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Abstract 
Community resilience is the ability of a community to resist and recover from adversity, such as natural disasters, terror 
attack, and influenza pandemic. Quantifying community resilience can help communities better understand their strengths 
and vulnerabilities, prepare for different types of hazards, estimate losses in case of adverse situations, and take effective 
measures to reduce losses. However, such a task is extremely challenging, because community resilience is essentially a 
comprehensive and complex concept with entrenched difficulties in defining appropriate criteria for its quantification. The 
commonly-used approach usually considers multiple domains of a community and selects some indicators to capture 
features of each domain. Then, indicators are equally weighted across the domain and aggregated together to come up with 
an index to quantify community resilience. This study chooses a set of commonly used indicators in the engineered system 
domain and aims to develop a multi-hazard weighting scheme for these indicators. A multi-hazard weighting scheme is 
meaningful because the importance of each indicator, as a contributing factor to worsen or lessen damages, could vary 
significantly across different hazards. In this study, we mainly focus on earthquakes and hurricanes, which are the two 
typical representatives of natural hazards. We choose different response variables from recent earthquakes and hurricanes. 
The historical data of engineered system indicators and hazard response variables can be collected from publicly available 
databases. Based on these data, we apply linear regression method to form statistical models and use these models to 
determine the variable importance for each indicator for different hazards. By comparing the weighting schemes for 
earthquakes and hurricanes, we discuss the possible reasons accounting for the differences and summarize the pros and cons 
of our multi-hazard weighting scheme. Moreover, the direction of indicators obtained by the regression models coincides 
with the direction obtained from expert judgment, which validates our methodology and choice for response variables. This 
multi-hazard weighting scheme contributes to quantifying community resilience and assessing urban risks under attacks of 
earthquakes and hurricanes. 
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1. Introduction 
Community resilience refers to the ability of a community to resist and recover from adversity, such as natural 
disasters, terror attack, and influenza pandemic. Quantifying community resilience can help communities better 
access their strengths and weaknesses, prepare for different types of hazards, estimate losses in case of adverse 
situations, and take effective measures to reduce losses. However, such a task is extremely challenging, because 
community resilience is essentially a comprehensive and complex concept with entrenched difficulties in 
defining appropriate criteria for its quantification. The commonly-used approach usually considers multiple 
domains of a community, such as ecological, social, economic, institutional, infrastructure, community 
competence [1], and selects some indicators to capture features of each domain. Then, indicators are equally 
weighted across the domain and aggregated together to come up with an index to quantify community resilience. 
However, when it comes to natural hazards, we may notice that some indicators are probably more important 
than others, so if we put equal weights to all the indicators, the corresponding index cannot correctly and 
accurately represent the resilience of the community. In addition, we may also find that the weighting scheme 
should vary by disaster type. To address this weighting issue, this paper chooses a set of commonly used 
indicators in the engineered system domain and develops a multi-hazard weighting scheme for these indicators. 

 Existing disaster resilience approaches are an important foundation to our work. To be specific, Norris et 
al. [2] proposed a conceptual model of community resilience for disaster readiness, which emerges from four 
primary sets of adaptive capacities, namely, economic development, social capital, information and 
communication, and community competence. Then, Cutter et al. [1] put forward the disaster resilience of place 
(DROP) model to quantify community resilience exposed to natural hazards; the methodology of DROP model 
included 3 major steps, namely, variable selection, weighting, and aggregation. However, when it comes to 
weighting, they found no theoretical or practical justification for allocating different weights across indicators, so 
they used an equally weighted index [3]. In 2011, RAND [4] identified eight “levers” to define community 
resilience, including wellness, access, education, engagement, self-sufficiency, partnership, quality, and 
efficiency. Around the same time, Foster [5] developed a resilience capacity index (RCI) based on U.S. 
metropolitan regions, which is a composite statistic summarizing a region’s score on 12 equally weighted 
indicators, where four indicators are in each of three domains, i.e., regional economic capacity, socio-
demographic capacity, and community connectivity capacity.  In 2016, an index, called Composite of Post-Event 
Well-being (CoPE-WELL), has been developed [6] to help practitioners and policymakers to frame high-level 
policy discussions about community resilience towards hazards. CoPE-WELL is a county-based national model 
which considers many indicators from various domains to represent the pre-event functioning, short-term post 
event functioning, and long-term post event functioning of the community after a disaster. 

