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Abstract

The plastic hinge length is defined as the length over a seismically swaying column, where flexural moments exceed the
yielding capacity. Thislength, measured from the critical section towards the shear span, signifies the region where intense
inelasticity occurs during the earthquake, and is determined in design codes through calibrated empirica relationships that
account primarily for the length of the shear span and the diameter of primary reinforcing bars. The latter is meant to
account in a simplistic manner for the effects of bar yielding penetration from the critical section towards both the shear
span and the support of columns. Contrary to the fixed design values adopted by codes of assessment, a consistent definition
of the notion of the plastic hinge length is with reference to the actual state of reinforcement — as the length over which bar
strains exceed yielding. Note that the development of flexura yielding and large rotation ductilities in the plastic hinge
zones of frame members is essentially synonymous with the spread of bar reinforcement yielding. Yield penetration in the
anchored reinforcing bar inside the shear span of the column where it occurs, destroys interfacial bond between bar and
concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation of the member
by increasing the contribution of bar slippage. In order to establish the plastic hinge length in a manner consistent to the
above definition, this paper pursues the explicit solution of the field equations of bond over the shear span of a column.
Through this approach, the bar strain distributions and the extent of yield penetration from the yielding cross section
towards the shear span are resolved and calculated analytically. By obtaining this solution the aim is to establish a consistent
definition of plastic hinge length and to illustrate the true parametric sensitivities of this design variable for practical usein
seismic assessment of existing structures. Results obtained from the analytical procedures are compared with data from
selected tests on reinforced concrete columns under seismic loading reported in the literature.

Keywords: shear span; bond; yield-penetration; plastic hinge length; disturbed region



F alfncel 16" World Conference on Earthquake, 16WCEE 2017

o (L %01 . :
. > Santiago Chile, January 9th to 13th 2017
' N Paper N° 2073

Registration Code: S-V1465484539

1. Introduction

A large component of the deformation capacity of reinforced concrete (RC) columnsis owing to pullout rotation
which occursin the critical sections near the end supports as a result of the penetration of strains both inside the
support of the member (e.g. footing) but also inside the shear span. In columns that do not fail by web crushing,
this mechanism of deformation increases gradualy with imposed drift, claiming a predominant share of the
members’ deformation capacity near the ultimate limit state. In order to evaluate this aspect of the response, it is
necessary to establish and solve the field equations of bond along the principa reinforcement of the deformed
member under lateral sway, with particular emphasis on the part of the reinforcement that is strained beyond the
limit of yielding into the hardening range. The regions where large inelastic strains may develop are within the
so-called plastic hinge length and the anchorage length, both being adjacent to the critical section. Due to
inelastic strain development, the reinforcement experiences length change; this elongation accounts for the large
flexural crack that opens up at the base of the member. Other implications of rebar elongation are, (a) the
vertical displacement which is reported to occur at the tip of the cantilever column during cycling under latera
loading (b) the acceleration of crushing of the concrete cover in the compression zone due to the local increasein
compression strains[1].

Strain penetration occurs in the bars beyond the critical section due to the degradation of bond beyond a
critical magnitude of dlip that marks the initiation of the descending branch in the local bond-slip law. Analytical
models representing the state of bond along the lateral surface of an embedded reinforcing bar are intended for
interpretation and simulation/prediction of the behavior of structural concrete in a manner consistent with first
principles. Previous studies have illustrated how detailed bond models may be used in the study of stress states
arising in the assessment of the rotation capacity of RC members [2]. Through evaluation of the strain
distribution it is possible to estimate the localization of excessive strain magnitudes in the critical zones, thereby
enabling a novel approach for evaluation of the plastic hinge length in flexure-shear members. Additionally, the
reinforcement stress and strain response and its displacement with respect to the surrounding concrete can be
explicitly described through the solution of the equations of bond in the shear span of the member; this enables a
detailed study of the tension stiffening phenomena, and how these affect the behavior of cracked concrete.

In this paper, a unidirectional model of bond is considered as a basis for the evaluation of the longitudinal
strain distribution of the primary reinforcement of the column. Although several solutions that refer to the
problem of force development along the anchorage have been proposed, yet the problem of strain penetration in
the anchorage has received limited attention from researchers [3, 4]. Related studies have been conducted for
lap splices developed in aregion of constant moment (no shear) [5]. On the other hand, the problem of strain
penetration in the shear span of the member has not been addressed explicitly yet.

