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Abstract 

Work conducted over the last 30 years by a number of authors indicate that the details of the inherent damping model have a 

significant effect on the calculated inelastic structural response and, particularly, on the calculated damping forces. In some 

cases, unrealistically large damping forces can be obtained, which may imply unconservative results. Also, it is known that 

the mass-proportional term in the Rayleigh and Caughey damping matrices may be responsible for large damping forces for 

base-isolated or poorly constrained structures. In the absence of sufficient experimental data, there is a lack of consensus on 

the most appropriate model for inherent damping. 

The first objective of the paper is to present and evaluate a new damping model in which the inherent damping force 

during inelastic vibrations is taken to be proportional to an estimate of the elastic component of velocity rather than to the 

total velocity which includes plastic and elastic components. This model has a number of theoretical and computational 

advantages. The second objective is to investigate the effect that different damping models, including models based on: (i) 

initial structural properties, (ii) degraded properties (tangent stiffness), and (iii) the new ‘elastic’ velocity model, have on the 

seismic response of fixed and base-isolated structures. In each case, three different estimates of the damping matrix are 

considered: (1) Rayleigh damping, (2) optimized Caughey series including and excluding the mass proportional term, and 

(3) modal damping matrix. The effects of different viscous damping models are quantified by numerical inelastic time-

history analyses of a multi-story structure subjected to different earthquake excitations. The final objective is to study 

numerically whether a harmonic critical excitation exists for a multi-story structure supported on a bilinear hysteretic 

isolator system. This would extend previous analytical findings for a simple bilinear oscillator and for a 1-DOF structure 

resting on a bilinear hysteretic isolator, that even in the presence of hysteretic damping, a critical amplitude of the harmonic 

excitation exists, beyond which the resonant response of the structure can be unbounded (in absence of viscous damping) or 

very large (in presence of isolator damping).  

Keywords: Viscous damping; non-linear analysis; base-isolation. 

1. Introduction 

1.1 Objectives of the Paper 

The numerical solution of the equations of motion in structural dynamics requires assembling a damping matrix 

in addition to the standard mass matrix and a stiffness matrix which could be incremental. While in the linear 

case, and except for the conditions at resonance, the effects of damping are typically small, in the inelastic case 

the details of the inherent damping model have a significant effect on the structural response and, particularly, on 

the calculated damping forces. At the present time, a consensus has not developed with respect to the modeling 

of inherent damping (as opposed to the hysteretic damping resulting from inelastic action) in structures which 

experience significant inelastic response. A number of different modeling options involving Rayleigh, Caughey 

and modal viscous damping matrices based on initial or tangent properties have been proposed and warnings 

about unintended consequences of these choices have been voiced for the last 30 years by a number of authors 

(Crisp [1], Shing and Mahin [2], Leger and Dussault [3], Bernal [4], Carr [5],[6],[7], Hall [8], Ryan and Polanco 

[9], Charney [10], Petrini et al [11], Zareian and Medina [12], Smyrou et al [13], Jehel et al [14], Chopra and 

McKenna [15]). Some authors recommend to abandon altogether the use of a viscous damping matrix and to 

replace it by a hysteretic mechanism (e.g. Charney [10]) or by a capped model as proposed by Hall [8].  

mailto:armando.lanzi@mit.gov.it
mailto:jeluco@ucsd.edu


16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

Paper N° 2133 

Registration Code: S-O1463265100  

2 

The first and primary objective of this paper is to present and evaluate a new damping model in which the 

inherent damping force during inelastic vibrations is taken to be proportional to an estimate of the elastic 

component of velocity rather than the total velocity which includes plastic and elastic components. This model 

has a number of theoretical and computational advantages. The second objective is to investigate the effect that   

different damping models, including models based on: (i) initial structural properties, (ii) degraded properties 

(tangent stiffness), and (iii) the new “elastic” velocity model, have on the seismic response of fixed and base-

isolated structures. In each case, three different estimates of the damping matrix are considered: (1) Rayleigh 

damping, (2) the optimized Caughey series recently proposed by the authors, including and excluding the mass 

proportional term, and (3) modal damping matrix. The effects of different viscous damping models are 

quantified by numerical inelastic time-history analyses of a multi-story structure subjected to different 

earthquake excitations. Results in the form of peak displacements, velocities, damping forces, restoring forces, 

and energy dissipated by hysteretic action and inherent damping are presented. In the case of base-isolated 

structures, the evaluation of the effect of the mass-proportional term in Rayleigh and Caughey damping is of 

particular interest. 