However, all these indices use an equal weighting scheme when aggregating indicators of community 
resilience. Admittedly, there are some good reasons behind that. To be specific, unit weights can avoid sampling 
error and are robust to outliers [7], which makes it a valid approach to aggregating data. However, we need to 
point out that unit weights may bring bias to the prediction model, especially when some indicators are much 
more important than the others. Therefore, in this study, we put forward a concept of multi-hazard weighting 
scheme for community resilience indicators. Furthermore, our study is based on publicly available data and 
statistical learning methods, validating expert judgment and drawing inference from the model.  
 Considering the critical role that infrastructure plays both before and after the event, we should attach 
more importance to the engineered system, considered in CoPE-WELL [6], when compositing a community 
resilience index. The goal of the paper is to present a novel approach to quantifying the importance of indicators 
in the engineered system domain of community resilience. To be specific, in section 2, we describe the 
methodology, and also propose an algorithm including 8 steps to guide us to determine the relative weights and 
direction of the indicators. In section 3 and 4, we choose hurricane and earthquake as case studies to show the 
strength of this methodology. In section 5, we compare the results obtained by the hurricane model and 
earthquake model, and draw inference from the different weighting schemes suggested by these two models. We 
conclude the paper and suggest the future work in section 6.  
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2. Methodology 
In this section, we present the methodology of our multi-hazard weighting scheme, including identifying 
indicators and acquiring data, identifying response variable and acquiring data, deleting observations with 
missing data, deleting some variables when lacking observations (optional step), normalizing indicators, 
removing collinearity, determining final model, obtaining final results (importance and weights). The illustration 
of the methodology of determining the multi-hazard weighting scheme is shown in Fig.1. 

 
Fig. 1 – Illustration of the methodology of determining the multi-hazard weighting scheme 

In this paper, we will follow the regime shown in Fig.1 to determine the relative weights of indicators in 
the engineered system. So, first, we need to identify the indicators in the engineered system and acquire the data 
of these indicators. Specifically, the engineered system, also referred to the infrastructure system, contains 
multiple subsystems including building, communication/cyber, transportation, water, wastewater, power, and 
natural gas. In this paper, we only choose indicators with publicly available data, so every stakeholder, 
emergency manager, urban planner, and researcher can easily gain access to the data and reproduce the work. 
Since we could not find publicly available data for appropriate indicators to represent wastewater, power, and 
natural gas, we finalize seven indicators in the aspects of building, communication/cyber, transportation and 
water to indicate the resilience of the engineered system. Notably, we need to choose a regional scale for the data, 
such as county-level, metropolitan-level, and state-level. The data collected in this study are all county-based. 
The indicators’ category, description, direction, and source in the engineered system domain are listed in Table 
1. Note that the direction of indicators means their effect on the resilience of engineered system and is 
determined by expert judgment.  

Then, we need to identify a reasonable response variable that can quantify resilience after the event for 
different types of hazards and collect data for it. Hazards can be divided into two major types, natural hazards 
and man-made hazards. Natural hazards include earthquake, hurricane, tsunami, flood, etc., and man-made 
hazards mainly refer to cyber attack, terror attack, nuclear blast, civil unrest, etc. Since our method is a multi-
hazard weighting scheme, the response variable is hazard-specific.  

After obtaining all the data of indicators and response variable, we remove observations with missing data. 
The reason why we do not use missing data imputation here is because it is hard to determine whether the data 
are (completely) missing at random. Therefore, removing observations with missing data is the simplest and 
most straightforward way to deal with missing data problem. Afterwards, it’s an optional step – remove “not-so-
important” variables mainly based on the expert judgment, if we have too few observations compared to the 
number of indicators. This step is not ideal, but we have to admit the fact that hazard data are so limited for 
certain hazards in U.S. To be specific, if the number of observations is less than 2n + , where n represents the 
number of variables in the engineered system domain, we might need to remove some “irrelevant”, or least 
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important, variables before conducting linear regression. Next, we need to normalize all the variables. 
Normalization can adjust variables measured on different scales to a notionally common scale, so after 
normalization, the importance of variables obtained by the regression model can be compared directly. After this 
step, we need to remove highly correlated variables, in that collinearity among indicators will increase the 
sampling variation of regression weights [7], making the model less powerful and convincing. Therefore, the 
first six steps provide us a dataset with parsimonious indicators and an appropriate response variable. A similar 
multivariate analysis of determining a parsimonious indicator set was also conducted by [8].  

