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Abstract

Modeling of inherent damping in nonlinear dynamic analysis has generated significant interest over the past 35 years, and
there is little agreement as to the approach that should be used. In most cases, it is assumed that the damping is linear,
viscous, and classical, which is almost univerisally recognized as unrealistic. Additionally, a host of problems have been
identified wherein unrealistic damping forces and other detrimental effects can arise. Methodologies have been forwarded
for minimizing or potentially eliminating the problems, but no classical viscous damping model has been developed that is
reliable in all circumstances.

In this paper, issues related to modeling damping as linear and viscous are reviewed and explained through the analysis of a
simple 4-story moment resisting frame. Approaches evaluated include Rayleigh damping (using full initial stiffness, partial
initial stiffness, full tangent stiffness, and partial tangent stiffness), and Modal damping. With regard to tangent stiffness
damping, issues related to imparted energy due to negative tangent stiffness, damping force — velocity hysteresis, and
implementation with the P-Delta or corotational geometric transformations are discussed. The paper concludes with a
recommendation to move away from the use of linear viscous damping, and instead to model inherent energy dissipation as
nonlinear, amplitude dependent, frequency independent, and evolutionary.
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1. Introduction

After a structure is put into free vibration, the amplitude of displacement will decay with time. This phenomenon
is referred to as damping. Damping also has an effect on forced vibration response, including excitation due to
wind and seismic effects. For the purpose of this paper, damping can be characterized in terms of the locations in
the building system in which it originates: (1) the lateral load resisting structural systems; (2) the non-lateral load
resisting structural systems; (3) the nonstructural/architectural/mechanical system; (4) the underlying soil. In this
paper the damping in the soil is not addressed, and the focus is instead on the other three above grade systems.

Within the above grade region of the building system, the principal sources of damping are internal
friction in materials and sliding contact among common surfaces. In this paper the sum total of the damping in
the three regions specified, due to the sources identified, is referred to as inherent damping. It is important to
note that energy dissipated in the inelastic regions of the structural system is not included in inherent damping,
as this is treated explicitly in the analysis. Damping due to, say, light cracking in regions of the structure for
which the mathematical model remains essentially elastic should be characterized as inherent.

Currently, it is difficult if not impossible to explicitly model the different sources of inherent damping
because the nature and the magnitude of the damping cannot be obtained from first principles. Even if the nature
of the damping could be identified, the behavior is nonlinear, amplitude dependent, and varies during the
response [1]. Due to the difficulty of modeling damping as nonlinear it is almost always represented as linear
viscous. Linear viscous damping is frequency dependent and amplitude independent, which is at odds with
observed behavior. However, for small damping ratios, and when applied to structures remaining essentially
elastic, the linear viscous model is reasonably accurate.

Mathematically, linear viscous damping is quantified by a damping ratio (or damping ratios in different
modes) that have been observed from the results of low-amplitude free vibration or modal testing of complete
structural systems. The use of viscous damping is almost universal in linear analysis, and for multiple degree-of-
freedom systems it is convenient to assume that the damping is classical, allowing decoupling of the system into
a number of single degree of freedom systems which can be independently analyzed. For computing inelastic
response, damping is usually represented as linear viscous and classical, even though the motivation for such a
choice is no longer justified because nonlinear behavior is explicitly considered, and because the equations of
motion cannot be uncoupled. In analysis of linear systems, the consequences of assuming linear viscous classical
behavior are benign, but in nonlinear analysis severe unintended consequences can occur [2]. In the next section
of this paper a theoretical background is provided, which is followed by a discussion of what can go wrong, a
description of some of the proposed remedies, an explanation of why some of the remedies produce undesirable
side effects, and finally, what might be done to solve the problem.

2. Theoretical Background: Classical Linear Viscous Damping

Over the past 35 years there has been considerable discussion in the technical literature regarding the best
approaches for modeling inherent damping in nonlinear dynamic analysis [2-13]. Virtually all of the approaches
presented in the literature are based on classical viscous damping, and the principal issues discussed are
primarily related to avoiding unintended consequences when classical viscous damping is used.