2. Constitutive Relationshipsfor Reinfor cement to Concrete Bond

The basic equations that describe force transfer lengthwise from a bar to the surrounding concrete through bond
are derived from force equilibrium applied to an elementary bar segment of length dx and from compatibility
between bar trandation (slip), axial bar strain ¢, and concrete strain . over dx, namely [6,7]:

df /dx = —=(4/Dp)fp , ds/dx = —(e — &) = —¢ D

wheref isthe axia stress of the bar; Dy, is the bar diameter ; f, isthe local bond stress and sisthe relative dip of
the bar with respect to the surrounding concrete. The termsin Eq. (1) are related through the bond-dlip law, f, =
fy(s) and the bar material stress-strain relationship, f=f(¢). The concrete contribution to relative slip is e.dx; this
term is neglected when dealing with normal-weight concrete, considering that the average concrete strain is an
order of magnitude smaller than the average bar strain. Solution of Eq. (1) is possible though exact integration,
resulting in closed-form solutions for the state of stress and strain aong the anchorage, through pertinent
selection of simple models for the materia laws (e.g. piecewise linear relations). This approach has a clear
advantage over the numerical solution dternative in that it enables transparent insight into the role of the various
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design parameters on the behavior of bar anchorages.

Solution of Eq. (1) requires that the general form of the constitutive relationships of the bar and the local
bond-dlip law are known (Fig. 1). Here the reinforcing bar stress-strain relationship is considered elastoplastic
with hardening (representing conventional steel reinforcement) (Fig. 1a). Without loss of generdlity, and to
facilitate derivation of closed-form solutions, a linear elastic, perfectly plastic local bond-dlip relationship with
residua bond is assumed. The last branch represents the residua friction between the concrete cover and the
steel bar after failure of the rib interlocking mechanism (Fig. 1b). The difference between the characteristic local
bond strength and the average bond strength deduced from test datais also depicted in Fig. 1b. The plateau in the
local bond-slip law implies sustained bond strength. This feature is not always manifested in the test data; to be
measured it requires redundancy in the anchorage (i.e., availability of longer anchorages to enable force
redistribution before failure). In the assumed law the end of the plateau is marked by abrupt loss of bond strength
to aresidual value f,*. (Notethat f,* istaken nonzero only in the case of ribbed steel bars, but not for smooth
steel bars))
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Fig 1 - (a) Stress-strain law of steel bar and (b) local bond law

3. Tension-Stiffening M odel

It was mentioned earlier that spread of inelastic strains occurs on both sides of acritical section (e.g. at the base
of acolumn). The process of inglagtic strain penetration in the anchorage of areinforcing bar has aready been
demonstrated in [8]. This section is dedicated to solving the same problem in the other side of the critical
section, that is, along the shear span of a column. Here the problem is different from that of the anchorage only
in the type of boundary conditions that may be enforced (in other words, the governing differential equation is
the same); with regards to the bond-dlip law, athough the general form of the multilinear envelope may be taken
the same, the bond strength value, f,™, may be less in the shear span as compared to the anchorage due to the
reduced confinement available. Considering the column under lateral sway, the moment-shear relationship in the
span of a cantilever RC column under horizontal loading is identical to that occurring over the length of the
actual frame member extending from the inflection point at midheight (this is the point of zero moment, zero
curvature) to the fixed end support.

Before any kind of cracking takes place along the length of the flexural member, the bar strain is estimated
from the flexural analysis of the uncracked column cross section (i.e. the moment-curvature analysis) as per the
Eq. (2) where M(X) is the moment at distance x from the support, E is the elastic modulus of concrete, |4 is the
moment of inertia of the uncracked section with area A (referred to as gross section), N is the axial load, h isthe
section height and c isthe cover (Fig. 2a):

e(x) = (M(x) : .VS.na/(E : Ig)) —N/(E-A4), Ysna = (h/2) —c —0.5D, )
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Or more generally:
e(x) = (x) * ¥sna (3)

