
16th World Conference on Earthquake, 16WCEE 2017 
Santiago Chile, January 9th to 13th 2017 
Paper N° 1794 
Registration Code: S- L1464704285 

PROPOSED METHODOLOGY FOR DEFINING OPTIMAL INTENSITY 
MEASURES FOR EMPIRICAL TSUNAMI FRAGILITY FUNCTIONS 

 
J. MACABUAG1, T. ROSSETTO2, I. IOANNOU3,  

A. SUPPASRI4, D. SUGAWARA5, B. ADRIANO6, F. IMAMURA7, I. EAMES2, S. KOSHIMURA7 

 
1 EngD Candidate, EPICentre, University College London, UK, macabuag@gmail.com 
2 Professor, EPICentre,  University College London 
3 Post-doctoral Researcher, EPICentre,  University College London 
4 Associate Professor, IRIDeS, Tohoku University, Sendai, Japan  
5 Museum of Natural and Environmental History, Shizuoka, Japan 
6 PhD Candidate, IRIDeS, Tohoku University  
7 Professor, IRIDeS, Tohoku University 

Abstract 
Tsunami fragility functions for buildings provide a probabilistic link between tsunami intensity and building 
damage. They are a component of tsunami risk models, and so are vital for land-use and emergency planning, 
performance-based engineering, as well as human and financial loss estimation. When selecting or developing 
risk models, a Tsunami Intensity Measure (TIM) (e.g. inundation depth, velocity, force estimates etc) must be 
selected which provides the best possible representation of the damage potential of the tsunami inundation. 
However, there is no consensus as to which flow parameter is the most appropriate TIM to estimate fragility.  
 
This paper presents a rigorous methodology using advanced statistical methods for the selection of the optimal 
TIM for fragility function derivation for any given dataset. This methodology is demonstrated using a unique, 
detailed, disaggregated damage dataset from the 2011 Great East Japan Earthquake and Tsunami, identifying the 
optimum TIM for describing observed damage for the case-study locations. Several advanced statistical methods 
are introduced which are novel in the fields of fragility analysis: multiple imputation for treatment of incomplete 
data-entries, semi-parametric Generalised Additive Models, and k-fold cross-validation for model comparison 
and optimization. 
 
The methodology presented in this paper has application for researchers and risk modellers in the engineering, 
DRR and insurance industries; and the statistical methods presented have implications for fragility function 
derivation and selection for multiple hazards. 
 
Keywords: Tsunami damage; Empirical fragility curves; Cross-validation; Multiple imputation; Intensity 
measures. 

Introduction 
For the purpose of making building damage predictions for future tsunamis it is generally unrealistic to define 
deterministic relationships (i.e. predicting with absolute certainty the exact damage caused by a tsunami to each 
of a population of buildings), and so statistical approaches are more appropriate. Tsunami fragility functions are 
statistical models which give the probability of damage exceedance (i.e. the probability that the damage state 
experienced by a building, ds, will be greater than or equal to a defined damage state, DS) as a function of the 
Tsunami Intensity Measure (TIM, a parameter used to define the flow conditions at each building location) 
(equation (1)). They are often presented as cumulative distribution functions derived by applying statistical 
model fitting techniques to building damage data. 
 

𝑃(𝑑𝑠 ≥ 𝐷𝑆|𝑇𝐼𝑀) = 𝑓(𝑇𝐼𝑀) (1) 
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The TIM should provide the best possible representation of the damage potential of the tsunami inundation. 
Tsunami-induced building damage can arise due to hydrostatic forces (including buoyancy), hydrodynamic 
effects (drag and bore impact) and debris (impact and damming). The severity of these effects are determined by 
a number of flow parameters, yet the majority of existing tsunami fragility curves adopt only the local maximum 
inundation depth as the TIM, often because it can be estimated from post-tsunami reconnaissance of buildings. 
Other parameters of the flow can be derived from inundation modelling, and existing studies use velocity and 
hydrodynamic force [1] [2], momentum flux (an indicator of drag force), moment of momentum flux (the 
product of momentum flux and inundation depth) [3] and energy head according to the Bernoulli Equation [4]. 
All force estimations in previous studies have been based on the standard form drag equation, and so do not 
account for alternative estimations such as equivalent hydrostatic methods [5], bore impact [6] or changes in 
flow regime [7]. Overall these studies do not show a consensus as to which flow parameter is the most 
appropriate TIM to estimate fragility. 
 