The final objective of the paper is to study numerically whether a harmonic critical excitation exists for a 

multi-story structure supported on a bilinear hysteretic isolator system. This would extend the analytical findings 

for a simple bilinear oscillator (Caughey, [16]) and for a 1-DOF structure resting on a bilinear hysteretic isolator 

(Luco, [17]), that even in the presence of hysteretic damping, a critical amplitude of the harmonic excitation 

exists, beyond which the resonant response of the structure can be unbounded (in absence of viscous damping) 

or very large (in presence of isolator damping). The role of viscous damping in the superstructure and isolator in 

limiting the response at the critical excitation is examined.  

1.2 Summary of Methods to Calculate the Damping Matrix 

Although not required by numerical solutions, a convenient choice for a damping matrix is to consider classical 

damping matrices which lead, in the linear case, to classical normal modes with prescribed modal damping 

ratios. Classical damping matrices based on initial properties are typically represented as Rayleigh, Caughey [18, 

19], or modal damping matrices as obtained by Wilson and Penzien [20]. The simplest and most extensively 

used model is the Rayleigh damping matrix 

 [ ] [ ] [ ]c m k    (1) 

in which [m] and [k] are the mass and stiffness matrices, and  and  are coefficients determined by use of 

prescribed modal damping ratios at two selected modes or by a rule which attempts to minimize deviations over 

a frequency range (e.g. Hall [8]). The conceptual difficulties associated with the mass-proportional term and the 

potentially large damping ratios for the higher modes resulting from the stiffness-proportional term in Eq. (1) 

have been recognized for a long time (Crisp [1], Bernal [4], Carr [5], Hall [8], Ryan and Polanco [9], Charney 

[10]).  

A more flexible but less frequently used approach to form a classical damping matrix is by use of Caughey 

series in terms of the stiffness matrix (Caughey [18]), or the flexibility matrix (Caughey and O’Kelly [19]) 

                  
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In these equations M is the number of terms in the series and L=0 or L=1 depending on whether the mass 

term is included or excluded in Eq. (2a). The coefficients of the different terms in the Caughey series are 

determined by specifying the damping ratios at a set of natural frequencies or at judiciously selected pivot points. 

The resulting Vandermonde system of equations for the coefficients is notoriously ill-conditioned and leads to 

large fluctuations of the modal damping ratios at frequencies other than those at which the damping ratios are 

specified. Alternative and explicit forms for full or truncated Caughey series in terms of arbitrarily prescribed 

damping ratios at a set of natural frequencies have been obtained by the authors (Luco [21] for series 2a, and 

Lanzi and Luco [22] for series 2b). These explicit solutions circumvent the need to solve an ill-conditioned 

system of equations but require knowledge of a set of natural frequencies. Recently the authors (Luco and Lanzi 

[23], Lanzi and Luco [22]) have developed an optimized procedure to obtain the coefficients of the Caughey 
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series by a least squares fit between the polynomial representing the damping ratios and the assumed known 

frequency dependence of the damping ratios. They have also obtained alternative expansions of the damping 

matrix in terms of Legendre polynomials. The results do not require knowledge of the natural frequencies or 

mode shapes, lead to a classical damping matrix with stable damping ratios, and can be easily implemented by 

taking advantage of tables of optimized coefficients for Caughey series of different orders. The approach also 

allows the exclusion of the mass-proportional term from the series. 