M,

Fig2—a) Definition of termsfor lateral swaying. b) Moment distribution along the shear span Ls and definition
of disturbed region, |p, ¢) The bar strain at the critical section experiences a significant jump upon cracking even
though the moment change from the uncracked to the cracked stage may be imperceptible.

with ysna the distance from the neutral axis to the centroid of tension reinforcement (Fig. 2a), and ¢(x) the
curvature on the cross section at distance x from the support. The distance to the neutral axis changes
significantly from the initial linear eastic state ys,..” , to the cracked state of across section ys,..~.  If the concrete
tension zone of the member is uncracked, the position of the neutral axis may be estimated from equilibrium
requirements, same holds in locations where distinct cracks have formed if it may be assumed that “plane
sections remain plane”. Based on classica flexural analysis concepts, a RC member may be considered
“cracked” in regions where the flexural moment exceeds the cracking moment. Although a large region may
satisfy this definition, however, cracks occur at discrete locations X;. Thus, if an analysis of the cracked cross
section is available, the reinforcement strains ¢(x¢;.) that occur in the crack locations may be calculated from Eq.
(3). However, it is clear that in the segment between cracks, where moment may exceed the cracking value, bar
strains cannot be estimated from flexura analysis as prescribed by Eqg. (3). The reason is that due to
reinforcement dlip, the degree of strain compatibility between steel and concrete in these locations is not well
understood, as would be required by the “plane-sections remain plane” assumption, nor can the concrete be
considered inert as would happen in a fully cracked tension zone. Because it takes some distance from a crack
location before the reinforcement may fully engage its concrete cover in tension so as to satisfy the conditions of
strain compatibility, it is clear that Eq. (3) may beinvalid even in regions adjacent to a flexural crack, even if the
moment in these regions falls below the cracking limit. The bar strain in these regions may be estimated from
solution of the differential equation of bond. To address all the possible exceptions to the validity of the flexural
requirement stated by Egs. (2,3), here the term “undisturbed” is used as a qualifier to “uncracked” in order to
refer to sections that satisfy the plane sections remain plane compatibility requirement, where concrete and
reinforcement strains at the same distance from the neutral axis may be assumed equal. Thus, in regions where
strains are obtained from solution of the bond equation, this requirement is not valid — therefore even if
apparently uncracked, the region may be “disturbed” according with this definition.

The length of shear span is referred to henceforth as L. The flexural moment in any cross section x (Fig.
2b), where x is measured from the face of the support, may be obtained from equilibrium with reference to the
flexural moment occurring at the support, M, (&, is the corresponding stedl strain), according with:
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M(x) =M, (1 —x/Ls) (4)

As the sequence of crack formation is critical for the occurrence of disturbed regions and for the problem
of strain penetration that will be subsequently addressed, in the present discussion the static problem represented
by Eq. (4) will be solved for a gradually increasing moment at the support. As a starting point in the following
derivation, it is assumed that the characteristic flexural resistance curve of any cross section along the shear span
(i.e. the moment — curvature and moment — bar strain diagram) are available from classical flexural analysis
(plane-sections) over the entire range of the response.

For a member with uniform primary reinforcement over its length, the moment distribution that follows
Eq. (4) will cause first cracking at the face of the support. According with the preceding discussion, the bar strain
at the base of a cantilever column with shear span L experiences a significant jump upon cracking of the tension
zone to maintain equilibrium. For example, if the cracked section stiffness is about 1/3 of the uncracked value,
the bar strain at the critical section is expected to increase threefold by the mere occurrence of the crack even
though the moment change from the uncracked to the cracked stage may be imperceptible (Fig. 2c). Thus
suddenly the whole region adjacent to the cracked location becomes “disturbed”. Over the length of the
disturbed region, the reinforcement strain is described by the solution of the bond equation [4] i.e.:

@) =G e+ Cpre®, w = [4f"/(E, Dy - 5] (5)

The solution of Eqg. (5) is valid provided bond is in the elastic range (ascending branch in the bond dip
law). Before the creation of any other crack, the disturbed region extends over a distance ¢, from the critical
section. What characterizes the end of the disturbed region isthat a) at that point the gradient of the bar strain
distribution, w=de(x)/dx, obtained from Eq. (5), matches the dope of the strain diagram as would be obtained
from the flexural analysis of the member, whereas b) the bar strain ¢(x) at that location satisfies simultaneously
Egs. (2,3,5). Therefore, from Eq. (4) it follows that the slope of the strain gradient owing to flexural moments at
uncracked location ¢p is (Fig. 3):