Some existing studies attempt to define the optimal TIM based on qualitative visual assessments [8] or using 
small datasets [4]. A number of seismic studies have compared seismic Intensity Measures (IMs) using the 
criteria of “efficiency” [9], “sufficiency” [10] and “computability” [11], though these have often been based 
directly on continuous structural response (in terms of Engineering Demand Parameters (EDP)) derived from 
numerical analyses, and so the same methods are not appropriate for fragility functions formed on the discrete 
damage states of observational damage data. To date no existing study has compared efficiency of multiple 
TIMs based on empirical fragility curves fit to observed damage data.  
 
This paper presents a proposed rigorous methodology using advanced statistical methods for the selection of the 
optimal TIM for fragility function derivation for any given dataset. This methodology is demonstrated using a 
unique, detailed, disaggregated damage dataset from the 2011 Great East Japan Earthquake and Tsunami, 
identifying the optimum TIM for describing observed damage for the case-study locations. The proposed 
methodology consists of the three steps shown in Figure 1 [12]. 
 

 
Figure 1: Methodology flow chart with expected outputs at each Step [12]. 
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Step 1. Exploratory Analysis of Data Quality 
The aim of Step 1 is to identify the response and explanatory variables from the information available in the 
database, and to identify and treat any underlying bias. This is achieved in two stages: 

1. Identify and assess the following categories of variables: 
a. Building construction variables. 
b. The response variable: Damage state definitions and distributions. 
c. Inundation variables: Identify and validate TIMs. 

2. Classify and treat incomplete data-entries. 
Items 1 above is discussed in [12], [13] and are demonstrated for the case study database below. 
 
Regarding treatment of missing data, previous studies generally conduct complete-case analysis [14], i.e. they 
remove any partial data, such as buildings of unknown material, from their fragility analysis. However, not 
dealing with missing data leads to a loss of statistical power and bias if the missing data is informative. 
According to the guidelines set out by [15], the approach to be used for dealing with missing data depends on 
whether the data is Missing Completely At Random (MCAR), Missing At Random (MAR), or Missing Not At 
Random (MNAR) (Table 1). MCAR refers to the case where the data is missing purely by chance, in which case 
complete-case analysis may be conducted without introducing bias in the results. MNAR refers to the case where 
the missing information is related to the reason that the information is missing (e.g. if wooden buildings had 
been removed from the dataset because they were wooden), in which case complete case analysis would 
introduce bias and missing data cannot be estimated, and so the dataset must be supplemented with additional 
information to address this before fragility analysis can be conducted. MAR refers to the case where the 
information is not missing completely at random but can be accounted for by using other attributes, in which 
case the missing data may be estimated by Multiple Imputation (MI) techniques. MI involves replacing missing 
observed data with substituted values estimated multiple times via stochastic regression models built on the other 
attributes (used as explanatory variables), with all of the imputations being combined in order to derive the final 
estimate. 
 

Classification Method of Identification Recommended Action 

Missing 
Completely At 

Random (MCAR) 

Test whether the missing data distribution is the 
same as for the complete dataset (Kolmogorov-
Smirnoff test for disaggregated data, or χ2-test 
for aggregated data). 

Conduct Complete-Case Analysis (i.e. remove 
datapoints with missing information and perform 
regression analysis on the remaining dataset), or 
estimate missing data using Multiple Imputations 
techniques. 

Missing Not at 
Random (MNAR) 

Is the missing information related to the reason 
that the information is missing? 

Fragility analysis cannot be conducted without 
introducing bias. Revisit data-collection process to 
complete missing data. 

Missing at 
Random (MAR) Not MCAR or MNAR. Estimate missing data using Multiple Imputations 

techniques. 
Table 1: Classification and treatment of missing data. 

