/H = 4 for uniform elastic soil), generating large, greater-than-M-O, significant seismic earth 
pressures. The kinematic framework presented by [14] explains both the experimental observations and 
elastodynamic solutions in a single framework. 

A number of simplifying assumptions were made in deriving the kinematic solution for seismic earth pressures 
by [14]. First, the soil was modeled as an isotropic elastic homogeneous material. The shear modulus of soil is 
known to vary with effective confining pressure, therefore this assumption is generally not representative of 
typical soil profiles. Second, the wall was modeled as rigid, whereas basement walls and free-standing retaining 
walls may have sufficient flexibility to influence mobilized earth pressures. Third, soil inelasticity was not 
modeled explicitly, though strain-compatible moduli can be selected to render the method equivalent-linear. 
Finally, gapping and shear slip at the soil-wall interface was not modeled. The focus of this paper is to explore 
the influence of vertical heterogeneity of the shear modulus on the mobilization of seismic earth pressures. To 
facilitate comparisons to exact analytical solutions in the literature ([17], [18]) solutions are developed herein for 
rigid walls fixed to a rigid base layer (e.g., the bathtub condition), though the solution framework for handling 
vertical heterogeneity is easily adaptable to deeper soil conditions. The framework for computing free-field 
displacements and seismic earth pressures is presented first, followed by comparison with an exact analytical 
solution. Elastodynamic solutions for flexible walls, soil inelasticity, gapping, and interface slip is reserved for 
future publications. 

2. Solution for Free-Field Displacement in Vertically Heterogeneous Soil 
[15] developed aAn analytical solution for vertical shear waves propagating through a soil layer with VS varying 
vertically in accordance with Eq. 1 was developed by [15], where VH is the shear wave velocity at the bottom of 
the layer (depth = H), Vo is the shear wave velocity at the ground surface, z is depth, and n is an exponent 
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controlling the rate of change of VS with depth. Solutions were developed for the vertically heterogeneous layer 
resting on a rigid base, and for a vertically heterogeneous layer resting on a uniform elastic layer on a rigid base. 
The former solutions are utilized herein.  
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The analytical solution for the free-field soil displacement, uff, is given by Eq. 2, where Jv2() and Nv2() denote 
Bessel functions of the first and second kind, respectively, of order v2. Note that Vr is the shear wave velocity at 
a reference depth, zr. For simplicity, zr can be set equal to H, in which case Vr = VH. 
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The modal frequencies are obtained by solving the characteristic equation (Eq. 3), where m=0,1,2… corresponds 
to the different modes. The roots of Eq. 3 correspond to the modal frequencies, and require solution of λm and 
subsequently substituting λm into Eq. (4). 
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Fig. 1 illustrates five velocity profiles corresponding to a vertically heterogeneous layer resting on a rigid base 
for various values of n, and for b = 0.01. The value of VH was selected such that the time-averaged shear wave 
velocity, VS,av is constant for all five profiles, as illustrated using Eq. (5). The first-mode frequency of a soil layer 
is often computed as f0 ≈ VS,av/4H, which is not analytically rigorous but provides a reasonable approximation in 
many cases, and avoids the complexity of finding the roots of Eq. 3. For the case shown in Fig. 1, the ratio 
f0/(VS,av/4H) = (1.0, 1.047,1.089,1.086,0.987,0.847) for n = (0.0, 0.1, 0.25, 0.5, 0.75, 0.9). The average shear 
wave velocity for this profile is defined as: 
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The first mode shapes depend significantly on n. The first mode shape with n=0.1 is approximately equal to the 
first mode shape for a uniform layer (n=0) with shear strains being largest near the base of the layer, while the 
mode shape for n=0.5 is nearly linear with shear strains being approximately constant, and the mode shape for 
n=0.9 exhibits small displacements near the base and the highest strains at shallow depths ([19]). 

 

  
Fig. 1 – Normalized shear wave velocity and first-mode displacement for vertically heterogeneous layer resting 
atop a rigid base. All profiles have a constant VS,av (after [15]). 

 

3. Winkler Stiffness Intensity Approximation 

The lateral stiffness associated with wall-soil interaction is represented by stiffness intensity ky
i, which has units 

of stiffness/area. The [14] solution for kinematic seismic earth pressures by [14] requires the use of expressions 
for ky

i, which was uniform with depth due to the homogeneous soil assumption.  