Lastly, we fit a linear regression model to the remaining variables and obtain the direction and weights of 
each indicator accordingly. Apparently, we need to compare the direction obtained by the regression model with 
the direction according to the expert judgment shown in Table 1, which is a well-defined validation approach of 
our methodology. More generally, the direction of indicators is not always clear, so this framework can actually 
help us to determine the direction of some “not-so-sure” indicators. 

Table 1 – Indicator description and data source of engineered system 

# Category Description Direction Data Source 

1 Building Average age of housing 
stock NEG American Housing Survey by the U.S. 

Census Bureau 

2 Building 
Percentage of housing 
units that are not mobile 
homes 

POS American Housing Survey by the U.S. 
Census Bureau 

3 Communication/
cyber 

Median residential down-
load speed POS 

National Broadband Map created and 
maintained by the National 
Telecommunications and Information 
Administration and in collaboration 
with the Federal Communications 
Commission 

4 Communication/
cyber 

Median mobile download 
speed POS 

National Broadband Map created and 
maintained by the National 
Telecommunications and Information 
Administration and in collaboration 
with the Federal Communications 
Commission 

5 Transportation Road miles per square 
mile NEG 

Topologically Integrated Geographic 
Encoding and Referencing by the U.S. 
Census Bureau 

6 Transportation 

Number of bridges per 
100 square miles that are 
structurally deficient or 
functionally obsolete 

NEG 
National Bridge Inventory by the U.S. 
Department of Transportation Federal 
Highway Administration 

7 Water 

Percentage of population 
affected by water vio-
lation of those served by 
public water systems 

NEG 
Safe Drinking Water Information 
System by the U.S. Environmental 
Protection Agency 

 
 As a result, the steps of the algorithm are summarized below: 
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Step 1: Identify the indicators in the engineered system domain and acquire the data for each of the 
indicators; 

Step 2: Identify response variable of the specific natural disaster which can quantify resilience after the 
event and acquire the corresponding data for the response variable; 

Step 3: Remove observations with missing data; 

Step 4 (Optional): Remove certain “not-so-important” variables using expert judgment, if the number of 
observations is less than 2n + , where n represent the number of variables in the engineered system 
domain; 

Step 5: Normalize all the variables and fit a linear regression model with all the variables; 

Step 6: Compute the variance inflation factor (VIF) to remove collinear variables and repeat this step until 
all the variables’ VIF are less than 10; 

Step 7: Fit a linear regression model with the remaining variables; 

Step 8: Obtain the relative weights and direction of each indicator. 

 Note that for step 4, we need to guarantee the number of observations is no less than 2n + , because we 
want to make sure the t-test for an estimator has at least one degree-of-freedom. Besides, VIF is a commonly-
used method to determine the multi-collinearity in a linear regression model. VIF provides a statistic that 
measures how much the variance of the parameter estimates is increased due to collinearity. A common choice 
of VIF threshold is 10; a VIF of 10 represents that with other things being equal, the variance of the ith 
regression coefficient is 10 times greater than it would have been if the ith variable had been linearly 
independent of other variables [9]. In this study, we maintain every indicator in the regression model with VIF 
less than 10. 

 Overall, we develop a novel concept of multi-hazard weighting scheme, even though people admitted that 
different hazards would make certain indicators more important than others. Besides, one of the strengths of our 
methodology is transparency. By following the 8 steps described above, people can determine a multi-hazard 
weighting scheme for different community resilience indicators from different domains. Although we only focus 
on indicators in the engineered system domain in this paper, the algorithm can be easily extended to other 
domains of the community. Moreover, although we only include two hazards in this paper, namely, hurricane 
and earthquake, researchers can easily apply this methodology to other hazards, such as drought, flood, terrorist 
attack, etc., based on the methodology proposed in the paper. 

