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Abstract 

The seismic response in presence of multiple interactions between structures through the soil is extremely complex even 
when the structures and the soil behave linearly. However, two facts reduce the complexity of the problem. First, some 
structures are built according to a periodic pattern and second, the seismic spectrum generates wavelengths significantly 
than the characteristic size of the studied system.  In this double circumstance, it is possible to address the multiple 
interactions in the rigorous framework of the homogenisation method. 

In this paper, two examples of this approach are considered, namely the dynamics of soft soil layer reinforced by a 
periodic distribution of piles, and the influence of the city on the seismic response at the settlement sites scale. In both cases 
the theory is validated by experiments on analogous specimens performed on a shaking table (European project SERIES).  

The soil with piles is treated as a composite made of a soft matrix - the soil, working in shear as usual - periodically 
reinforced by linear slender elastic inclusions, i.e.  the piles considered as beams and thus working in bending. It is shown 
that the overall behaviour of such a system couples the shear and bending effects, with simple expressions of the effective 
parameters. The experiments comfort this theoretical modelling.  These results make questionable the usual description 
based on Winkler model, where the soil is assumed to react in extension-compression (with parameters adjusted in a 
empirical way). 

The seismic response of a densely urbanized city resting on a homogeneous plane half space is studied in an 
idealized situation : the city is seen a periodic distribution of linear oscillator describing the first eigen mode of the 
buildings. The homogenisation analysis shows that the city behaves as a resonating surface characterized by an impedance, 
whose the properties are inherited from that of the oscillators. This enables simple parametric studies of the actual city 
effects on the ground motions.  The experimental program conducted on a set of 37 oscillators lying on an elastic layer 
provides results in accordance with the theoretical city impedance model.  Direct engineering applications concern the 
effective impedance of groups of few (say more than 5) similar buildings.  

Keywords Homogenization ; Dynamics ; Pile foundations ; Soil-structure interaction ; Site-city effect.  
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1. Introduction 

In earthquake engineering, the "exact" treatment of the seismic response in presence of multiple interactions 
between structures through the soil is extremely complex even when the structure and soil behaviours are 
assumed linear, as usual in geophysics and structural dynamics. However, we can take benefit of two facts to 
reduce the complexity of the problem. First, some structures are built according to a periodic design (of few 
meters length) and second, the seismic spectrum generates wavelengths significantly larger (say 5 to 10 times) 
than the characteristic size of the studied system. When this condition of scale separation is fulfilled one may use 
the classical framework of two scale asymptotic homogenisation method [1, 2], to derive the global behaviour.  

Two examples of this approach are addressed in the sequel, namely the dynamics of soft soil layer 
reinforced by a periodic distribution of piles and the influence of the city on the seismic response at the 
settlement sites scale. The analysis proceeds by scale change from the pile and soil period to the reinforced layer 
in the first case, and from the building scale to the global city scale in the second case. In both cases the 
theoretical approach is completed by a validation by experiments on analogous specimens performed on a 
shaking table.  

2. Dynamics of soils reinforced by piles  

The dynamic pile-soil-pile interaction is of importance in earthquake engineering [3]. However, in practice the 
numerical treatment is ill conditioned and the problem remains in general an open question. The soil with piles is 
here considered as a composite made of a soft matrix (soil, working in shear as usual) periodically reinforced by 
linear slender elastic inclusions (piles considered as beam and thus working in bending), [4]. 

2.1. Setting of the problem  

Consider an homogeneous soil matrix (index m) in which a periodic array of parallel identical homogeneous 
straight piles (index p) is embedded with a perfect contact (Fig. 1).  

 

 

Fig. 1. Soil matrix (index m) and piles (index p) periodic system.  

The characteristic size of the period (square or rectangle) is l. 