Two basic approaches are used for developing the damping matrix. In the first approach, the damping
matrix has terms associated with only those degrees of freedom that are assigned mass. In the second case the
damping matrix has terms that are associated with all degrees of freedom that are assigned stiffness. In this paper
the first approach is referred to as Dynamic DOF Damping, and the second approach is referred to as Static DOF
Damping.

2.1 Dynamic DOF Damping

Dynamic DOF Damping, also referred to as Modal Damping, can be traced to Caughey [14], for which the
damping matrix, Cc, for an elastic Multiple Degree of Freedom (MDOF) system is expressed as
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where M is the mass matrix, K is the stiffness matrix, and a; are coefficients computed from solving the
following system of equations:

1 241
é:n = EZJ: aj(DnJ (2)

In Eq. 2 g’nand @ are the viscous damping ratios and the associated vibration frequencies. There is no

requirement that the frequencies be actual modal frequencies of the system. In Eqg. 1 and 2 the index j can take
any integer value, and there can be gaps in the sequence. The only restriction is that the number of terms in the
summation is equal to the number of frequencies for which associated damping ratios are set. It is common to
limit the range of j from 0 to N-1, where N is less than or equal to the number of modes in the system (in which
case n ranges from 1 to N). It is important to note that when using Eq. 1 and 2 the damping at a given frequency
will be zero only if it is set to zero for that frequency.

The system in Eq. 2 becomes difficult to solve for large values of j. Wilson and Penzien [15] provided an
alternate procedure for forming the damping matrix that avoids the numerical issues:

Coo= M[i%wj}m (3)

=1

In Eq. 3 Mn is the generalized mass in mode n and ¢nis the associated mode shape. The formation of

Cwp is restricted to frequencies that are natural frequencies of the system. However, there is no requirement that
all modes be included, and those modes that are left out will have zero damping.

Before continuing, it is noted that Caughey and Wilson-Penzien damping is “classical”, in that the
damping matrix is decoupled when transforming to modal coordinates. Classical behavior does not exist in
actual structures, except perhaps under ambient level vibrations in elastic systems [16]. Additionally, it is the
loss of classicality when the system yields that presents problems in some of the damping models [5, 13].

A very important feature of Eqg. 1 is that the mass matrix M must be invertible, requiring all degrees of
freedom to have mass. Thus, for systems with massless DOF, Eq. 1 would be applied to the condensed system.
In Eq. 3, it is not strictly required that the mass matrix be invertible, but the number of terms in the summation
must be less than or equal to the number of mass degrees of freedom in the system. Given the above, the order of
Cc developed from Eq. 1 is NMDOF (the number of mass degrees of freedom), whereas from Eq. 3 the order of
Cwp is NDOF (the total number of degrees of freedom), unless the equation is applied to the statically system, in
which case Cyp is identical to Cc. Alternately, Cc could be expanded to the full DOF set, producing a matrix
identical to Cyp.

A common approach is to apply Eq. 1 with the indices j set to 0 and 1. In this case, the result is
C.=aM+aK (4)

where the subscript R indicates that this form of damping is attributed to Rayleigh [17]. The coefficients a, and
a are easily determined from

& 05 lla)k @, a (5)
gm 1”a)m @ q

where the damping ratios §kand fmare set at two frequencies a)kand @, not necessarily natural frequencies
of the system. The damping ratio at any other frequency is obtained from Eq. 6:
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Before discussing the implications of the various forms of damping on inelastic response, it is useful to
first examine differences in the damping matrices for elastic systems. If the equations of motion are written for
the full system, they can be expressed in partitioned form [13], as follows:

M, 0 DITD 4 Cop Cns UD + Ko Ko v, _ P, (1) (7)
0 0 Y 3 Cy Cg Us Ky Ky U 0

where the subscript D represents a Dynamic (mass) DOF, and the subscript S represents a Static (massless) DOF.
For the Caughey and Wilson-Penzien approaches the damping matrix appears as follows, where the term RDDis
the statically condensed stiffness matrix.