Case Study: Building Damage Dataset 
The building damage data used in this paper is taken from the Great East Japan Earthquake (2011) building 
damage database compiled by Japan’s Ministry of Land Infrastructure Tourism and Transport (MLIT). The 
database is comprised of relevant information (including the number of floors, construction material, and 
building usage) for each individual building (circa 250,000) located within the inundation area of the GEJE, 
though information is generally not included for every field for each building. All buildings are allocated a 
damage state from DS0 to DS6 based on the damage scale presented in Table 2, and assigned an observed 
inundation depth. As discussed by [16] DS5 and DS6 do not represent progressively worse damage states, and so 
for the fragility function derivation in this study, damage states 5 and 6 are combined and collectively termed as 
DS5*. 
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DS1: Minor Damage 

 

DS2: Moderate Damage 

 

Inundation below ground floor. The building is inundated less than 
1m above the floor. 

Possible to use immediately after 
minor floor and wall cleanup. 

Possible to use after moderate 
repairs. 

DS3: Major Damage 

 

DS4: Complete Damage 

 

The building is inundated more than 
1m above the floor (below the 

ceiling). 

The building is inundated above the 
ground floor level. 

Possible to use after major repairs. Major work is required for re-use of 
the building. 

DS5*: Irreparable 
DS5: Collapsed 

 

DS6: Washed Away 

 

The key structure is damaged. The building is completely washed 
away except for the foundation. 

Not repairable. Not repairable. 

Table 2 - Damage state definitions used by the Japanese Ministry of Land Infrastructure Tourism and Transport 
following the 2011 Great East Japan Earthquake and Tsunami. Descriptions from Japan Cabinet Office (2013), 

usage descriptions are after Suppasri et al. (2014). 
 
In the present study three case-study locations are considered: Ishinokami, Onagawa, and Kesennuma (shown in 
Figure 2), representing 80%, 15%, and 5%, respectively, of the combined dataset (67,125 buildings). A closer 
look at the data shows that the distributions of buildings with different construction materials is similar for the 
three towns and that together they provide a better coverage of a range of inundation depths, and hence it is 
reasonable to combine the data from the three towns in order to provide a larger dataset, so enabling greater 
confidence in the derived fragility curves. 
 

Figure 2: Case-study locations. GIS images have buildings coloured according to their observed damage state 
(right), where: white buildings indicate no damage (DS0), black indicates that buildings have been washed away 

(DS6) and all other damage states are coloured based on a scale from green (DS1) to red (DS5). 
 
Producing fragility curves for each construction material requires splitting the data into small datasets for some 
materials (e.g. reinforced concrete, RC, buildings represent only 1.8% of the data, spread over the 5 damage states), 
which can result in larger uncertainty associated with the model parameter estimates. Inspection of the data shows 
that damage state distributions for wood and masonry (typically associated with non-engineered constructions) are 
very similar to each other. The same can be observed of the damage distributions for (RC) and steel (engineered) 
buildings. Comparison between the damage state distributions of engineered and non-engineered buildings instead 
shows significant differences. Hence, in this study fragility curves are developed for engineered and non-
engineered structures, in order to account for the significant differences in the fragilities of such buildings, whilst 
maintaining large enough datasets to avoid greatly increasing uncertainty in the model parameter estimates. 

Kesennuma (9,979 buildings) Onagawa (3,474 buildings) Ishinomaki (53,679 buildings) 
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Buildings of unknown construction material make up 18.1% of the total dataset within the inundated area, 
representing a significant proportion of the data and so it is necessary to analyse this missing data further so as to 
avoid the introduction of bias. If the missing data were MCAR (see Table 1) then there should be no relationship 
between the buildings that have missing material data and other attributes such as the building height, size and 
use. However, analysis of building footprint sizes (Figure 3) suggests that engineered buildings (RC and steel) 
are generally larger than non-engineered buildings (wood and masonry), with buildings of unknown material 
representing the smallest footprints. This suggests that many buildings of unknown material may represent non-
engineered buildings. A Kolmogorov-Smirnoff test is conducted and confirms that footprint areas for the 
buildings of unknown material are not of the same distribution as for the total dataset (i.e. they have different 
probability density functions). Therefore, the missing building material data is not MCAR. MNAR would refer 
to, for example, if wooden buildings are more likely to have missing material data because they are wooden. 
However, there is no reason to believe that all the missing material data can be associated with either the 
engineered or non-engineered construction types. Hence, the missing building material data is not considered 
MNAR. MAR would be the case where, for example, small buildings are more likely to have missing material 
data, but this has nothing to do with material after accounting for size. This is more likely to be the case here, 
and hence we adopt a Multiple Imputation (MI) approach to assign building data for which construction material 
information is missing to either the engineered or non-engineered building categories. 
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Figure 3: Damage State distributions, showing that buildings of unknown material type have a greater proportion 
of undamaged (DS0) buildings than buildings of known material type. Histograms and normal curves for 
building inundation depths and footprint areas for buildings of unknown (top) and known material (right). 