 

The soil and the pile are assumed to have an isotropic linear elastic behaviour characterized by their Lame 
coefficients λq and μq (q = m, p) or Young’s modulus Eq and Poisson’s ratio νq. Their density are denoted by ρq. 
The media presents a 2D-period S : S = Sp∪Sm, where Sp stands for the pile section and Sm for the soil section. 
The interface between the two constituents is denoted Γ. The pile concentration of beams is c = |Sp|/|S|. The local 
problems are set on the frame originated at the center of mass of the pile section and orientated along its 
principal inertia axis.  We denote by Iα the pile section inertia in the principal direction aα. The axial dimension 
of the piles, H, is much larger than the lateral dimension l of the period. We are interested in identifiying the 
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global behaviour of the soil-piles system, relevant for deformation phenomena varying according to a 
macroscopic length L, much larger than l. This introduce scale parameter used in the asymptotic expansions 

ε = l/L ≪1 

The geometry specifies the axial direction (of unit vector a1) and the directions in the plane of the section (of unit 
vectors aα, α = 2,3). Herein, Greek indices run from 2 to 3 and Latin ones from 1 to 3. The relevant dimensionless 
space variables are (xi/L,xα/l) and the appropriate physical space variables are (xi,yα), where yα = ε−1 xα. Thus, any 
function f(xi) is rewritten as f(xi,yα) and its gradient becomes ∂ f /∂xi ai + ε−1 ∂ f /∂yα aα . According to the scale 
separation and to the in-plane periodic geometry, the variables are S-periodic. Hence, the displacements in both 
constituents (pre-exponent q = m, p) are looked for in the form  

qu = quj(xi,yα)aj   with   mu S−periodic in yα.   

Using the asymptotic process, motions in both constituents (q = m, p) are looked for in the form of two-scale 
expansions in powers of ε:  

 

The specificity of the axial direction leads to decompose strain tensor qe, and stress tensor qσ in each constituent 
(q = m, p) - into three reduced tensors (⊗ stands for the tensorial product) :   

A = An a1 ⊗ a1 +(At ⊗ a1 + a1⊗ At) + As  where   A = e or A = σ; 

◦ An = A11 : scalar axial strain or stress;   

◦ At = A1α aα : 2D strain or stress vector exerted out of the plane of the section;   

◦ As = Aαβ/2 (aα ⊗ aβ + aβ ⊗ aα) : strain or stress tensor in the plane of the section.  

By using the x,y-formulation, these tensors read (where Is = a2 ⊗ a2 + a3 ⊗  a3 ):  

 

The beam and matrix dynamic equilibriums in harmonic regime read (as the problem is linear, the term exp(iωt) 
is omitted to lighten the notations): 

 

 

where [.] denotes the jump at the interface. This set rewritten with (xi,yα) splits into :  

- scalar equations expressing the axial balance (along a1)   

 

- vectorial sets expressing the in-plane balance (within (a2,a3) )    
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The contrast of mechanical properties between the soil and the piles plays a crucial role: without soil, the pile 
array would be governed by bending; while if the soil and the piles stiffnesses were identical, the behaviour 
would be governed by shear. A coupling between shear in the soil and bending in the beams are derived from a 
dimensional analysis, occurs when the piles modulus is of the order of the square of the slender ratio (of the pile) 
compared to the shear modulus of the soil. Hence, we focus on media presenting a ε2 stiffness contrast, i.e. (the 
notation O(.) stand for "of the order of") :  

μm =O(ε2μp)=ε
2μ′m  and  λm =O(ε2λp)=O(ε2λ′m) 

and the stresses in both constituents are written in the form below:  

σp = λ p tr(e p)I+2μpe p  σm = ε2(λ’mtr(em)I+2μ’me m) 

In both constituents, problems at different orders are obtained by introducing the asymptotic expansions into the 
dynamic balance equations. This problems are solved successively until the macroscopic description is obtained.  

2.2 Transverse dynamic behaviour  

Focusing on transverse kinematics, one derives, [5], the following leading order in-plane balance equations 
(where {i j} = {11, 22, 33, 23}) :  

 

where here and in the sequel we denote the average by the notation :  

 
This set expresses the dynamics associated with the transverse kinematics. A bending effect is involved at the 
leading order when the transverse component Uα presents an x1-axial variation. The coefficients of the elastic 
tensor C are identical to those of the elastic matrix reinforced by perfectly rigid inclusion (occupying the beam 
domain). As for inertia, the equivalent density is the mean density as in classic dynamics of elastic composites. 
In quasi-static regime, this second gradient model is of the same nature as the model established by [6] and 
simplifies the bi-phasic developed by [7].  