For the present application, we use an approximate ky
i solution from [16]. This solution applies for a rigid wall of 

height H resting on a rigid base and supporting uniform elastic soil subjected to excitation from the base. The 
derived solution for ky

i is frequency-dependent, which is expressed as a function of the dimensionless frequency, 
ao = ωH/VS

*, and a dimensionless cutoff frequency, aoc, which is equal to π/2 for the harmonic shape functions 
adopted by [16]. Note that VS* = VS·(1+2iD)0.5 is the complex shear wave velocity incorporating the effects of 
frequency-independent material damping D. Because VS

* varies with depth, a representative value of VS
* = (4Hfn) 

was selected for computing ao, where fn is the first-mode frequency computed using Eq. (4). This value was 
selected because a uniform soil profile with VS

* would produce the same first mode frequency as the vertically 
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heterogeneous profile. To account for vertical heterogeneity in the stiffness intensity term, we adjust the form 
proposed by [16] such that ky

i is a function of depth, and is directly proportional to G(z) = ρVS(z)2, where ρ is 
mass density and G is shear modulus. Though this approximation is not analytically rigorous, an alternative 
relationship is not currently available for heterogeneous soil profiles. The assumed relation for ky

i(z) is given by 
Eq. 7, where ν is the Poisson ratio. 
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An average value of Winkler stiffness intensity, ky
i
av is obtained by substituting VS,av for VS(z) in Eq. (7). 

4. Example Kinematic SSI Solutions 

Example solutions are presented in this section for the seismic earth pressure imposed on a rigid wall by a 
vertically heterogeneous profile. Various values of the vertical heterogeneity exponent, n, are used to illustrate 
its influence on seismic earth pressure. The seismic earth pressure increment is computed using Eq. (8), while 
the resultant, PE, is computed using Eq. (9) and the normalized height of the resultant, h/H, is computed using 
Eq. (10). 
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Pressure distributions are presented in Fig. 2 in terms of the horizontal seismic pressure increment, ∆σyy 
normalized by ky

i
avug0 associated with the first-mode resonant frequency of the free-field soil column. As n 

increases, the seismic earth pressures decrease significantly, particularly at shallow depths, and the centroid of 
the resultant force shifts downward. These differences are attributed to the mode shapes combined with the 
depth-variation in ky

i. For high n values, the mode shapes in Figure 1 show that free-field displacements are 
small near the base of the profile, where ky

i is large, and large near the surface of the profile where ky
i is small. 
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Fig. 2 – Dimensionless horizontal seismic earth pressure increment versus dimensionless depth for vertically 
heterogeneous soil profiles acting against a rigid vertical wall. 

 

 

Transfer functions relating the amplitude of the dimensionless seismic earth pressure resultant, PE, to λav/H are 
shown in Fig. 3, where λav = VS,av/f. As n increases, the rightmost peak of the transfer functions decreases 
significantly in amplitude, as anticipated by the reductions in earth pressures over the upper portion of the wall 
shown in Fig. 2.  Furthermore, the peak shifts to larger λav/H. The shift in the position of the peak is related to 
the distribution of free-field shear strain over H.  

We recognize that the results in Figure 3 use a time-averaged shear wave velocity, VS,av that provides only an 
approximation of the modal response of the soil column. Errors associated with this approximation transfer to 
the normalizing factors λav and ky

i
av. The approximation is utilized herein for simplicity since VS,av, λav, and ky

i
av 

can easily be computed.  

Also plotted in Fig. 3 is the normalized depth of the resultant, h/H. As n increases, the h/H decreases at 
wavelengths longer than the right-most peak. The resultant position at low λav/H values varies rapidly with 
changes in λav/H due to the fluctuations of seismic pressure over the wall height, and the resultant is not 
constrained to act in the interval from 0 to H. For example, at certain frequencies PE = 0, but the resulting 
pressure distribution produces a non-zero moment, ME, about the base of the wall. Since h = ME/PE, h becomes 
infinite. The notion of a resultant height is not physically meaningful in these cases. 
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Fig. 3 – Normalized seismic earth pressure resultant and height of resultant versus normalized wavelength for 
vertically heterogeneous soil profiles acting on a rigid wall. 

 

5. Comparison With Exact Analytical Solution 

The proposed solutions are approximate in several respects. First, they utilize the Winkler assumption, which is 
known to be incorrect butan approximation that is commonly applied in cases where complicated boundary 
conditions render rigorous analytical solutions infeasible. Second, the Winkler stiffness intensity, ky

i, was 
assumed to be proportional to shear modulus, and the solution by [16] was adapted to this assumption.  

To validate the results obtained using the proposed simplified framework, we compare our findings to exact 
analytical solutions developed by [18]. [18] developed analytical solutions for the seismic earth pressures 
imposed on rigid walls resting on a rigid base retaining vertically heterogeneous soil. The analytical solution is 
formulated for a symmetric condition in which soil is retained between two walls of height H separated by 
distance L. The largest ratio they studied was L/H = 10, which is adopted for comparison herein because it 
corresponds most closely to a single wall condition. The vertical variation of shear modulus is defined by Eq. 
(11), where Go is the shear modulus at the ground surface, G∞ is the shear modulus at a depth of infinity, and η is 
a constant that controls the rate of change of shear modulus with depth. Mass density ρ was assumed as depth-
invariant in their solution.  
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The shear modulus corresponding to Eq. (1) and Eq. (11) are different, and we seek to fit Eq. (1) to best fit Eq. 
(11). To achieve this goal, a dimensionless shear wave velocity profile was computed by taking the square root 
of Eq. (11), and normalizing by the value of the resulting expression at z = H. Normalized velocity profiles are 
shown in Fig. 4 for various values of Ξ = 1 – Go/G∞. The constants in Eq. (1) were then fit to these normalized 
velocity profiles by dividing Eq. (1) by VH, setting Vo/VH to be equal to the values at z=0 implied by Eq. 11, and 
solving for n such that the time-averaged normalized shear wave velocity profiles were equal.  
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Fig. 4 – (a) Normalized shear wave velocity profiles, and normalized seismic earth pressures versus normalized 
depth for the analytical solution by [18] compared with the proposed solution. Solutions are for (b) ωH/Vo = 
2.400, (c) ωH/Vo = 1.536, ν = 0.3, and ξ = 0.05. 