 
In order to conduct MI, which attributes should be used for the imputation? It has already been shown that 
building footprint is an indicator of construction material. Figure 3 also shows that buildings of unknown 
material show a large proportion of undamaged (DS0) buildings. Visualization of building location by 
construction material shows no obvious spatial correlation of the unknown buildings. However, a Kolmogorov-
Smirnov test performed on the observed inundation depths for unknown and known materials indicates that there 
is a very low probability (<5%) that the two datasets are drawn from the same underlying distribution (indeed 
Figure 3 shows that the distributions of inundation depths for buildings of unknown material do have a slight 
increase in the number of buildings at low simulated inundation depths). In addition, building usage information 
shows some correlation with construction material.  
 
Therefore, Multiple Imputation analysis, with 4 imputations, is conducted in order to estimate building material 
based on footprint area, damage state, building use, and observed inundation depth. The effect of imputation on 
results is investigated further in Step 2. 
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Case Study: Tsunami Inundation Simulation Data 
To supplement the observed inundation depth data, a numerical inundation simulation is conducted for the case-
study locations to derive additional TIMs. The optimum TIM for this dataset will be defined in Step 3 from the 
TIMs shown in Table 3.  
 
TIM1-TIM6 have already been discussed in the context of existing studies. The drag force is proportional to the 
local momentum flux and so is proportional to TIM4. TIM7 is an equivalent quasi-steady force proposed by [7] 
which is evaluated via two different flow regimes (sub-critical and choked flow) determined by Froude Number 
(readers are referred to [7] for the calculation procedure). All of the simulated TIM values are calculated at the 
geometrical centres of each building footprint for each time-step of the simulation, and the peak values extracted, 
with the exception of the equivalent peak momentum flux (MFequiv, TIM5) and quasi-steady force estimation 
(FQS, TIM7) both of which are calculated using the separate peak depth and peak velocity values (which do not 
occur at the same time). 

Tsunami Intensity Measure Symbol Description 
TIM1 Observed inundation depth hobs Peak observed inundation depth 
TIM2 Simulated inundation depth hsim Peak simulated inundation depth 
TIM3 Flow speed v Peak simulated velocity �𝑣𝑝𝑒𝑎𝑘� 
TIM4 Momentum flux MF (ℎ𝑣2)𝑝𝑒𝑎𝑘 
TIM5 Equivalent peak momentum flux MFequiv (ℎ)𝑝𝑒𝑎𝑘 . (𝑣2)𝑝𝑒𝑎𝑘 

TIM6 Froude number Fr �𝑣
�𝑔ℎ� �

𝑝𝑒𝑎𝑘

 

TIM7 Equivalent quasi-steady force FQS Alternative steady-state force estimation 
considering choked and sub-critical flow [7] 

Table 3: Alternative TIMs considered in this investigation. 
 

The numerical tsunami inundation model is presented in detail and validated by [19], [20], and the tsunami 
source model is presented in [21]. The wave propagation and inundation calculation solves discretized non-linear 
shallow-water equations [22], [23] over six computational domains in a nested grid system (Figure 4), 
accounting for flow resistance via the Manning's roughness coefficient (n, taken as 0.025 to represent resistance 
from obstacles in the urban case study areas).  

Wave height Momentum Flux 

     
Grid size = 1215m Grid size = 135m Grid size = 45m Grid size = 15m 

Figure 4: Some of the computational domains for the nested grid wave propagation and inundation model used for 
Ishinomaki (dx indicates the grid size). Example results for grid size = 15m inundation simulation are shown for 
momentum flux (TIM4). The results shown are the peak values for each grid square over the simulation period. 