A third approach to obtain a classical damping matrix is the modal approach of Wilson and Penzien [20] 

      ( ) ( )

1

[ ] [ ] 2 [ ] 2 ( )[ ]{ }{ } [ ]
M

T r r T

r r r r

r

c m diag m m m     


      (3) 

in which [] is the matrix of eigen vectors normalized by the mass matrix. This procedure requires calculation 

of the mode shapes and natural frequencies and leads to zero damping for the modes for which the modal 

damping ratios are not specified. It should be noted that Eqs. (2a), (2b) and (3) lead to the same damping matrix 

if damping is specified at all modes.  Finally, for the special case of uniform modal damping ratios, the following 

expressions (Luco [24] for Eq. (4a), Lanzi and Luco [22] for Eq. (4b)) 

          
1 2 1/2 1 2 1/21/2 1/2 1/2 1/2 1/2 1/2

0 0[ ] 2 [ ] ( ) [ ]      ,      [ ] 2 [ ] ( ) [ ]c k k m k k c k k m k k 
   

   (4a,b) 

can be used to obtain classical damping matrices at the cost of calculating the square roots of the matrices 

indicated. Equation (4a) requires that the mass matrix be non-singular while Eq (4b) requires that the stiffness 

matrix be non-singular. 

Bernal [4] has noted that the large “spurious” damping forces at massless degrees of freedom near yielding 

elements with high initial stiffness that arise from use of Rayleigh damping can be eliminated by use of Caughey 

damping with negative powers [Eq. (2b)], as the mass matrix appears as a factor pre- and post-multiplying 

another modal characteristic matrix. Carr [5] and Chopra and McKenna [15] have noted that the modal damping 

matrix [Eq. (3)] also has this property. 

The very limited experimental data available seems to suggest that the inherent damping capacity also 

degrades as the structure degrades. Several of the models described above have been used or can be used in this 

fashion by replacing the initial stiffness matrix [k] by the tangent stiffness [kt]. This extended practice is 

somewhat controversial. As noted by Charney [19], several academic structural analysis packages allow for this 

possibility while others do not allow or recommend it. 

2. A Proposed New Model for Inherent Damping 

As point of departure, we consider the linear elastic case in which the nodal viscous damping force vector { }df  

is related to the velocity vector { }u  by 

{ } [ ]{ }df c u                                                                            (5) 

in which [c] is the damping matrix. In this linear case, the displacement vector {u} can be expressed in terms of 

the restoring force vector { }sf  by 1{ } [ ] { }su k f . Substitution of the corresponding velocity 

 1{ } [ ] { }su k f  (6) 

into Eq. (5) leads to 

 1{ } [ ][ ] { }d sf c k f  (7) 

 

which relates the viscous damping force with the first derivative of the restoring force. At this point, we 

postulate that Eq. (7) will remain valid in the inelastic case with [k] and [c] being based on the initial structural 
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properties. In essence, this implies that the inherent damping force in the inelastic case is related to the estimate 

of “elastic” component of the velocity 

 1{ } [ ] { }e su k f  (8) 

and not to the total velocity. The damping model given by Eq. (7) complies with the expectations that: (i) the 

model should reduce to the standard viscous model in the linear case, (ii) the damping forces should be mostly 

associated with loading and unloading, (iii) the inherent damping should be clearly separated from the hysteretic 

damping due to inelastic action, and (iv) there should not be any remnant inherent damping force at the end of 

the structural motion. In addition, if the damping matrix [c] is based on Eq. (2b) as suggested by Bernal [4], or 

by the modal approach [Eq. (3)] as suggested by Carr [5] and Chopra and McKenna [15], or by use of Eq. (4b), 

then the damping forces at massless degrees of freedom would be zero. 

It should be noted that for a simple bilinear oscillator, if the total displacement is written as p eu u   , 

where pu  and eu  are the plastic and elastic displacements, respectively, then, at all points, /e s iu f k  where ik  

is the initial stiffness. The resulting elastic velocity /e s iu f k  is consistent with Eq. (8). It is also interesting to 

note that in the particular case of a simple bilinear oscillator with stiffness proportional damping, the proposed 

model based on initial properties leads to the same result as those resulting from use of the conventional model 

with tangent stiffness. For the proposed model, assuming stiffness proportional damping ic k  and 

1

d i i s sf k k f f   . For the conventional tangent stiffness model, d tf k   while loading or unloading with 

stiffness t ik k , then /s if k   and d sf f . During yielding with degraded stiffness t dk k , then /s df k   

and, again, d sf f .  