3. Weighting Scheme for Hurricanes 
In this section, we introduce the weighting scheme for hurricanes. First, the step 1 is completed as mentioned in 
section 2. Seven indicators are considered to quantify the resilience of the engineered system. Second, we choose 
the Hurricane Sandy, which happened on October 29, 2012, as the natural disaster, because Sandy is a recent 
hurricane disaster with significant damage to the local community, including lots of counties in the east coast. 
Then, according to the damage map of Hurricane Sandy, shown in Fig. 1, we choose the counties with purple 
color as the target counties, because in the damage map, the counties in the same color experience same level of 
damage. Note that purple-colored counties have the most severe damage during the Hurricane Sandy, so they are 
the most representative counties to show the community resilience.  

In addition, considering economic impact can well represent the performance of a county’s resilience, July 
2013 unemployment rate is chosen here as the response variable which can measure the long-term impact of 
disruption of economic activity caused by the storm especially in the Travel and Tourism industry [10]. July 
2013 unemployment rate in counties impacted by Sandy is shown in Fig. 3. The data were collected by the 
Bureau of Labor Statistics (BLS). Note that the unemployment data is preliminary and not seasonally adjusted. 
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Fig. 2 – October 2012 damage map of Hurricane Sandy: areas with very high damage in purple, high damage in 
red, moderate damage in yellow, and low damage in green, adapted from [11] 

 
Fig. 3 – July 2013 unemployment rate in New Jersey, New York, and Connecticut counties that experienced high 
damage impacted by Hurricane Sandy 
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 Third, we delete observations with missing data. We skip the fourth step, because we have adequate 
observations to compute the linear regression model. Fifth, all the indicators and response variable are 
normalized. Sixth, we fit a linear regression model with all variables included and compute the VIF, and we find 
that the first indicator has the highest VIF, around 10. So we remove the first indicator, and then fit another 
linear regression model with remaining variables and compute VIF. Now all the indicators have VIF less than or 
equal to 5, so we may draw the conclusion that collinearity problem has been solved in a large measure. 

Table 2 – Relative weights and direction of indicators computed by regression model 

# Description Relative 
weights 

Regression Model Expert Judgment 

Effect on 
unemployment rate Effect on resilience Effect on resilience 

2 % of not moible homes 7.39 NEG POS POS 

3 Median residential 
download spped 1.05 NEG POS POS 

4 Median mobile download 
speed 1.72 NEG POS POS 

5 Road miles per square mile 3.21 POS NEG NEG 

6 # of deficient or obsolete 
bridges 2.03 POS NEG NEG 

7 % of population affected by 
water violation 1.00 POS NEG NEG 

  

Seventh, the model is thus finalized with 6 indicators. Eighth, the relative weights and direction of 
indicators are obtained, shown in Table 2. It is apparent that the indicators’ effect on unemployment rate is 
opposite to their effect on resilience, so we find that the direction of indicators obtained by our model is same as 
the direction identified by the expert in terms of effect on resilience. Therefore, we may draw the conclusion that 
the results obtained by the regression model are consistent with the expert judgment, which essentially validates 
our model.  

4. Weighting Scheme for Earthquakes 
In this section, we introduce the weighting scheme for earthquakes. Similarly, we compute the relative weights 
and direction of the indicators in line with the algorithm proposed in section 2. 

 First, we consider seven indicators as mentioned in the section 2 to represent the resilience of the 
engineered system. Second, we choose the Virginia Earthquake, which happened in the Piedmont region of the 
state of Virginia on August 23, 2011, and South Napa Earthquake, which occurred in the North San Francisco 
Bay Area on August 24, 2014, as the natural disasters, because these two earthquakes are quite recent and have 
medium level damage to the community. Then, according to the damage zone intensity map for the Virginia 
Earthquake, shown in Fig. 4(a), we choose the Spotsylvania county, Fluvanna county, and Goochland county, 
because these counties seem to experience same level of damage. Similarly, we choose the Sonoma county, 
Solano county, Marin county, and Contra Costa county as target counties for South Napa Earthquake, based on 
the USGS shake map shown in Fig. 4(b). Note that we choose USGS shake map for South Napa Earthquake to 
help us determine the damage level of these California counties, because the authors fail to find damage map for 
South Napa Earthquake. Because these two earthquakes’ magnitudes are less than 6Mw, local businesses mainly 
underwent short-term economic disruption and the long-term economic impact was not obvious. Thus, instead of 
choosing unemployment rate in the next touriest season as we did for Hurricane Sandy, we choose the 
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unemployment rate decline from August 2011 to September 2011 for Virginia Earthquake, and the 
unemployment rate decline from August 2014 to September 2014 for South Napa Earthquake. Because we 
should expect the unemployment rate to increase right after the earthquake occurs and it will drop back to pre-
earthquake levels in a few weeks for moderate events like these two mentioned above, here we quantify 
resilience as the unemployment rate decline in one month after the event, shown in Eq. (1): 