Step 2. Statistical Model Selection and Trend Analysis 
The aim of Step 2 is to select appropriate models with which to conduct the TIM comparison of Step 3, and to 
use these models to supplement the exploratory analysis of Step 1. The outcome of Step 2 is to have selected at 
least two models and their optimum configurations, and to have a complete dataset with biases addressed. The 
statistical models can be parametric, semi-parametric, or non-parametric (Table 4). Step 2 consists of the stages 
shown in Figure 1. 
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Class Model Configuration Options Selection Method Reference 

Parametric 

Ordinary Least 
Squares (OLS) (OLS not suitable for fragility function derivation) 

Suppasri et al. (2012a); 
Suppasri et al. (2009); 

Tanaka & Kondo (2015) 
   

Generalised Linear 
Model (GLM) 

Or 
Cumulative Link 

Model (CLM) 

Transformation of explanatory variables AIC* 
Charvet et al. (2015); 

Leelawat (2014); Muhari 
(2015); Reese (2011) 

Link function AIC 

Ordered or partially ordered models LRT 
     

Semi-
parametric 

Generalised 
Additive Model 

(GAM) 

Transformation of explanatory variables AIC* 
Wood (2006) Link function AIC 

Number of knots KFCV** 
     

Non-
parametric Kernal Smoother (See reference for information on fitting these models) Noh et al. (2014) 

*It is noted that fragility functions are generally fit to the natural logarithm of the explanatory variable . 
**If conducting trend analysis using GAMs it is recommended to simply select a preliminary number of knots (e.g. 4 knots). 

Table 4: Statistical models considered for TIM comparison. AIC = Akaike Information Criteria (Rossetto et al., 
2014), LRT = Likelihood Ratio Test (Rossetto et al., 2014), KFCV = K-Fold Cross-Validation (introduced 

below). 
 
The vast majority of existing fragility curves use Ordinary Least Squares (OLS) parameter estimation to fit 
Normal or Lognormal Cumulative Distribution Functions (CDFs) to aggregated model data [1]. However, [20] 
quantitatively shows that OLS regression is inappropriate for fragility function derivation as several of the linear 
model assumptions are violated by the data and the aggregation of data results in information being lost, leading 
to reduced predictive accuracy and increased uncertainty by an amount which is dependent on the aggregation 
approach. For these reasons OLS models may not be used in the methodology proposed in this paper. 
 
Generalised Linear Models (GLMs) allow for a relaxation of some of the linear model assumptions by relating the 
mean of a response variable (E(yi)=µi) to the explanatory variables (xi) via an arbitrary link function (g) (where the 
subscript i refers to the ith  building) [16]. The link function is selected dependent on the distribution of the response 
variable, typically transforming the response such that g(µ) is a continuous variable bounded by [-∞,+∞] (generally 
probit, logit or cloglog link functions are used for fragility functions). As such, GLMs can be used for variables 
with distributions other than the Gaussian distribution assumed in OLS linear regression models, and so where 
damage data is either binary (damaged/not damage) or ordinal (falling into one of several discrete damage states) 
GLMs are recommended as an improvement over OLS for deriving fragility curves [16], [31]. 
 
In Step 2 further exploratory analysis of the available database can be conducted by fitting ordinal cumulative 
link models to the data. Fragility curves corresponding to each damage state (DS1-DS5*) are determined by 
assigning a damage response indicator, ds,  to each building, which is considered to follow a multinomial 
distribution. Each building is also assigned a TIM value, xj. The main advantage of this model over separate 
GLMs fitted to binary data, is its ability to use all available information regarding the data in the database, it 
recognises that the damage is an ordinal categorical variable and accounts for the main conclusions of the 
exploratory analysis [32]. The optimal link function can be selected by comparing AIC statistics, as in [16]. The 
model equations are given in Table 5 for a probit link function (the inverse standard cumulative normal 
distribution), where β0 and β1 are the unknown regression parameters (the intercept and slope, respectively) 
estimated by a maximum likelihood optimisation algorithm. Uncertainty may be quantified using bootstrap 
methods [16]. Multinomial data can be assessed using either partially-ordered or ordered models. For ordered 
models the slope parameters (β1 in Table 5) are assumed to be equal for all damage states so as to avoid 
undesirable effects such as the crossing of curves. Partially-ordered models relax this assumption. The decision 
of whether to use ordered or partially-ordered models can me made via the Likelihood Ratio Test [31]. 
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Random 
Component 