3. Effects of viscous damping models on a ten-story building 

In order to investigate the effects of different viscous damping models on the calculated structural response, we 

performed a parametric study of the earthquake response of a ten-story building. The structure is represented by 

a fixed-base shear-type model, similar to that considered by Hall [8], having floor stiffness and strength that 

decrease with the height according to an assigned story-value vector {SV} 

{ } (1.000,0.984,0.951,0.902,0.837,0.755,0.657,0.542,0.411,0.264)TSV                       (9) 

The numerical model consists of ten equal masses mi = m = 340·103 kg (i=1,10), interconnected by 

bilinear shear springs, each having an initial stiffness ki, a yield strength Fyi and a degraded stiffness                   

ki,pl = 0.10·ki. The initial stiffness of the first story k1 = 7.11·105 KN/m is selected so that the fundamental elastic 

period of the model is T1 = 1.0 s, while the first-story yield strength is taken as 0.15 times the weight of the 

building Fy1 = 0.15·10·mg = 5003 KN. Initial stiffness and yield strength of the higher storeys are proportional to 

the story-value vector {SV} listed in Eq. (9), leading to a constant interstory yield displacement of 0.7 cm 

(assuming a story height of 4 m, the yield drift ratio is about 0.2%). 

The inherent damping is represented by a viscous mechanism, characterized by a constant damping ratio 

 = 5%. A proportional damping matrix [ ]c  is assembled by four different approaches: (1) by a Rayleigh 

damping matrix given by Eq. (1) where the coefficients 0.4523   and 0.0045   are selected so that the 

modal damping ratios are equal to 0 at the first two elastic natural frequencies; (2) by the modal damping matrix 

given by Eq. (3), calculated considering a constant damping ratio equal to 0 for all modes; (3) by a 20th order 

Caughey series including the mass proportional term (labeled LSQM), obtained by use of the expansion in 

Legendre polynomials [as given by Eq. (29) with M = 20 in Ref. [23]]; (4) by a Caughey series obtained by use 

of the expansion in Legendre polynomials with M = 20 but excluding the mass proportional term (labeled LSQK) 

[i.e. by means of Eq. (29) in Ref. [23], with the coefficients nb  replaced by nb  given by Eq. (40)]. In the last two 
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approaches, the normalizing frequency max is selected to correspond to the highest initial natural frequency 

max 85.36 rad/s  . 

Table 1 lists the natural periods and frequencies of the elastic structure (Ti and fi) as well as the damping 

ratios calculated by the different approaches. Table 1 also lists, for illustration, extreme estimates of the 

instantaneous natural periods and frequencies (Tangent values, TT and fT) of the damaged structure which are not 

actually used in the calculations. The latter are calculated assuming that all the springs have yielded, and their 

stiffness is described by the degraded value , 0.1i pl ik k . The variation of the damping ratio with frequency is 

illustrated in Fig. 1, in which the vertical lines indicate the initial fundamental frequencies (continuous lines) and 

the tangent frequencies (dashed lines). The damping ratios based on the Rayleigh model are reasonably accurate 

only for the first three modes: for frequencies less than about 4 hz the error is less than 20%. On the contrary, the 

two damping matrices based on an optimal representation of a Caughey series, calculated without knowledge of 

the natural frequencies (except that required for a suitable choice of max), resulted in stable damping ratios for 

all modes. As expected, the assumption that all floors are in the inelastic range leads to a dramatic reduction of 

all the natural frequencies. The Rayleigh damping approach would overestimate the damping ratio for the 

fundamental mode of the damaged structure by a factor of two, while the damping ratio for modes 2 to 7 would 

be close to the specified value. The LSQM approach, instead, would provide accurate damping ratios for the 

damaged structure for all modes. With the LSQK approach, the damping ratio for the fundamental mode of the 

damaged structure is reduced to about 1%, while for the higher modes it is very close to the specified value. 