0 1
resilience: % unemployment rate = % unemployment rate  % unemployment ratet t∆ −                (1) 

where t0 represent the month that earthquake occurs and t1 represent the follwing month after t0. More resilient 
counties should have less increase in the unemployment rate. The data were collected by BLS. Note that the 
unemployment data is preliminary and not seasonally adjusted. 

                     A                                                                       B 

             
Fig. 4 – Damage Maps of Earthquakes: (a) damage zone intensity map for the Virginia Earthquake [12]; (b) 
USGS shake map for the South Napa Earthquake [13] 

        A                                                                                    B 

 
Fig. 5 – Unemployment rate decline: (a) unemployment rate decline from Aug. 2011 to Sept. 2011 in Virginia 
counties; (b) unemployment rate decline from Aug. 2014 to Sept. 2014 in California counties 
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Third, there is no missing data, so we pass this step. Fourth, since the dataset is very small – we only have 
7 observations versus 7 variables, we could not conduct the linear regression with all the variables directly. 
Hence, we need to choose a subset of all the variables, which include the five most relevant variables towards 
earthquakes. Considering expert judgment, we choose not to include No.1 and No.7. Because in the hurricane 
model, we find that No.1 is correlated with other indicators. The correlation between indicators will not change, 
as the natural disaster changes, since the correlation are computed between indicators, having nothing to do with 
the response variable . Besides, in many cases, the housing age has no direct relation to the state of the building 
after earthquakes, since a lot of historic buildings were renovated and reinforced, making them probably perform 
better in the earthquakes than “younger” buildings do. Hence, No.1 is advised to be deleted. In addition, for No.7, 
according to the hurricane model derived in section 3, we find the water system plays the least important role in 
the model. Considering this indicator may have similar impact to the earthquake model as it did to the hurricane 
model, we decide to delete No.7 for now. Therefore, this model includes following five indicators: No.2, No.3, 
No.4, No.5, and No.6.  

Fifth, we normalize all the indicators and response variable. Sixth, we compute the VIF and find these five 
indicators all with VIF less than 5. Therefore, colliearity is not a problem for this earthquake model. Seventh, we 
finalize all the indicators and then obtain the final linear regression model. Eighth, the relative weights and 
direction are illustrated in Table 3. It is obvious that the direction of indicators obtained by our model is same as 
the direction identified by the expert in terms of effect on resilience. As a consequence, the results obtained by 
the regression model are consistent with the expert judgment, so our earthquake model is validated. 

Table 3 – Relative weights and direction of indicators computed by regression model 

# Description Relative 
weights 

Regression Model Expert Judgment 

Effect on 
unemployment rate Effect on resilience Effect on resilience 

2 % of not moible homes 3.21 NEG POS POS 

3 Median residential 
download spped 3.13 NEG POS POS 

4 Median mobile download 
speed 1.00 NEG POS POS 

5 Road miles per square mile 1.41 POS NEG NEG 

6 # of deficient or obsolete 
bridges 5.64 POS NEG NEG 

 

5. Discussion 
In this section, we discuss the similarities and differences between the hurricane model and earthquake model. 
Also, we discuss the reasons behind the results and draw inferences from them. The summary of weights 
determined by hurricane and earthquake models is shown in Table 4. 

 There is an interesting discovery is that the first indicator, average age of housing stock, seems to be an 
important indicator to quantify the community resilience, because it’s considered in several famous community 
resilience index models, such as DROP [1]. But this indicator is removed for both models of earthquakes and 
hurricanes due to collinearity. In other words, we may reconsider whether we want to include this indicator into 
future community resilience index models. 