𝑑𝑠 = {0,1,2,3,4, 5∗},        𝑑𝑠|𝑥𝑗~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 �𝑃�𝑑𝑠 = 𝐷𝑆𝑖�𝑇𝐼𝑀 = 𝑥𝑗�� 

Where,    𝑃�𝑑𝑠 = 𝐷𝑆𝑖�𝑇𝐼𝑀 = 𝑥𝑗� = �
1 − 𝑃�𝑑𝑠 ≥ 𝐷𝑆𝑖�𝑥𝑗�

𝑃�𝑑𝑠 ≥ 𝐷𝑆𝑖�𝑥𝑗� − 𝑃�𝑑𝑠 ≥ 𝐷𝑆𝑖+1�𝑥𝑗�
𝑃�𝑑𝑠 ≥ 𝐷𝑆𝑖�𝑥𝑗�

        
𝑖 = 0

0 < 𝑖 < 𝑁𝐷𝑆
𝑖 = 𝑁𝐷𝑆

 

Systematic 
Component 𝑝𝑟𝑜𝑏𝑖𝑡 �𝑃�𝑑𝑠 ≥ 𝐷𝑆𝑖�𝑇𝐼𝑀 = 𝑥𝑗�� = 𝛽0,𝑖 + 𝛽1,𝑖𝑥𝑗 

Parameter 
Estimation where 𝛽0,𝑖 , 𝛽1,𝑖 are estimated via Maximum Likelihood 

Table 5: Components of partially-ordered Cumulative Link Models (CLM) with probit link function. 
 
Generalised Additive Models (GAMs) [29] are semi-parametric models that fit GLMs in a piecewise regression 
system with a number of separation points (or knots). Whilst there are dangers in using non-parametric and semi-
parametric methods for prediction purposes, they are suitable for comparing the influence of different explanatory 
variables (TIMs) to describe response variable observations. However, an issue with non- and semi-parametric 
models is that they are susceptible to over-fitting, and their appropriateness in the context of fragility analysis has 
not yet been demonstrated. There are methods for overcoming overfitting (demonstrated in Step 3), and so GAMs 
are recommended (alongside CLMs) to conduct the TIM comparison of Step 3. 

Case Study: Further Exploratory Analysis and Model Selection 
In this stage several statistical model types and model configurations are investigated and the models used for 
the TIM comparison of Step 3 are selected. It is noted that the TIM used in this section is the observed 
inundation depth reported in the MLIT database, and therefore this investigation is independent of the inundation 
simulation. 
 
Curves are constructed for engineered and non-engineered building categories and the influence of these construction 
material groups is examined by fitting the cumulative link model shown in Table 5 to the data corresponding to the 
two material groups. The confidence intervals are quantified using bootstrap methods employed by [16] based on 
1,000 iterations. Figure 5 shows that fragility curves for engineered and non-engineered buildings differ in both slopes 
and intercepts, and so it is appropriate to consider these material groups separately. Consequently, the TIM 
comparison of Step 3 is conducted for each material group separately, and results are compared. 
 

 
Figure 5: Comparison of fragility curves for engineered and non-engineered material groups, for each damage 

state, formed on disaggregated data. 
 
The more complex model (partially-ordered model, M1.1) will always fit the data as well as or better than the 
simpler model (M1.2). The LRT results given in Table 6 confirm that there is less than a 1% chance that the 
improvement of fit for the more complex model could be observed by random chance, and therefore the partially 
ordered model is to be used for the TIM comparison in Step 3. 
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Model logLikelihood Likelihood Ratio Statistic P (χ2) 
Partially Ordered Model -4964.4 1734 <2.2e-16 *** Ordered Model -5831.4 

Table 6: Likelihood Ratio Test results for ordered and partially ordered models, showing that the partially 
ordered model provides a significantly better fit than the ordered. 

 
As GAMs are a piecewise system of GLMs, and as overfitting can be avoided using cross-validation sub-
sensitivity analysis (demonstrated in Section Error! Reference source not found.) GAMs are also selected 
(alongside CLM model M1.1) to conduct the TIM comparison of Step 3. 