Y =de(x)/dx = —|(My " yina)/Elgr |- 1/Ls = w - (=Cy - e~ %0 + C, - e©?P) (6)
Eel

e(tp) =Cy e + Cy-e¥r =g - (1= ¢p/Ls) = N/(E - A) ()

From the system of Egs. (6, 7) the length of disturbed region adjacent to the crack may be determined if
the moment at the support M, is known. The solution given by Eq. (5) is also subject to the following boundary
condition (Fig. 2b):

e0)=C+ G =¢ (8)

In an agorithm developed to solve Eqg. (6,7,8) numerically, the controlling parameter is ¢,; therefore, at
each incremental step which begins by selecting the value of &,, the corresponding moment M, is uniquely
determined from the moment- bar strain diagram of the member cross section under study. Equations (6,7,8) are
a system of three equations having three unknowns — given the value of ¢, and @ the unknowns are C,;, C, and
{p. Atthispointitisrelevant to determine the location of the next crack formation. Whether the next crack will
form within the undisturbed or the disturbed region depends on the magnitude of tensile stress transferred
through bond to concrete:

a) A check is performed regarding whether next cracking will occur in the disturbed region. The least value
of coordinate x< ¢p should be determined that a so satisfies the requirement:
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[(Es ) Asl)/(fct ) Ac.eff)] ) [80 - g(x)] =1, Ac.eff =b-(2c+ Db) —As (9)

In EQ. (9) Aq isthe area of the tensile reinforcement, A« is the area of concrete effectively engaged in
tension, fyisthe tensile concrete strength, b is the width of the section of the column (Fig. 2a). For a crack
to be formed into ¢p the force undertaken by bond mechanism (i.e. EsAq[ -&(X)]) should exceed the force
of the effectively engaged in tension concrete (i.e. fxA«); in this case the left-hand expression of Eq. (9)
should be >1 else no further cracking is possible in the disturbed zone as long as the reinforcement
remains elastic.

b) A check is performed regarding whether next cracking will occur in the undisturbed region. Therefore the
coordinate x> {p should be determined that satisfies the following requirement (. is the cracking
concrete strain) based on Egs. (2,4):

e(x) = gel(l - x/Ls) —N/(E-A) = Ecor =X = Lg- [1 - gc.cr/gel — N/(EA <c-‘el)] (10)

This processis repeated as the value of the strain ¢, in the support is increased. If the criterion (b) controls,
i.e. the next crack forms in the undisturbed region, then from there on this becomes the controlling strain value
and the next disturbed region that begins from that point and extends away from the support is calculated. The
new disturbed region is defined for this crack, £p,; the total disturbed region of the cantilever extends from the
support to the end of ¢p, beyond the second crack. This is denoted henceforth as ¢, (Fig. 3a). As the support
strain increases this process is continued with more cracks forming towards the tip of the cantilever, with the
disturbed region spreading further over the shear span. Its significance is that over the total disturbed zone ¢p,
bar strains are calculated from the solution of the bond equation, as in this region the assumption of plane-
sections remaining plane is no longer valid.

After gtabilization of cracking (no more primary cracks develop) and beyond elasticity of the steel bar the
yielded segment of the disturbed region undergoes simultaneous degradation of bond. Thus, of the total length
{p, there is a segment |, where yielding has penetrated (Fig. 3b). For that portion of the disturbed zone, bar
strains increase without a commensurate increase of stress: this means that bond must have degraded to zero as a
consequence of Eq. (1), since df/dx=0 and thus f,=0. Even if the yield-plateau is neglected, and the bar stress-
strain diagram is considered bilinear with hardening, it is clear that the small hardening slope may only be
supported by the residual bond strength — in other words in order for a bar to yield, it must have slipped beyond
the limit s, in the bond - slip law (Fig. 1). Note that limit s, is not an intrinsic property of the bar — concrete
interface as severa Codes define, rather it depends on the available bonded length [9].