This description enables to investigate the homogenous transverse modes - in the form Uα
0(x1)aα - of a 

reinforced layer of finite thickness H (and bi-symmetric matrix/beam period so that C is transverse isotropic), 
[5]. By considering, for simplicity, motions in the direction a and by using the lightened notations U 0 = U ; x1 = 
x; Ip2 = Ip ; C12 = 2G, the equilibrium condition reduces to the scalar equation :  

 

Denoting by δ1 and δ2 the roots of the associated characteristic equation, the general solution is in the form 
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where the dimensionless parameter K weighs the bending effects compared to shear effects. Bending 
predominates when K is small, shear when K is large. The boundary conditions must be specified at the bottom 
(x = 0) and top (x = H) of the layer. Due to the second gradient/bending effect, four types of simple boundary 
conditions are possible:  (i) Free, i.e. zero shear force, zero momentum ; (ii) Clamped, i.e., zero translation U, 
zero rotation U′ ; (iii) Articulated i.e. zero translation, zero momentum  and (iv) Sliding i.e. zero rotation, zero 
shear force. They reads explicitly :  

 

The modal analysis is performed for different boundary conditions (the first and second conditions are related to 
the bottom (x = 0) and top (x = H)) : clamped-free (EL), clamped-sliding (EG), articulated-sliding (AG) and 
articulated-free (AL). These conditions lead to a set of four linear equations and the modes correspond to the non 
trivial solutions obtained when the determinant vanishes. This results in the following modal equations:  

 

For each case, the modal equation can be solved numerically as a function of K to derive the solutions δ1i and δ2i 
corresponding to the ith mode. Eigen frequencies and mode shapes of the reinforced layer can then be derived.  

 

  

Fig. 2. Physical model of reinforced soil fixed on the shaking table. (a) Free top boundary condition.  

(b) Rigid lattice of aluminium bars connected to the top of the fibers enabling the translational top condition. 

2.2 Experiments on a physical model  

In the frame work of the European project Series, an experimental program has been realized [8] in order to 
validate the homogenized model. The materials of the physical model were chosen to match the large stiffness 
contrast between the matrix and the fibers, both being isotropic linear elastic materials and presenting a perfect 
adherence at their interface. The matrix is a polyurethane foam of density ρm = 48 kg/m3 and shear modulus Gm = 
24.3 kPa. The fibers are round mild steel seamless tube of modulus Ep = 210 GPa, density ρp = 7800 kg/m3, with 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017

6 

diameter and wall thickness of 12.7 mm and 3.25 mm. The physical model was designed so that both bending 
and shear mechanisms would occur at resonance. The dimensional analysis of the governing equation gives the 
following relations in order of magnitude:  

 

The test specimen (Fig. 2-a) has a footprint of 2.13×1.75 m2. A 25cm spacing between fibers permits a 
reasonable periodicity with 35 fibers giving the surface value S = 0.25×0.25 m2. With a model height of H = 
1.25m, the left hand side of the above relation is satisfied while the right hand side gives a fundamental 
frequency less than 10Hz, appropriate for an accurate control of the shaking table. Two concentrations with 
periodic arrangements were tested, (i) 35 fibers distributed on a 7 by 5 square grid of 25cm side, giving a fiber 
concentration c of 0.2%, (ii) 17 fibers distributed in staggered rows at √2×25cm centres, giving c = 0.1%. For 
both fiber concentration, the four type boundary conditions EL, EG, AL, AG were tested. For clamped-free (EL) 
conditions, the fibers were bolted to the base-plate. For sliding condition (G) , a rigid lattice was fixed at the top 
of the fibers to avoid the rotation and allow the translation (Fig. 2-b). The rotational condition (A) at the bottom 
of the fibers was realized by placing a steel ball between the base-plate and the fiber.  

The model is firmly clamped on the table and the shaking table imposes a horizontal uni-directional rigid 
body motion. The model responds to the motion imposed at its base and its motion is recorded using the sensors. 
White noise enables identification of the first eigen frequencies (Fig. 3-a). Harmonic sinusoidal motion are used 
to excite the model at its eigen frequencies for accurate determination of the mode characteristics (Fig. 4-a).  