Step 3. Comparison of Tsunami Intensity Measures 
The optimum TIM is defined by fitting the models selected in Step 2 to the completed dataset and assessing the 
goodness of fit for each TIM. Goodness of fit measures based on examination of residuals (e.g. R2

, LRT and AIC) 
are biased by overfitting, indicating a better fit to the underlying population than is really the case, and cannot be 
used to directly compare cumulative models with separate models, nor to compare models formed on aggregated 
and disaggregated data. Cross-validation techniques overcome these issues and so are recommended here. 
 
Cross-validation is an improvement over simply plotting the residuals, as it attempts to indicate the prediction 
error (i.e. the proportion of incorrectly classified outcomes) that would be experienced on data that has not been 
used to form the statistical model. K-fold cross-validation creates K-fold partitions in the total dataset, and for 
each of K validation experiments uses one fold as the testing set (a different one each time), and the remaining 
data as the training set. The average of the error rates for all iterations gives an estimate of the true prediction 
error rate. Cross validation has been used to estimate tsunami fragility curve prediction error rates by [26] and 
[2], who also propose a penalized error estimation method for multinomial models that is used in this study 
(shown in (2)). In (2), NDS refers to the number of damage states (6 in this case, including DS0), and the 
predicted damage state (dsj,predicted) for the jth observation is taken as the damage state that has the greatest 
probability of occurrence. The optimum TIM for a given data set is that for which the fit models provide the 
lowest error rate. 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒(𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙) =
1
𝐾
� � �

�𝑑𝑠𝑗,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑑𝑠𝑗,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑�
𝑁𝐷𝑆 − 1

𝑁𝑡𝑒𝑠𝑡 𝑠𝑒𝑡

𝑗

�
𝐾

𝑘=1

 

where  𝑑𝑠𝑗,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = argmax𝐷𝑆𝑖∈{𝐷𝑆0:𝐷𝑆6} 𝑃�𝑑𝑠 = 𝐷𝑆𝑖�𝑇𝐼𝑀 = 𝑥𝑗� 

(2) 

Case Study: Semi-Parametric Model Optimization and Intensity Measure Comparison 
This section compares several Tsunami Intensity Measures (TIMs) in their ability to describe the observed 
damage data. First it is demonstrated how cross-validation can be used to define the number of knots to be used 
for GAMs fit to the data each TIM. Partially-ordered probit models (model M1.1) are fit to the disaggregated 
data of the MLIT building damage database for each of the TIMs identified in Table 3, and their relative fits are 
compared using prediction error rates estimated via 10-fold cross-validation. The same procedure is then 
conducted using Generalised Additive Models (GAMs), with the number of knots for each model selected using 
the sub-sensitivity analysis shown below. Finally, the TIMs are ranked by their predictive error rates for both the 
CLM and GAM model groups. Note that for all models, the penalized error rate is repeatedly estimated until the 
difference between the running average and that of the previous iteration reduces to below 10-5. 
 
Cross-validation techniques are less biased by overfitting than techniques that simply consider residuals, and so 
comparison of the cross-validation error rates can be used to select the optimal non-parametric or semi-
parametric model (e.g. to select the number of knots when using GAMs) for each TIM. For this dataset, Figure 6 
shows that for a series of GAMs fit to observed inundation depth, the model using 4 knots provides the lowest 
error rate and so provides the optimal fit over GAMs with more knots, which exhibit signs of overfitting. Note 
that this sub-sensitivity is repeated so as to identify the optimal GAM model for each TIM in turn. 
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Knots 1 2 3 4 5 6 7 8 
Error Rate 10.48% 10.47% 10.48% 10.35% 10.39% 10.40% 10.62% 10.52% 

Table 7: 10-fold cross-validation error rates for GAMs fit to observed inundation depth (TIM1) over a range of 
knots. The best and worst models are shown in Figure 6. 

 

  
(a) (b) 

Figure 6: Comparison of fragility curves for Generalised Additive Models (probit link function) fit to observed 
inundation depth (TIM1) with 4 and 7 knots, showing optimal and over-fit curves respectively. Note that 
aggregated datapoints are shown for graphical reference, but have not been directly used in the regression 

analysis, which has been conducted on the imputed disaggregated dataset. 
 