Similar to the derivation of strain, dip and bond plastification for the yield penetration length of an
elastoplastic bar in the anchorage [8], the following equations are defined for ayielded bar in a shear span. Since
hardening is included in the steel’s constitutive law a residual bond strength is obtained through the application
of Eq. (1). Againthe solution of EqQ. (1) consists of the yield penetration length I, the bond plastification length
|, and the elastic bar length:

For0<x < L: (x) = £(0) — ;‘Z’Dbx (11)
s(x) =s, +0.5(, —x) [e(x) + esy] (12)

fo(x) = fp* (13)

Forl, <x<l.+1,: e(x) = &5y — 4’5;? (x—1) (14)
s(x) = s, +05(l + 1, —x)[e(x) + €3] (15)
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fo(x) = f"™* (16)
4fmax
8631 = gsy - EbDb lp (17)
Forl, +1, <x < 4p: e(x) = C; e @l bpl) 4 ). pwlx-lp=lr) (18)

c(ep)-cfeto~tp )

Cl = e~ @(tp=lp=lr)_,0(¢p-lp-lr) (19)

C; = 5e31 -G (20)

s(x) = i(cl . e—w(x—lp—lr) —C,- ew(x—lp—lr)) (21)
fo @) = B 5(x) (22)

The length of yield penetration L. (Eq. 23) may be estimated if continuity of strainisconsidered at x = L,..

EspD
L. = (3(0) - gsy) '# (23)
) ¢
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Fig.3 — a) Definition of the ongoing development of the disturbed region. b) Plastic tensile bar response in the
shear span of a cantilever RC column.

The following agorithm is thus established in order to define the locations of cracks and the bar strain,
dip and bond distribution along the shear span of a cantilever reinforced concrete column as well as the yield
penetration length (which, in the context of the present paper, coincides with the plastic hinge length):

7
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1% step: Define moment — curvature and moment — tensile bar strain diagrams for the section of the reinforced
concrete column under study (identical reinforcing detailing along the shear span).

2" step: Select value of bar strain after crack formation at the support, €, (Egs. 2,4).

3 step: Find the corresponding moment, M, at the support, from moment-bar strain diagram. Solve for the
length of the disturbed region emanating from the first crack.

4™ step: Check if next crack will occur inside the disturbed region according to Eq. (9).
5™ step: Check if next crack will occur inside the undisturbed region according to Eq. (10).

6™ step: Define the bar strain, slip and bond distribution for the segment between crack at the support and next
crack (into £p, Fig. 3). Thetotal disturbed region begins from the support and extends to the end of the disturbed
region of the last crack. This entire zone is then represented by the solution of the bond equation according to
Egs. (11-22). If no bond plastification or yielding of the bar is present the distribution is described only by the
elagtic part (Eq. 18-22) with zero I, and I, The bar distribution for the remaining segment (Ls-(p) where the
column remains elastic, uncracked and undisturbed is described by Egs. (2,4) (linear).

7" step: Repeat steps 2 to 6 until the stabilization of cracking (no more primary cracks develop).

8" step: Increase in steps the bar strain at the support until the one corresponding to the ultimate moment from
moment-bar strain diagram and define the bar strain, slip and bond distribution for the total disturbed region.

9" step: The plastic hinge length is the yield penetration length that is marked by a bond distribution segment
with residual bond strength inside the total disturbed region (I, in Fig. 3b).

4. Numerical Results

The plastic hinge length ¢, is defined in the literature as the length over which the flexural moments exceed the
yielding capacity: £y = (M-My) ‘LM, (M, is the ultimate moment and M, is the yielding moment). However
this theoretical definition does not comply with the experimental evidence; it is inconsistent too, since it would
lead to a zero plastic hinge length region in the absence of hardening (when My=M,). The plastic hinge length
measured from the critical section towards the shear span signifies the region where intense inelasticity occurs
during the earthquake. Despite the shortcomings associated with the mathematical definition of ¢y, it was
considered as a convenient artifact in earthquake engineering, necessary in order to conduct calculations of
plastic rotation capacity due to flexure (according with 6y=(pu-¢y)- £y [10], Gy isthe plastic rotation and ¢y, ¢yis
the ultimate and yielding curvature). To avoid the inaccuracies associated with the mathematical expressions
above, £, is determined in design code procedures through calibrated empirical relationships that account
primarily for the length of the shear span and the diameter of primary reinforcing bars (Eq. (24) [11], Eq. (25)
[10], h = depth of the member):