 

Normalized seismic earth pressures presented by [18] are compared with those implied by the [15] solution for 
free-field displacements by [15] multiplied by the Winkler stiffness intensity in Eq. (7). These solutions are 
presented for two different dimensionless frequencies of (b) ωH/Vo = 2.400 and (c) ωH/Vo =1.536. For (b), the 
proposed solution modestly under-predicts seismic pressures for Ξ = 0.9 and 0.8, and more significantly under-
predicts for Ξ = 0.7. For (c) the proposed solution slightly under-predicts seismic pressures. A number of factors 
may be at work in explaining the under-prediction. First, the solutions for (b) are all fairly close to first-mode 
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resonance (ω/ωo = 0.68, 0.9, and 1.06 for Ξ = 0.9, 0.8, and 0.7, respectively). The stiffness modifier term in Eq. 
(7) [i.e., (aoc

2 – ao
2)0.5] is a significant contributor to the values of ky

i when the frequency is near a resonant mode, 
but there is considerable uncertainty in applying a stiffness modifier term formulated for homogeneous soil to a 
heterogeneous profile. The amplitude of the error is expected to increase as ω/ωo becomes closer to unity. The 
agreement is much better at lower frequencies where the stiffness modifier is less important. Another possible 
cause of the difference is that the first-mode frequencies of the two soil profiles are likely slightly different due 
to the misfit in the VS/VH profiles in Fig. 4. Solutions for ∆σyy are very sensitive to small changes in frequency 
when ω/ωo is near unity, hence a small difference in ωo could translate to a significant difference in ∆σyy. 
Furthermore, the solution by [18] corresponds to a two-dimensional problem with soil contained between two 
walls, while the natural frequency for the proposed solution corresponds to 1-D free-field response. Despite 
these differences, the proposed method provides a reasonable agreement with the [18] analytical solutions. 

The proposed solutions result in zero seismic earth pressure at the base of the wall because there is zero relative 
displacement at this position, as required in a Winkler-type solution by the rigid base assumption . However, the 
analytical solutions do predict some seismic pressure at this depth. This illustrates a fundamental limitation of 
the Winkler solution that causes an under-prediction of seismic earth pressure, and an over-prediction of the 
height of the resultant force.  

Although not shown in this paper, the proposed method is adaptable to walls resting on deep soil profiles, which 
is a more common boundary condition than the rigid base condition. Seismic earth pressures reduce significantly 
for such flexible-based conditions as compared to rigid base conditions because the wall is better able to 
conform to the free-field displacement profile, and the wavelengths controlling seismic excitation tend to be 
longer.  

6. Conclusions 
Vertical heterogeneity in which the free-field shear wave velocity profile increases with depth causes decreases 
in kinematic earth pressures on rigid walls during seismic shaking, relative to the uniform soil condition, for a 
constant ground surface motion amplitude. The cause of the reduction is that free-field displacements become 
concentrated near the ground surface as the degree of heterogeneity increases, where the Winkler stiffness 
intensity is small. More than an order of magnitude reduction in the peak response is predicted as n transitions 
from 0 (uniform VS profile) to 1 (linear VS profile). Furthermore, the height of the resultant of the seismic earth 
pressure distribution shifts downward as a result of vertical heterogeneity from h/H larger than 0.6 for uniform 
soil to slightly more than 0.4 for linearly increasing VS. 

The proposed Winkler solution combined with the [15] free-field displacement solution agreed reasonably well 
with the exact analytical solution developed by [18]. The former under-predicted the earth pressures computed 
by the latter, with the likely cause of the difference being the selection of dynamic Winkler stiffness intensity. 
The [18] solutions used for comparison herein were fairly close to the resonant frequency of the free-field soil 
column, and frequency modifiers to the stiffness terms are known to be important near resonance. Future 
research regarding appropriate selection of Winkler stiffness intensity has the potential to improve the 
agreement. 

Wall flexibility, base stiffness, soil inelasticity, gapping, and interface slip are all known contributors to seismic 
earth pressures. The influence of these effects is beyond the scope of this study, and is reserved for future 
publications. 
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