GGy -| MmZo Makon] 0 [ ‘('; z] ©®)

0 0

If Caughey damping is used wherein j=0 and 1, the damping matrix becomes

c.- My 0| [ 8Ky 0| | G O (9)
0 0 0 0 0 0
As discussed later, the forms of the damping matrices given by Ccor CR represent a network of virtual

viscous dashpots connected between all mass degrees of freedom, and between the masses and virtual supports.
There is no damping associated with the structural elements. This idealization has no physical counterpart, but
there are certain advantages to avoiding damping in the elements as discussed later. A disadvantage of Eq. 8 and
Eqg. 9 is that the damping submatrices couple degrees of freedom that are not coupled in the original system, thus
the profile of the damping matrix is not the same as that of the stiffness matrix. If it is desired to maintain the
profile of the stiffness matrix, iterative procedures have been developed to deal with the damping terms outside
the profile [3, 13].

2.2 Static DOF Damping

If the Rayleigh concept is applied to the full system, the damping matrix given by Eq. 10 is obtained,
wherein the subscript RF refers to Rayleigh damping for the Full system. Here, the mass proportional part of the
damping matrix represents virtual dashpots that connect the mass degrees of freedom to virtual external supports,
as though the structure were immersed in a viscous fluid. The stiffness part of the damping matrix represents
damping in the individual elements, which is physically realistic because damping originates in the elements and
the connections.

c, | WMo O || W A% (10)
0 0| aKy aKs

It is interesting to note, that for elastic systems, analysis using Cr or Cre Will produce exactly the same
response (including nodal displacements and element elastic forces). If nonlinear analysis is performed using a
constant Cgr, based on initial system stiffness, the system will become nonclassical as soon as the system
stiffness changes, effective damping ratios will increase, and unrealistic damping forces can develop in the
elements [2]. While some authors represent these unrealistic element damping forces as “spurious”, or indicate
that “unbalanced damping forces” occur, this is technically incorrect. However, the damping forces developed
by the apMpp part of the response are spurious, because there is no physical basis for the forces that result from

4
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the “viscous skyhook” nature of the fictitous mass-proportional dashpots. It is for this reason that several
researchers [6, 10, 18] have recommended that mass-proportional Rayleigh damping not be used.

An important variation of Rayleigh damping is to use only those terms that remain elastic in the stiffness
proportional part of the damping matrix. This approach, which is referred to herein as Partial Stiffness
Proportional Damping was recommended by Charney [2] and investigated in detail by Zareian and Medina [8].
Use of this damping matrix will eliminate the development of unrealistic damping forces when the system
yields, but as noted later, may not eliminate unrealsitic damping forces associated with changes in geometry. The
mathematical expression for the partial stiffness damping is shown in Eqg. 11, where superscript E on the
stiffness term represents the fact that only those elements that remain elastic during the response are included. In
the equation, the proportionality constants are the same as those that would be determined using the full stiffness
(Eq. 10). This will result in slightly lower damping ratios than obtained using the full stiffness. For example, for
the structure in Fig. 1, the coefficients were determined to produce 5% damping in modes 1 and 3. The damping
ratios for all four modes were (0.05, 0.0357, 0.05, 0.658) for an average of 0.0511. If the same coefficients are
computed with partial stiffness damping, the ratios in the four modes are (0.049, 0.0323, 0.0429, 0.0572) with an
average of 0.050. In this case the difference is negligible, but if desired, the proportionality coefficients could be
adjusted by the factor 0.0511/0.050 to obtain an average of 5% damping across the frequency spectrum.