£, = 0.08"Lg +0.022- D, - f, (24)
£, =0.1-Lg+0.17-h+0.24-D, - f,/\/f: (25)

In the context of the present paper, the length of plastic hinge is by definition the length of yield
penetration (thus £,=I,), occurring from the critical section towards the shear span; physically it refers to the
extent of the nonlinear region and it may be used to calculate the inelastic rotation capacity of the column in the
critical section. Contrary to the fixed design values adopted by codes of assessment, the former is actually the
only consistent definition of the notion of the plastic hinge length.

An example of strain, slip and bond distribution in the shear span and in the anchorage of the cantilever
column is reported here, defining the plastic hinge length of the column through the proposed procedure. The
result is compared with that of the empirical relationships for the plastic hinge length. The anchorage
distributions are defined according to the theory established in [4].
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Fig. 4- 8 Moment - curvature and b) moment - tensile bar strain diagrams for the column under study.

The square section of the column under consideration has a width of 350 mm with eight Dy=25 mm
longitudinal reinforcing bars and stirrups of D,4=10 mm spaced at 75 mm as transverse reinforcement. The
concrete strength is 34.8 MPa and the longitudina steel yielding strength is 430 MPa with a 5% hardening. The
hoops' yidlding strength is 470 MPa. Concrete cover dimension is 45 mm. The shear span is one meter (L<=1000
mm). The results of the moment curvature analysis are depicted in Fig 4. For the moment-curvature anaysis a
fiber section has been employed. The assigned to the fibers constitutive models are the modified Kent and Park
model [12] for concrete and a bilinear stress-strain law with hardening (5%) for longitudinal stedl reinforcement.
For the foundation the bond strength was defined based on [13] as fu = 1.25Vfy (7.37 MPa) where fy is the
characterigtic concrete strength. Instead, for the shear span in order to take into account the contribution of
stirrups in bond strength the following equation is applied:

2Ufy Astfyw
fb.max = i(ZC ' fctk +0.33- i) (26)

nDp Nps

where Ny is the number of tension bars (or pairs of tension spliced bars if reinforcement is spliced) lateraly
restrained by the transverse pressure exerted in the form of confinement by the stirrups, ¢ is the concrete cover,
Aqisthe area of stirrup legs enclosing the Ny, lapped bars (the area of legs crossing the splitting plane), sis the
stirrup spacing along the member length, w4 is coefficient of friction, fuis characteristic concrete tensile strength
and f,,, is the yielding strength of stirrups. Therefore the maximum bond strength for the shear span is 7.22 (In
Eq. (26): 1 =1, fu = 0.33Vfy, Ny = 3). The residual bond strength f,'® is defined as 20% of the maximum bond
strength and s; = 0.2 mm (s, is an intrinsic property of the bar-concrete interface whereas s, mainly depends on
the anchorage length). The process of detecting the crack formation is described already and the results of this
procedure in terms of strain distribution for the column under consideration are presented in Figs. 5, 6. It should
be noted that stabilization of cracking occurs before yielding of the tensile bars but additional secondary cracks
may occur near the tip of the column as the ultimate moment is approached since shifting of the cracking
moment takes place. In Figure 7a the dip distribution after formation of the last crack (ultimate moment) is
depicted where it can be seen that the crack width at the support is 3 mm (as the sum of dlip values calculated
from the anchorage and the shear span).

Asit is evident from Figs. 7a,b the yield penetration length or plastic hinge length based on the proposed
procedure is 217 mm (0.71d or 0.22L) in the shear span and by including the yield penetration in the footing as
it happens with Egs. (25,26) is 429 mm (the yield penetration length inside the footing is 212 mm or 0.02Df,).
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Figure 8 depicts the comparison of this length with Egs. (24), (25) as well as with the empirical expression of the
plastic hinge length being equal to half of the effective depth of the column. Moreover, comparison with the
classic definition of plastic hinge length (the length where the yielding moment is exceeded) is also included. It
should be mentioned that the selected column has properties similar to the specimen U3 of the experimental
study in [14]. The reported damage of the column can be seen in Fig. 8. It seems that the EC8-111 [10] expression
is closer to the reported damage and to the proposed method. The other empirical expressions for the evaluation
of the plastic hinge give lower values than the proposed method.
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Fig. 5 - Tensile bar strain distributions along the anchorage (blue curves) and the shear span (red-green curves)
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5. Conclusions