Table 8 compares the prediction error rates for CLMs and GAMs fit to each additional TIM for engineered 
buildings. For engineered buildings the quasi-steady force estimation (FQS) and simulated inundation depth (hsim) 
appear to give the best fit. The fact that the results for CLMs and GAMs are similar suggest that the results are 
not model-specific. 

 Alternative Intensity Measures  Optimal IM 

 TIM2 TIM3 TIM4 TIM5 TIM6 TIM7  
1st 2nd 

 hsim v MF MFequiv Fr FQS  
CLMs 16.0% 22.9% 17.3% 16.2% 27.5% 15.3%  FQS hsim 
GAMs 13.4% 19.9% 16.6% 15.7% 24.3% 14.1%  hsim FQS 

Table 8: Engineered Buildings: Comparison of prediction error rates for partially ordered cumulative link models. 
The colour scale indicates the goodness of fit, with the lowest error rates (indicating the best fit) shown in green. 

 
Velocity and Froude number alone are consistently the worst TIMs. However, FQS (a function of h, v and Fr) 
generally performs better than the traditional force measure of momentum flux (a function of h and v only). This 
implies that the construction of future empirical and analytical fragility functions based on the GEJE dataset are 
that force should be used as a TIM, where either force accounts for the flow regime (for 2D curves) or an indicator 
of the flow regime (e.g. Froude Number) should be investigated as an additional TIM (for fragility surfaces). 
 

 
Figure 7: The derived fragility functions (partially-ordered CLMs with probit link functions fitted to ln|TIM|) for 
engineered buildings for the best (left) and worst (right) performing TIMs (FQS and Fr, respectively), showing 

narrower confidence intervals for the better performing TIM (FQS).  
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Summary and Conclusion 
This paper has collated, compared and expanded on the current state-of-the-art methodologies for tsunami 
fragility assessment, in order to present a rigorous methodology for the selection of the optimal TIM for 
empirical fragility function derivation for any given dataset. This methodology is demonstrated using a unique, 
detailed, disaggregated damage dataset from the 2011 Great East Japan Earthquake and Tsunami. Exploratory 
analysis is conducted on a detailed, disaggregated building damage dataset, unique in the fields of both tsunami 
and seismic fragility assessment.  
 
Buildings of unknown construction material present a significant proportion of the case study dataset (18.2%) 
and so in order to avoid the introduction of bias when producing fragility curves by material, missing material 
data is estimated using multiple imputation techniques. The first stage of fragility assessment consists of a 
sensitivity analysis of several statistical methods for fragility curve derivation, so as to select at least two 
statistical models with which to conduct the TIM comparison. General conclusions are drawn regarding the 
suitability of various models and the methods used to select between them, with Cumulative Link Models and 
Generalised Additive Models selected for the TIM comparison. Partially-ordered probit models are derived for 
several TIMs and their 10-fold cross-validation results are compared. The same procedure was repeated using 
GAMs to show that the results are not model-specific. It is shown that both inundation depth and a quasi-steady 
force estimation which differentiates between flow regimes (FQS) consistently provide the best fit to the 
observed damage. 
 
Several advanced statistical methods novel in the field of tsunami fragility assessment were introduced: missing 
data classification and Multiple Imputation techniques for missing data estimation, semi-parametric models 
(Generalised Additive Models), and K-fold cross-validation for model comparison. The main conclusions can be 
summarized as follows: 
 
Exploratory Analysis 

1. Missing data can only be removed if it can be shown to be Missing Completely At Random (shown not 
to be not the case for the 2011 MLIT Japan data).  

2. Multiple Imputation (MI) has been shown to be an acceptable method for estimating missing data, and is 
recommended for use on future fragility studies where data cannot be shown to be Missing Completely 
At Random. 

 
Statistical Modelling 

3. K-fold cross-validation (KFCV) is shown to be a suitable method for comparing model fits for various 
model types, and the methodology for conducting this for multinomial models is demonstrated. It is 
recommended that KFCV be used for evaluation of model fits in future fragility studies. 

4. Semi-parametric methods are seen to be suitable for comparative fragility assessments, and the issue of 
over-fitting can be avoided through the use of cross-validation techniques, as demonstrated. 

 
The methodology presented in this paper has application for researchers and risk modellers in the engineering, 
DRR and insurance industries; and the statistical methods presented have implications for fragility function 
derivation and selection for multiple hazards. 
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