Table 1 – Properties of the example structure and damping ratios calculated with the three proposed approaches. 
   Natural Periods and Frequencies 

 Damping ratios 
  Initial  Tangent  

Mode #  Ti (s) fi (hz)  TT (s) fT (hz)   Rayleigh LSQM LSQK 

1  1.00 1.00  3.16 0.32   0.050 0.048 0.047 
2  0.39 2.57  1.23 0.81   0.050 0.050 0.049 
3  0.24 4.11  0.77 1.30   0.066 0.050 0.050 
4  0.18 5.58  0.57 1.77   0.085 0.050 0.050 
5  0.14 6.97  0.45 2.20   0.103 0.050 0.050 
6  0.12 8.31  0.38 2.63   0.121 0.050 0.050 
7  0.10 9.63  0.33 3.05   0.139 0.050 0.050 
8  0.09 10.95  0.29 3.46   0.157 0.050 0.050 
9  0.08 12.27  0.26 3.88   0.175 0.050 0.050 
10  0.07 13.59  0.23 4.30   0.193 0.050 0.050 

 

 

Fig. 1 – Variation of the damping ratio with frequency for the three damping models considered. 
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Three alternative damping models are considered. In the first model (labeled Constant C) the damping 

matrix is computed on the basis of the initial stiffness matrix, and this matrix is kept constant over the entire 

analysis. In the second model (labeled Tangent damping), the damping matrix is computed on the basis of the 

tangent stiffness matrix, and it is updated each time the latter changes. In the last model (labeled Elastic velocity 

damping) the damping matrix corresponds to the case Constant C, but the damping forces are calculated as 

described in Section 2. In the Tangent damping approach, the coefficients of the Rayleigh or Caughey series are 

kept constant and equal to those calculated with the initial structural properties. 

The acceleration time-histories for two recorded ground motions are considered as seismic excitation. 

Both records are extracted from the PEER NGA-West 2 Database: (a) Northridge 1994 earthquake, recorded at 

Castaic-Old Ridge Route (RSN 963, 90° component), (b) Loma Prieta 1989 earthquake, recorded at Gilroy 

(RSN 767, 90° component). The two ground motions have been scaled in amplitude so that the 5% damped 

acceleration response spectrum at T = 1 s has a value Sa(1) = 1 g. The scale factors for the two records are, 

respectively, 1.869 and 2.618. Fig. 2 shows the scaled time-histories of acceleration and velocity for the two 

records, together with their acceleration and velocity response spectra. The scaled records (a) and (b) have 

similar PGA (about 1 g) and maximum spectral acceleration (about 3.7 g), but they have very different spectral 

ordinates for periods longer than 1 s (larger acceleration for record b) and in the vicinity of T = 0.4 s (larger 

acceleration for record a). Since the first two natural modes of the elastic structure have periods of 1 s and 0.4 s, 

it can be expected that the different frequency content of the two records will have a different impact on the 

structural response. Record (b) is classified as a near-fault, pulse-like signal, with the period of the velocity pulse 

being about 2s. 

 

Fig. 2 – Acceleration and velocity time-histories and response spectra of the scaled ground motions 
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The time-history response of the ten-story model has been calculated by direct integration of the equations 

of motion through Newmark’s constant acceleration method, using a time step t = 0.005 s in the interval 0 to 

20s. The non-linear equations have been solved iteratively through a standard Newton-Rhapson scheme; 

convergence is assumed to be achieved when the energy increment is less than 10-5. A comparison of the 

maximum absolute values, over time, of some response quantities is presented in Tables 2 and 3. A total of 20 

analyses have been performed, varying the damping matrix (Rayleigh, Modal, LSQM and LSQK) and the 

technique used for calculating the damping forces (Constant C, Tangent C and Elastic velocity damping). For the 

modal damping model, only the Constant C approach was considered. The response quantities that are compared 

are: displacement, velocity and absolute acceleration of the last and first floor; shear at the base and at the last 

floor; viscous damping force at the first node and total viscous damping force; total “input” energy; energy 

dissipated by the hysteretic mechanism; and energy dissipated by inherent damping; normalized analysis time 

(set to unit for the Constant C, Rayleigh damping model).  

Table 2 – Maximum response values for record (a) (Northridge, 1994-Castaic). 