 In the hurricane model, we find that No.2, the percentage of housing units that are not mobile homes, is 
the most important indicator. This suggests that for communities in the hurricane zone, mobile homes are more 
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vulnerable to hurricanes. Obviously, this result is very coherent with expert judgment, because the prevalence of 
structures that are not mobile homes directly link to the number and type of structures in damage [14]. Then, 
No.5, the road miles per square mile, and No.6, the number of bridges per 100 square miles that are structurally 
deficient or functionally obsolete, are the second and third important indictors in the hurricane model. This result 
is actually very reasonable, because transportation is essential for the community to withstand and recover from 
the natural hazards, like hurricanes. 

In the earthquake model, No.6, number of bridges per 100 square miles that are structurally deficient or 
functionally obsolete, becomes the most important indicator. One interpretation is that bridge, often as critical 
transportation junction, plays an important role in after-earthquake rescue and recovery. Then, No.2, the 
percentage of housing units that are not mobile homes, is the second important indicator in the earthquake model. 
It suggests that mobile homes are also very vunerable when it comes to earthquakes.  

We find that the most important indicator varies for hurricane model and earthquake model, in that these 
two natural hazards have different impact parttens to the community. However, we can find that building’s type 
and transportation condition are two key aspects of the community, when it comes to hurricanes and earthquakes. 
In addition, it’s not surprising that the median mobile download speed is “not-so-important” in both earthquakes 
and hurricanes. But it is expected be more important in the case of cyber attack. 

 Compared to unit weighting scheme, our method prevails in the way that more important variables are 
correctly recognized and more accurate quantification of the engineered system’s resilience is obtained. Notably, 
the response varible choice needs to be careful and justifiable; in this study, the response varible’s choices are 
proved to be appropriate in both hurricane and earthquake case, because the indicators’ direction obtained by the 
regression models coincides with the direction obtained by the expert judgment.  

 Moreover, we have to admit that the hurricane model is more convincing, in the sense that we have more 
data/observations support this model. But we need to clarify that the earthquake data issue is intrinsic. As we all 
know, only two large earthquakes (i.e., 2011 Virginia Earthquake and 2014 South Napa Earthquake) occurred on 
the continental U.S. during the past decade. The magnitude of these two earthquakes is around 6Mw, so only 
several counties are impacted with medium-level damage. 

Table 4 –Summary of weights determined by hurricane and earthquake models 

# Description 
Relative Weights 

Direction 
Hurriance Earthquake 

1 Average of housing stock / / / 

2 % of not moible homes 7.39 3.21 POS 

3 Median residential download spped 1.05 3.13 POS 

4 Median mobile download speed 1.72 1.00 POS 

5 Road miles per square mile 3.21 1.41 NEG 

6 # of deficient or obsolete bridges 2.03 5.64 NEG 

7 % of population affected by water violation 1.00 / NEG 

 

6. Conclusion 
Above all, this paper proposes a generic multi-hazard weighting scheme to determine the relative weights and 
direction of the indicators for different types of disasters. Specifically, we choose a set of commonly-used 
indicators in the engineered domain of community resilience, and use hurricane and earthquake as case studies to 
show the advantage of this method. The results obtained by the regression models also validate our guess that 
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indicators have different importance when it comes to different hazards. Furthermore, the percentage of housing 
units that are not mobile homes is the most important indicator when we want to estimate the resilience towards 
hurricanes; the number of bridges per 100 square miles that are structurally deficient or functionally obsolete is 
most fundamental to the engineered system, when earthquakes occur. This multi-hazard weighting scheme is 
devoted to quantifying community resilience and assessing urban risks under attacks of earthquakes and 
hurricanes. 

 However, this method is not perfect. We need to admit the sample size is relatively small, especially for 
earthquakes, but, as we mentioned above, this issue is intrinsic. Besides, indicators for the engineered system 
may not be very comprehensive, since we only include several typical indicators with publicly available data. If 
the federal and local government can collect more data for the engineered system, we will be able to build up a 
more accurate model to quantify the resilience of the infrastructure system. 

 In the final analysis, we will try more indicators and possible reponse variables in the future, in order to 
come up with a more comprehensive weighting scheme for the engineered system domain. Moreover, this multi-
hazard weighting scheme contributes to quantifying community resilience and assessing urban risks under 
attacks of earthquakes and hurricanes, and can be combined with expert judgment from a panel to form a more 
comprehensive Bayesian model. Furthermore, this methodology can be applied to other domains or sub-domains, 
such as the economy, education, government, and so on. 
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