KE KE
C,= aMy 01,1 4 > 4 o (11)
0 0| aKs aKg

2.3 Recovering Damping Ratios after Damping Matrix has been formed

After the damping matrix is established, it is useful to recover the damping ratios in the different modes of the
system. The most general approach, which is exact for both classically and nonclassically damped systems is to
compute the eigenvalues of the state space matrix D, shown in Eq. 12, where [I] is an identity matrix and [0] is a
zero matrix [19]. The eigenvalues for subcritical modes are complex (even for classically damped systems), and
contain the damping ratio and the frequency of the mode. For damping less than critical the eigenvalues are
complex numbers of the form Re+Im*i. The eigenvectors are also complex, where each coordinate of each
vector (mode shape) contains both amplitude and phase. The frequencies in each mode are found as w =

VIm? 4+ Re? and the damping ratios are ¢ = —Re/w.

-1 -1
p_| -M’C -M’K w2

[1] [0]
A limitation on the use of Eq. 12 is that the mass matrix must be nonsingular. Thus, for Dynamic DOF

Damping the matrices M and C in Eq. 12 will be the appropriate submatrices shown in Eq. 8.

An approach that is useful when the mass matrix is not invertible is to compute the modal damping ratios
as in Eqg. 13, where w; is the circular frequency and ¢; is the mode shape for mode i of the complete system.
This approach is exact for classically damped systems, and is approximate for nonclassically damped systems. It
is useful for computing the modal damping in systems with Static DOF damping becasue the mass matrix for
these systems is generally singular.

o $CH
i 2mi¢iT M¢l

2.4 Arrangement of Fictitious Viscous Dashpots

(13)

Consider the structure of Fig. 1 which is analyzed throughout the remainder of this paper. The structure is a four-
story one-bay moment resisting frame. All of the mass for the system is concentrated at the midspan of the
beams, and is active only in the global X direction, and hence, the system has only four mass degrees of freedom.
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Inelastic behavior is lumped into “plastic hinges” near the ends of the beams and columns. All frame elements
are flexible axially and in bending, and as modeled there are a total of 132 degrees of freedom.
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& Simple Node {8 total)
3 DOF
Mass=0 for all DOF
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Fig. 1 - 4-Story Moment Frame Used in Analysis

Where Caughey damping is used, the damping submatrix (";C (Eq. 8) has four rows and four columns, and

is usually full. The fullness of the matrix represents a physical 4-story shear-frame with only lateral DOF in
which viscous dashpots connect all possible combinations of degrees of freedom as shown in Fig. 2a. Off
diagonal terms can be either positive or negative, and where positive, the damping constant for the associated
dashpot is negative. In the figure three types of dashpots are represented: those that connect adjacent stories
(green), those that connect non adjacent stories (blue), and those that connect stories to the base or to external
supports (red). The dampers at each level that are attached to external supports are effectively mass proportional.
This component of damping cannot be eliminated and can be problematic when analyzing certian types of
structures, such as seismically isolated systems [6,18]. Where Caughey-Rayleigh Damping is used the
arrangement of dashpots is the same as in Fig. 2a. However, in this case the mass proportional dampers can be
eliminated by setting a, equal to zero. This will lead to damping ratios that increase linearly with frequency.

- -

-
=
—111

(a) Cc or Cgr Damping (b) Crr Damping (c) CrpDamping

[ ]

Fig. 2 Arrangement of Virtual Viscous Dashpots in VVarious Damping Models

From a viscous damping perspective, there is clearly no physical basis for the arrangement of dashpots in
Fig. 2a, except that it is required to provide classical damping in the elastic system. When the system yields, this
same arrangement of dashpots is maintained, and the effect on the nonlinear response is difficult to predict.

When the damping matrix is established as in Eq. 10, the arrangement of fictitious dashpots is as shown in
Fig. 2b. Here, the mass proportional dashpots remain (if ao is not equal to zero), but the remaining dashpots are
attached to the elements as visualized in the figure. Note that the yellow rectangles represent damping
proportional to the element stiffness matrix, and the blue circles represent damping proportional to the stiffness
of the rotational springs used to represent inelastic behavior. The elimination of these (blue) rotational dampers
produces the variation of stiffness proportional damping called Partial Initial Stiffness Proportional Damping
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herein. This is illustrated in Fig. 2c. To the authors, in spite of the presence of the mass proportional dashpots,
this is a much more reasonable arrangment of damping in the system becasue damping is generated within the
elements, not in fictitious viscous dashpots.