Record A

Rayleigh LSQM LSQK Modal Rayleigh LSQM LSQK Rayleigh LSQM LSQK

Top story displacement [mm] 260.7 259.9 260.9 257.9 269.8 295.2 306.3 308.4 310.7 311.1

Top story velocity [cm/s] 136.1 137.3 137.4 137 135.6 138.6 139.5 137.9 139.2 139.2

Top story abs. acceleration [g] 0.546 0.551 0.551 0.55 0.515 0.555 0.564 0.529 0.551 0.552

Top story shear [KN] 1791 1839 1840 1838 1820 1899 1897 1850 1936 1936

First story displacement [mm] 58.5 61.4 61.5 61.2 66.5 67.8 68.6 70 70.4 70.4

First story velocity [cm/s] 30.6 34.8 34.8 34.6 39.4 39.8 40.3 41 40.9 41

First story abs. acceleration [g] 1.222 1.54 1.541 1.539 1.436 1.629 1.645 1.526 1.707 1.707

Base shear [KN] 8666 8871 8878 8857 9232 9324 9380 9484 9509 9511

First node dissipative force [KN] 963 491 492 490 839 411 412 843 363 363

Total dissipative force [KN] 2195 1984 1957 2040 1600 1529 1505 1584 1508 1486

Input energy [KN-m] 7047 7043 7033 7067 6951 6737 6633 6664 6674 6671

Energy dissipated by hysteresis [KN-m] 4631 4759 4777 4723 4865 5151 5258 5134 5240 5254

Energy dissipated by inherent damping [KN-m] 2416 2283 2255 2344 2086 1585 1374 1530 1434 1417

Normalized analysis time [-] 1.00 1.00 1.00 1.00 1.20 10.17 10.26 1.07 1.08 1.08

Constant C Tangent damping Elastic velocity damping

Response parameter

 

Table 3 – Maximum response values for record (b) (Loma Prieta, 1989-Gilroy). 

Record B

Rayleigh LSQM LSQK Modal Rayleigh LSQM LSQK Rayleigh LSQM LSQK

Top story displacement [mm] 501.8 508.9 511.4 503.2 540.1 605.4 632.1 632.6 635.3 636.3

Top story velocity [cm/s] 144.4 143.4 143.6 142.8 142.2 145.5 146 145 145.1 145.3

Top story abs. acceleration [g] 0.511 0.512 0.511 0.514 0.524 0.508 0.5 0.494 0.5 0.5

Top story shear [KN] 1559 1610 1611 1608 1682 1669 1668 1644 1672 1673

First story displacement [mm] 89.5 90.2 90.5 89.6 93.9 98.9 101.6 100.7 100.1 100.2

First story velocity [cm/s] 43.6 48.4 48.4 48.3 52.3 52.6 52.6 52.9 52.9 53

First story abs. acceleration [g] 0.915 0.834 0.835 0.832 0.895 0.951 0.878 0.873 0.827 0.824

Base shear [KN] 10872 10919 10939 10879 11181 11540 11734 11666 11622 11628

First node dissipative force [KN] 984 517 517 518 558 257 235 530 264 264

Total dissipative force [KN] 2805 2476 2444 2545 1625 1092 1124 1384 1270 1252

Input energy [KN-m] 11067 11093 11116 11042 11184 11561 11608 11526 11544 11555

Energy dissipated by hysteresis [KN-m] 7930 8105 8157 7991 8598 9715 10092 10058 10180 10210

Energy dissipated by inherent damping [KN-m] 3133 2984 2955 3047 2582 1843 1414 1465 1361 1343

Normalized analysis time [-] 1.00 1.02 1.02 1.02 1.21 9.87 8.18 1.12 1.14 1.15

Response parameter

Constant C Tangent damping Elastic velocity damping

 

Comparisons of the peak response quantities listed in Tables 2 and 3 lead to the following conclusions:  

Constant C Models: (i) As expected the results based on full Caughey series (LSQM and LSQK) are similar to 

each other and to those obtained by use of a modal damping matrix. This represents a validation of the optimal 
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procedure to obtain full Caughey series. Significant differences between LSQM and LSQK are expected only 

when an updated stiffness matrix is used in the calculation. (ii) The response quantities more sensitive to the 

lower frequencies (roof displacements and velocity, base shear) are not very affected by the choice of damping 

matrix, while those more sensitive to higher frequencies  (first story acceleration and velocity, dissipative forces) 

show more significant differences. This result is clearly related to the better representation of inherent damping 

for the higher modes allowed by a full Caughey series, and (iii) The first node damping force is 47 to 49% lower 

when a full damping matrix is used instead of Rayleigh damping. 