Single-axis accelerometers are mounted on the shaking table, on the uppermost surface of the matrix, on 
the fiber protruding from the top of the matrix, and a vertical face of the sample. The identical accelerations 
recorded on the foam and on the fibers indicates that both follow the same horizontal translation motion, as 
derived by the homogenised model under the assumption of perfect adherence. Further, the accelerometers 
enable to identify the eigen frequency, and the fundamental mode shape.  

Six fibers were instrumented with 3 pairs of longitudinal strain gauges (located (i) at the fiber bottom (B+/-, 
38.5mm from the base), (ii) at the middle (M+/-, 625mm from the base) and (iii) at the top (T+/-, 1211.5 mm 
from the base). The response demonstrated the bending deformation of fibers, according to the nature of the 
boundary conditions (Fig. 3-b). Since the material properties, the geometry and the boundary conditions of the 
test specimen are (almost) exactly known, the homogenised model has been used to determine the expected 
behaviour. The measured fundamental frequencies match the homogenised model ones, with an error of about 
1% for clamped-free (EL) boundary conditions (6% for EG condition ; 15% for AL or AG conditions). These 
values significantly depart form that given the pure bending and the usual composite model (whitout bending).  

  
 

Fig. 3. Response of the sample with 35 beams tested with the four different boundary conditions. Left : 
Fundamental frequency identified from spectrum recorded under white noise motion. Right : Momentum in the 

beam evidenced by the gauge response recorded under harmonic motion at the fundamental frequency. 
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In Fig. 4, the fundamental mode shape and the curvature (derived from momentum measured through gauges) 
are compared to theoretical predictions given by the model with the same boundary conditions. For the clamped-
free, clamped-translational and rotational-free boundary conditions, the homogenised model matches the 
experimental data (while the beam model and composite model fails to predict the experiments). For the 
rotational-translational conditions, the experiments departs more significantly from the theory.  

Further, all these observations are similar for the configurations with 17 fibers. In the whole, the 
experiments are in good agreement with the theoretical model. 

  

Fig. 4. Experiment (dot) versus theory (line). Comparison performed on the sample with 35 beams tested with 
the four different boundary conditions.  Left bloc : Fundamental mode shapes related to the four boundary 

conditions (EL, EG on top, Al, AG on bottom). Vertical axis is the high of the pile, horizontal axis is the 
normalized acceleration (theoretical and extracted from the accelerometer measurements) . Right bloc : curvature 
related to the four boundary conditions (EL, EG on top, Al, AG on bottom). Vertical axis is the high of the pile, 

horizontal axis is the curvature (theoretical and extracted from the gauge measurements). 

3. Urbanization effect on seismic response  

E Wirgin and Bard, [9], suggested that some specific features (beatings, long duration) of the seismic motion 
recorded in Mexico City during the 1985 Michoacan earthquake, could be explained by the energy re-radiated in 
their surroundings by the buildings involved in multiple interactions. This question, investigated numerically by 
several authors, e.g. [10] or [11], is handle here in an theoretical/analytical manner [12,13,14]. We study the 
seismic response of a densely urbanized city resting on a homogeneous plane half space. The idealized city is 
characterized by an elementary representative block (ERB) containing a building, and the city is seen a periodic 
distribution of the same ERB, in the two directions of the ground surface. The buildings are taken to be linear 
elastic structures and the study is restricted to the effect of their first mode of oscillation. Thus, each building is 
described by an equivalent three degree of freedom oscillator.  

3.1. Statement of the problem  

Consider a Σ-periodic distribution of oscillators that lies on the top plane surface Γ of an homogeneous elastic 
half space (of elastic tensor C and density ρ). We study the propagation of harmonic waves of frequency f = 
ω/2π, assuming a scale separation between the characteristic size l of the period Σ0 and the wavelength in the 
medium, i.e.:   

ε = 2πl/λ ≪ 1 

The wave frequency and oscillator’s eigen frequencies are assumed of the same order of magnitude. The 
oscillators set in motion by the waves induce on Γ (x3 = 0, outward normal −e3) an heterogeneous distribution of 
stress, t.exp(iωt). It is clear that, (i) at the Σ-scale, the force distribution is locally Σ-periodic, (ii) the stress 
distribution may also vary at the macro-scale, i.e. the wavelength scale. Following the homogenisation procedure 
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the variations at both scales are described by the macro-variables x and micro-variables y, with y = ε−1x and the 
physical quantities are expressed in the form of asymptotic expansions in power of ε. The local 2D periodicity of 
the surface forces enforces the same 2D local periodicity of the physical quantities in the medium. However, the 
sources of these small scale variations being located on the top surface only, it is expected that far from the 
boundary, the small scale variations vanish, while the large scale variations remain. Such situation can be 
described by introducing a boundary layer in the vicinity of the surface, [13]. The boundary layer at the soil-city 
interface describes the near fields radiated by each building and their multiple interactions. These assumptions 
lead to postulate a solution on the form defined hereafter.  