Yield penetration occurs from the critical section towards both the shear span and the support of columns;
physically it refers to the extent of the nonlinear region and determines the pullout slip measured at the critical
section. Contrary to the fixed design values adopted by codes of assessment, the former is actually the only
consistent definition of the notion of the plastic hinge length, whereas the latter determines the contribution of
pullout rotation to column drift and column stiffness. In order to establish the plastic hinge length in a manner
consistent to the above definition, this paper pursued the explicit solution of the field equations of bond over the
shear span of a column. Through this approach, the bar strain distributions and the extent of yield penetration
from the yielding cross section towards the shear span were resolved and calculated analytically. By obtaining
this solution a consistent definition of plastic hinge length is established. The numerical results show good
agreement with the experimental evidence.

11



¥ 16" World Conference on Earthquake, 16WCEE 2017

G| e | ” ; ;
. z Santiago Chile, January 9th to 13th 2017
' N Paper N° 2073

Registration Code: S-V1465484539

6. Acknowledgements

The first author would like to thank the Alexander S. Onassis Public Benefit Foundation whose financial support
is greatly appreciated.

7. References

[1] Syntzirma D. V., Pantazopoulou S. J. and Aschheim M. (2010), Load history effects on deformation
capacity of flexura members limited by bar buckling. ASCE, Journal of Sructural Engineering,136
(1),1-11.

[2] Bigg A.J. (1999). Structural Dependence of Rotation Capacity of Plastic Hinges in RC Beams and Slabs
PhD Thesis, Faculty of Civil Engineering, Delft University of Technology, Delft, The Netherlands.

[3] Bonacci, J., Marquez, J. (1994). Tests of Yielding Anchorages under Monotonic Loadings. ASCE, Journal
of Structural Engineering, 120(3), 987-997.

[4] Tastani, S. P., and Pantazopoulou, S. J. (2013). Reinforcement and concrete bond: State determination along
the devel opment length. ASCE, Journal of Sructural Engineering, 139(9), 1567—1581.

[5] Tastani, S. P., Brokalaki E., Pantazopoulou, S. J. (2015). State of Bond along Lap Splices. ASCE, Journal
of Sructural Engineering, 141(10), 04015007.

[6] Filippou, F., Popov, E., and Bertero, V. (1983). Modeling of R/C joints under cyclic excitations. ASCE,
Journal of Structural Engineering, 109(11), 2666-2684.

[7] Tassios, T. P., and Yannopoulos, P. J. (1981). Anaytical studies onreinforced concrete members under
cyclic loading based on bond-dliprelationships. ACI Materials Journal, 78(3), 206-216.

[8] Tastani S.P., Pantazopoulou S.J. (2013). Yield penetration in seismically loaded anchorages: effects on
member deformation capacity. Techno press Earthquake and Sructures, 5(5):527-552.

[9] Tastani S.P, Thermou G.E., Pantazopoulou S.J. (2012). Deformation analysis of reinforced concrete columns
after repair with FRP jacketing. 15th World Conference on Earthquake Engineering, September 24-28,
Lisbon, Portugal (paper no. 3164).

[10] Eurocode 8, (2005). Design of structures for earthquake resistance — Part 3: Assessment and retrofitting of
buildings , European Committee for Standardisation.

[11] Priestley, M.JN., Seible F., and Calvi M. (1996). Seismic Design and Retrofit of Bridges. J.  Wiley &
SonsInc., N. York.

[12] Scott, B.D., Park, R., and Priestley, M.J.N. (1982). Stress-strain behavior of concrete confined by
overlapping hoops at low and high strain rates. J. American Concrete Ingtitute, 79, 13-27.

[13] Fib Modéd Code (2010), Chapter 6:Interface Characteristics, Ernst & Sohn Publications, Berlin, Germany,
pp.434.

[14] Saatcioglu M., and Ozcebe G. (1989). Response of Reinforced Concrete Columns to Simulated Seismic
Loading. ACI Sructural Journal, 86(1), 3-12.

12