3. What Can go Wrong (Will go Wrong)

A large number of papers have been published on what can go wrong when damping is modeled as linear
viscous and classical in nonlinear dynamic analysis. Some of these issues were recognized in the thesis by
Chrisp [3], and discussed in more detail (for example) by Bernal [5], Hall [6], and Charney [2]. It is noted that
none of the issues reported deal with the fundamental problem that linear viscous classical damping is inherently
incorrect (e.g. actual damping is displacement dependent and viscous damping is not). Instead, the issues are
related to unintended consequences of modeling damping as linear viscous, and in most cases, the problem is the
development of unrealistic damping forces when the system yields, transforming the system from classical to
nonclassical. A few of the problems, proposed remedies, and unresolved issues with potentially adverse side
effects of the remedies are presented in the following.

3.1 The Influence of Global Changes in System Stiffness on Instantaneous Damping Ratios

Here the issue is that changes occur in the damping ratios when the damping matrix is based on the initial
stiffness and held constant, and then the stiffness changes due to yielding in the plastic hinges. To illustrate this
effect analysis was performed on the system shown in Fig. 1 using Rayleigh damping set to 2% critical in modes
1 and 3, and with Modal damping set to 2% in all modes. Yielding in the hinges was represented by reducing the
stiffness from EI/20 to EI/1000, where El is the beam stiffness. Note the stiffness of EI/20 is approximately the
smallest order of magnitude value at which the hinge is effectively rigid prior to yielding. The following
variations in the system were analyzed:

Model O: Original System

Model A: Reduction in hinge stiffness at top and bottom of lower story columns (column sway mechanism)

Model B: Reduction in stiffness in hinges at ends of all beams

Model C: Reduction in stiffness in hinges in bottom of first story columns at ends of all beam hinges (system
sidesway mechanism)

For each model the frequencies and damping ratios of the modified system were determined by computing
the eigenvalues of the system’s state space matrix (Eg.12). Results from the analysis are presented in Table 1
where it can be seen that the damping ratios in the first mode of the damaged system increase significantly for
both Rayleigh and Modal damping. For model C, which represents a sidesway collapse mechanism, the damping
increases from 0.02 to 0.068 in the first mode, representing an increase by a factor of 3.4. While not included in
the analyses reported here, similar changes in modal damping ratios will occur when the damping is proportional
to the partial initial stiffness (Eq. 11).

Table 1 - Changes in damping ratios for damaged system

Frequency/ Dynamic DOF Rayleigh Damping Dynamic DOF Modal Damping
Damping @) A B C O A B o
Ratio

w, (rad/sec) 9.91 4.85 4.33 2.94 9.91 4.84 4.33 2.94
& 0.020 0.055 0.047 0.068 0.020 0.057 0.047 0.068
& 0.014 0.028 0.025 0.030 0.020 0.033 0.034 0.042
& 0.020 0.024 0.025 0.028 0.020 0.024 0.025 0.028
&y 0.026 0.027 0.027 0.029 0.020 0.021 0.021 0.022

Whether or not the increases in system damping are problematic depends on the system being analyzed.
For reinforced concrete structures, for example, cracking will develop in the “elastic” region of the elements, and
this cracking will progressively increase the material damping in the system. Such increases in damping have
been observed in field tests [1]. The problem is not so much that the increase in damping is not realistic, but
rather that it is not easily predicted, and if predicted, there is little basis for determining if the increases are
excessive.
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3.2 Inelastic Behavior in Individual Components