 

 

Fig. 5. Idealized city. 

Far from the surface, only the macro-variables are relevant. The elastodynamics equations applies on the 
expanded quantities (the time dependence, exp(iωt) is omitted):    

 

where u, e(u), σ, respectively denote the displacement, the strain tensor and the stress tensor. This macro-field 
does not match the small scale variations of the surface forces.  

To match the conditions on the surface, a boundary layer (BL) field (denoted by *) is added to the macro-
field. The BL field, confined near the surface, varies at both micro- and macro-scale. Hence the elastodynamics 
equations take the following form in the boundary layer :  

 

When the boundary layer plays an effective role, the surface forces t, the macro-field stress σ, and the boundary 
layer stress σ⋆ , are of the same order of magnitude. Thus, the expansions of the surface forces and of the BL 
stresses take the form : 

 

and from the definition of σ⋆ the BL motion expansion begins at the order ε:  

 

All the terms of the expansions in the boundary layer fulfill the condition of Σ0-periodicity according to the yα 
variables. Moreover, by principle :   

- on Γ (y3 = 0), the total stress field balances the surface forces : −(σ+σ⋆ ).e3 = t    

- far from Γ,i.e. when y3 → ∞, the total field should only presents variations according to the macro-scale. Thus 
the small scale variations of the BL field vanish, which leads to the condition: ∇yu⋆  → 0 y3 → ∞ .  
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3.2. Macro-description at the leading order  

The homogenisation procedure enables to define the macroscopic boundary conditions on Γ, [13]. One 
establishes that the zero order description is fully determined by the field u0(x) ≡ U0(x) governed by the usual 
elastodynamic equation and the following boundary condition (for simplicity the index 0 is skipped) :  

 

Thus, at the leading order considered here, the surface motion is uniform on the period and the macro- field 
balances the mean surface stresses. Further, since the linear oscillators respond to the surface motion, the macro-
stress T on Γ is related to the surface velocity −iωUΓ through a frequency-dependent impedance matrix ZΓ 
defined by the properties of the oscillators. Finally, the leading order boundary condition states that the 
"oscillators layer" at the leading order acts as an equivalent impedance matrix :  

[C : e(U)].n = −iωZΓ.U  on  x3 = 0   

To illustrate the impedance properties, consider a single oscillator located on Σ that presents a single degree-of-
freedom characterised by a stiffness k, a viscous damping coefficient c and a mass m in a given direction (e.g. 
horizontal) so that, on this direction, the problem is scalar. The surface motion UΓ induces a motion Um of the 
mass of the oscillator. The force |Σ|T imposed by the oscillator on Γ balances the mass inertia. Consequently  

|Σ|T =(k−iωc)(Um−UΓ)=mω2Um 

Then, introducing the eigen frequency fo = ωo/2π and the damping ratio ξ (weak damping is assumed)  

 

we have  

 

This last relation provides the impedance ZΓ (in the oscillator direction). Normalized by the shear impedance Z = 
√ρμ = ρcS of the elastic half space, ZΓ is the product of a constant parameter η and of a dimensionless frequency 
dependent function :  

 

Parameter η is the product of two terms. First εo = ωol/cS i.e. the scale ratio at the eigen pulsation ωo of the 
oscillator. For the resonance to occur under scale separation condition, εo ≪ 1. The second term is the ratio 
between the oscillator mass m and the mass MΣ = ρ|Σ|l of the medium under one period Σ on a depth l. Hence, η 
is at best of the first order (in εo) if the resonating mass m is of the same order as MΣ. The impedance ratio ZΓ/Z, 
in the low, high and resonant frequency ranges are assessed by :  