A more serious issue than reported above is the development of large unrealistic damping forces in the inelastic
elements when the damping is based on the full initial stiffness (Eq. 10). The best example of this problem is
when a phenomenological plastic hinge with high initial stiffness yields. After yielding there is a spike in
rotational velocity within the hinge, and this velocity, multiplied by the high initial stiffness and by the stiffness
proportionality factor a; produces viscous moments that can easily exceed the true flexural capacity of the hinge.
This effect can be minimized by using a lower initial stiffness of the hinge [2, 13], or by use of distributed
plasticity (fiber) elements [13]. Two other approaches are more common. The first approach is to form the
stiffness proportional part of the damping matrix by assembling only the elastic parts of the structure (Eq. 11).
This is the Partial Initial Stiffness Damping method described earlier. The second approach is to populate the
stiffness proportional part of the damping matrix with the instantaneous tangent stiffness of all elements,
including the yielding components. This approach is referred to as Tangent Stiffness Damping.

Usually, with Tangent Stiffness damping, the proportionality constants a, and a; are based on the initial
stiffness and are not updated. In a more refined approach the coefficients are updated but this is rarely used due
to the perceived need to re-compute the system frequencies at each change in stiffness. The use of Tangent
Stiffness damping will eliminate the unrealistic damping forces, and will minimize the increase in the system
damping ratios discussed above. However, there are two concerns that have been raised. The first is that with
tangent stiffness damping “hysteresis” develops in the damping-force versus deformational velocity relationship
and that there is no physical basis for this phenomenon. Second, where the element tangent stiffness is negative,
there is concern that energy may be imparted into the system, rather than dissipated. These issues are explored
briefly in this paper.

Where Partial Initial Stiffness damping is used, the unrealistic damping forces in the yielding components
cannot form as there is no damping associated with these components. However, in research reported by
Hardyniec [20], it has been noted that the combination of Partial Initial Stiffness damping and the use of the
corotational transformation in OpenSEES [21] to represent geometric nonlinearities can produce unrealistic
damping forces in the elastic elements. As demonstrated later in this paper, this problem can be avoided by using
instead the P-Delta geometric transformation, or by using Partial Tangent Stiffness damping.

3.2.1 Issues Related to Full Tangent Stiffness Damping
3.2.1.1 Hysteresis in Force-Velocity Relationship

The issue of hysteresis in the Force-Velocity relationship for tangent stiffness proportional elements was raised
by Carr [22], and mentioned more recently by Chopra and McKenna [13]. For traditional structural systems there
is no physical analog for this behavior, which is illustrated in Fig. 3 for a bilinear system with positive post-yield
stiffness, and in Fig. 4 for a bilinear system with negative post-yield stiffness. In both cases the response is due
to a ramped up sinusoidal rotation in a plastic hinge. The computed moment vs. rotation relationship for the
spring is shown on the left of each figure, the viscous moment vs. rotational velocity in the center, and the
viscous moment vs. rotation is at the right. The units of the enclosed portion of the viscous moment vs. rotational
velocity plots are in.-k/second, which is a unit of power. A physical analog would of an active control system
that is imparting a changing moment into the system. This in fact would need to be done to keep the damping
constant, as is effectively the goal in tangent stiffness damping. As can be seen by comparing the center portions
of Fig. 3 and 4, the areas within the enclosed regions of the viscous moment vs. rotational velocity plot is
increased when the tangent stiffness is negative. The issue is indeed troubling, and adds one more item of
concern to the growing list of discrepancies between classical viscous damping and reality.

The third part of Fig. 3 and 4 shows the viscous moment vs. rotation relationship for the hinge with positive or
negative secondary stiffness, respectively. Comparing the regions of the figure enclosed by the dotted line, it can
be seen that the system with negative tangent stiffness is producing instantaneous negative energy, but this is
small compared to the total energy dissipated by the hinge.
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Fig. 4 — Computed Behavior with Negative Tangent Stiffness

3.2.1.2 Negative Tangent Stiffness

Among all the articles reviewed by the authors of this paper, none specifically investigated the impact of
negative tangent stiffness where tangent stiffness proportional damping is used. Charney [2] recommended that
geometric stiffness not be included in the stiffness proportional part of the damping matrix to avoid issues
related to the global tangent stiffness being negative. However, the models used in the reported analysis [2] had
bilinear force-deformation relationships with zero strain hardening. Hardyniec and Charney [12] and Chopra and
McKenna [13] indicated that negative tangent stiffness was problematic, but did not pursue the matter.