 

In quasi-static (ω ≪ ωo) or inertial (ω ≫ ωo) regime, the impedance ZΓ is much smaller than the medium 
impedance Z. Consequently, the boundary condition tends to the free surface condition. Conversely, at the 
resonance (ω → ωo) the impedances ratio tends to −η/2ξ. If the oscillators are perfectly elastic (ξ = 0), ZΓ/Z 
becomes infinite, and the surface displacement tends to zero in the direction of the oscillations: this phenomenon 
has the same effects as a rigid condition (in the direction of the oscillations only). For the resonant surface effect 
to be not negligible at the resonance under the scale separation condition, the two following inequalities have to 
be fullfilled necessarily: εo < 1 and η/2ξ > εo. This provides the two following constrains for the oscillator:  
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To sum up, the resonant surface enables to switch from quasi-free surface condition to quasi-rigid surface 
condition in the resonance frequency range and in the resonance direction only. Combining oscillators with 
different direction of oscillations open the possibility of unusual boundary condition mixing free and rigid 
conditions. Such situations, impossible to reach with an elastic upper layer, drastically change the usual 
reflection rules [16] The unconventional features of the phenomena induced by the resonant surface identified 
from the theory have been checked through a physical model. 

  

Fig. 6. Physical model of soil-city interaction. The fundamental frequency the 37 plates match that of the foam 
layer. Left : the specimen ; Right : Amplitude and Phase of the transfert function between the surface motion and 
the table motion in the resonating and non resonating directions (orthogonal and parallel to plates). Comparison 

between theory and experiment and with the case of a single oscillator. 

3.3 Experimental validation  

An experimental program has been conducted within the SERIES project [14,15]. The resonant surface is made 
up of 37 bending beams (made of metallic plates) resting on a soft layer made of foam (Fig. 6-a). The specimen 
is designed so that the oscillators’ eigenfrequency match the fundamental frequency of the layer. The analysis of 
the response of the specimen analogue to a site-city system provide valuable information on the city effect under 
vertically incident SH wave. According to the trends provided by the homogenized model, the tests illustrate the 
expected phenomena associated to the site-city effect:  

- reduced amplitude of the ground and oscillators motions in the resonating direction around the common 
fundamental frequency of both layer and oscillators (Fig. 6-b right), and no effect in the non- resonating 
direction (Fig. 6-b left),   

- splitting of the resonance peak that favours beating of the signal (Fig.6-b and 7),  

- increased duration of the response with slower decreasing of the coda (Fig. 7),   

- change in horizontal polarisation for input SH motion oriented out of the resonating axes of the oscillators (Fig. 
8). These experimental observations agree with the equivalent impedance model.  

Other experiments with different configurations (5, 9, 17 identical oscillators ; two types of oscillators, periodic 
and non periodic distributions) demonstrate the same trends.  

These theoretical and experimental results are relevant in the framework of large wavelength. Other phenomena 
can occur out scale separation (high frequencies). Moreover, application to strongly non- linear soil is out of 
scope but might be possible for weak non-linearity. Practical application may concern the design spectrum for 
clusters of limited number (at least 4) of nearby quasi-identical high- rise buildings in new city-blocks. Actually 
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multiple Soil-Structure-Interaction mechanism are usually not accounted for in design, where free surface 
conditions are generally assumed, as is usually valid considering a dissonance in the eigenfrequencies of the 
buildings and the layer. The present study raises the issue of a modification of both the soil and structures motion 
by these mechanisms and suggests that those local perturbations can be reduced into an effective resonant 
impedance for the waves and for the structures themselves.    

 

Fig. 7 Change in the time response due to the resonators. The experiments are in good agreement with the 
simulations performed with the homogenized model. 

 

Fig. 8. Depolarization effect in the frequency range of resonance : the top motion orientation departs 
considerably from the table motion orientation 

4. Conclusion 

This work illustrates the potential of application of multi-scale approach in civil engineering. Obviously the 
considered configurations are over simplified compared to the reality. However, such analysis based on up-
scaling, provides a first level of information on the phenomenon that occurs in the linear elastic range. This 
enables to identify the key parameters that governs complex phenomena as the pile group effect or multi-
building interaction usually present in practice.  
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