To further investigate this issue, an Incremental Dynamic Analysis (IDA) was performed on the structure
shown in Fig. 1, subjected to the East-West component of the Tabas Dayhook ground motion, initially scaled to
have a peak ground acceleration of 0.75g. Analysis was run using the following damping models: Full Initial
Stiffness, Full Tangent Stiffness, Partial Initial Stiffness, and Partial Tangent Stiffness. Using these damping
models three different strain hardening ratios (relative to the initial stiffness) were used: positive 0.02, zero, and
negative 0.02. The results for the negative strain hardening ratios are shown in Fig. 5, with each plot showing the
computed IDA curves for a single damping ratio, and for the four different models.

As may be observed from Fig. 5, the Full Initial Stiffness damping model produces the greatest apparent
collapse capacity for each of the damping ratios, this being due to artificial damping occurring in the hinges.
Higher damping ratios and higher initial stiffness causes more significant artificial damping. The results for
Partial Initial Stiffness and Partial Tangent Stiffness damping should be identical for each damping ratio, and
this is indeed the case because the yielding components are excluded from the model. What is most interesting is
that there is very little difference between the results computed using Partial Initial Stiffness damping and
Tangent Stiffness damping, even for damping ratios of 0.08. Apparently the “imparted energy” issue is having a
negligible influence on the computed response, because if it were having an influence the IDA curve for Tangent
Stiffness damping would be below the curve for Partial Initial Stiffness Damping. It is important to note,
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however, that more analyses needs to be performed on systems with negative tangent stiffness before an overall
conclusion can be made.
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Fig. 5 — IDA Plots for Different Damping Models and Damping Ratios (-2% Strain Hardening)

Another issue regarding negative tangent stiffness is that this will not always occur for design-based
analysis performed under the requirements of ASCE 7-16 [23]. Global acceptance criteria for drift in ASCE 7 is
that the median story drift at the edge of the building, among eleven required ground motions, shall not exceed
2.0/1, times the story drift limits in Chapter 12, where I is the importance factor. For most buildings, the story
drift limits would be 0.04, 0.032, and 0.027 for Risk Categories Il, I1l, and IV, respectively. The structural
component deformation acceptance criterion in ASCE 7 is tied to the ASCE 41-13 [24] requirements for Primary
Components at the Collapse Prevention limit state (also modified by I.). Under these drift and deformation limits
it is unlikely that many components would have inelastic excursions to the extent that the tangent stiffness is
negative, and if this occurred, it would occur only in a limited number of elements.

Thus, in summary regarding the use of Tangent Stiffness Damping, there is legitimate concern that the
hysteresis in the damping force vs. velocity relationship is occurring and has no physical basis. Regarding energy
being imparted into the system, this does appear to occur, but the influence on performance appears to be
negligible. It is recommended, however, that this issue be carefully monitored where Full Tangent Stiffness
damping is used, particularly in assessing the collapse performance of buildings.

3.2.2 Issues Related to Partial Initial Stiffness Damping and Changes in Geometry

In Partial Initial Stiffness Damping no stiffness proportional damping is assigned to elements that may yield
during response. This type of damping completely eliminates the unrealsistic viscous forces that develop due to
sudden changes in rotational velocity when the elements transition from elastic to inelastic. The larger the initial
stiffnes of the yielding components, the larger the viscous force [2,13]. In research peformed by Hardyniec [20,
25] it was shown that unrealistic damping forces can also occur due to sudden changes in geomery when Partial
Initial Stiffness damping is used in association with the corotational transformation in Open Sees. The artifical
damping forces are minimal where the P-Delta transformation is used in lieu of the corotational transformation.
For both types of geometric transformation the artifical damping forces are eliminated when Partial Tangent
Stiffness damping is used.

This behavior is shown in Fig. 6 which are roof displacement histories of a 4-story steel frame. In part (a)
of the figure the P-Delta transformation was used, and in part (b) the corotational transformation was utilized. In
each case analysis was run using Partial Initial Stiffness damping (KO), and Partial Tangent Stiffness damping
(KT). Also varied was the cross sectional area of the modeled beams, where the term Area in the figures
represents a multiplier on the actual cross sectional area. This type of multiplier is often used to represent rigid
diaphragm behavior in 2-D frame analysis. As seen in part (a) of Fig. 6 the responses are similar for all
variations in analysis and modeling parameters, and the collpase of the system is captured reasonably well. On
the otherhand, in Fig. 6 (b), the collapse is suppressed due to artifical damping forces being developed in the
beams when Partial Initial Stiffness damping is used. When this is changed to Partial Tangent Stiffness damping,
the correct response is obtained. Although the issues regarding the use of the corotational geometric
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transformation can be avoided by use of Partial Tangent Stiffness damping, the broader issue is why changes in
geometry should affect system damping at all.
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Fig. 6 - Results of Analysis Produced using Partial Intitial and Partial Tangent Stiffness Damping and two
Methods fro Representing Geometric Nonlinearity

4. Summary, Conclusions, and Recommendations

There are many choices available to the analyst for modeling damping in nonlinear response history analysis.
These methods can be divided into two groups: Dynamic DOF approaches, wherein the damping matrix is based
on the DOFs that have participating mass, and Static DOF approaches, where the damping matrix is based on the
full DOF set. While the analyst has more control on setting damping ratios with Dynamic DOF damping, it is
generally not possible to eliminate the mass proportional terms. Another disadvantage of Dynamic DOF
damping is the need to “right hand side” damping terms that are outside the elastic stiffness profile, and iterate to
obtain equilibrium, even for elastic systems. The principal advantage of Dynamic DOF damping is that
unrealistic damping forces will not occur when the system yields.

In Full Initial Stiffness damping, which is a Static DOF procedure, it has been demonstrated that
unrealistic damping forces can be generated when the system yields. Two basic approaches have been proposed
to eliminate this problem: Full Tangent Stiffness damping, and Partial Initial Stiffness damping. Full Tangent
stiffness damping, although effective in limiting the unrealistic damping forces, is conceptually flawed due to
“hysteresis” being developed in the damping force versus velocity relationships of the yielding elements. While
the flaw is troubling, there is currently no evidence that it leads to unrealistic computed response. Another issue
with tangent stiffness damping is the potential for energy to be imparted into the system when the instantaneous
tangent stiffness of yielding elements is negative. It appears, however, that the influence of imparted energy on
the computed response is minimal. Additionally, imparted energy is not expected to be an issue for design-based
analysis because the generally conservative deformation-based acceptance criteria makes it highly unlikely that
inelastic deformations will be of sufficient magnitude to produce negative tangent stiffness in more than just a
few elements at one time.

The use of Partial Initial Stiffness damping eliminates all spurious damping associated with material
inelastic behavior, but can produce large unrealistic damping forces when the corotational transformation is used
to account for changes in geometry. Where collapse analysis is being performed and it is deemed necessary to
use the corotational transformation, Partial Tangent Stiffness damping should be used.

For design-based analysis, it is recommended that Partial Initial Stiffness damping be used, with
geometric stiffness excluded from the stiffness proportional part of the damping matrix. Additionally,
consideration should be given to minimizing or eliminating the mass proportional part of the damping, as this is
physically unrealistic. Elimination of mass proportional damping has the influence of producing higher damping
in higher modes, but there is evidence that this behavior is realistic [1].
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What should be clear from the host of issues associated with the use of classical viscous damping in
nonlinear analysis is that a new approach needs to be developed that treats inherent damping as a nonlinear
deformation-dependent and evolutionary path-dependent phenomenon. Such procedures have been suggested in
[9, 22, and 26], and these should be pursued by researchers instead of continuing down the path of finding
remedies for the unintended consequences of using classical viscous damping.
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