Tangent Damping Models: (i) When the damping matrix is updated according to the changes of structural 

stiffness results are instead very sensitive to the choice of the damping matrix. For earthquake (b), the roof 

displacements obtained with an updated LSQM and LSQK damping matrix are respectively 12% and 17% 

higher with respect to the updated Rayleigh damping case. The corresponding first node damping forces are 51 

to 58% lower than when Rayleigh damping is used. (ii) Most of the results obtained by the LQSK approach are 

slightly higher than those obtained by the LSQM approach as a result of the reduction of the first mode damping 

ratio shown in Fig. 1. (iii) The use of updated properties (Tangent damping) leads to significantly higher 

responses than when initial properties (Constant C) are used. For earthquake (b), the roof displacement is higher 

by 8, 19 and 24%, respectively, when updated properties are used in conjunction with the Rayleigh, LSQM and 

LSQK approaches. Larger deviations are obtained for other parameters, such as 43 to 55% reduction for the 

damping force at the first node, and  (iv) use of the tangent damping model in combination with full damping 

matrices required a much longer computational time (maximum 10 times higher). This time can be reduced as 

the present code could be optimized. For example, at the moment, when a tangent approach is used, the damping 

matrix is recalculated at each analysis step, irrespective of the fact that the stiffness matrix had changed or not. 

Elastic Velocity Damping Model: (i) The results based on full Caughey series (LSQM and LSQK) are similar 

to each other and to those obtained by use of a modal damping matrix (not shown for brevity), (ii) With 

exception of the damping force on the first node which can be 50 to 57% smaller, the results based on the LSQM 

and LSQK matrices are similar to those obtained by use of a Rayleigh damping matrix, (iii) The peak 

displacement and base shear response for the LSQM and LSQK elastic velocity model are similar to those for 

the corresponding tangent models but are significantly larger than those based on the initial properties, and (iv) 

The elastic velocity model is very efficient requiring only 15% more computational time than the constant 

Rayleigh damping model. 

The plot in Fig. 3 shows the time-history of the total velocity at the first node and of the velocity of the 

elastic component of the displacement obtained as described in Section 2. The plot refers to the Elastic velocity 

damping with LSQK damping matrix subject to earthquake (b). It can be observed that the “elastic” velocity is 

equal to the total velocity when the amplitude of the response is small at the beginning of the time-history 

(before the strong motion phase) and also at the end of the motion. 

 

Fig. 3 – Time history (0-20 s) of the total velocity and of the “elastic” velocity at node 1. Earthquake (b), 

“elastic” velocity LSQK damping model. 

The plots in Fig. 4 and 5 show the time-history (first 10 seconds) of the base shear and total dissipative 

force of the structure subjected to earthquake (b). A comparison is presented between the constant modal 

damping matrix, the tangent and the elastic velocity LSQK models. While the time history of the base shear is 
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not greatly affected by the damping model, the total dissipative force is greatly affected by it. During the 

nonlinear response phase, the peak of the total damping force equals 56% of the yield strength of the first story 

when a constant damping matrix is used. If the damping matrix is updated or if the elastic velocity damping is 

used, the peak reduces to 26% of the first story strength. 

Fig. 4 – Time history (0-10 s) of the base shear for earthquake (b), comparison between constant modal damping 

matrix, tangent LSQK damping model and “elastic” LSQK damping model. 

 
Fig. 5 – Time history (0-10 s) of the total dissipative force for earthquake (b), comparison between 

constant modal damping matrix, tangent LSQK damping model and “elastic” velocity LSQK damping model. 

4. Base-Isolated Structures 

As a second example, we consider the same ten story building model analyzed in section 3, now supported on a 

nonlinear base-isolation system. The mass and stiffness properties of the superstructure are left unchanged, but 

one additional degree of freedom represents the slab above the isolators, which has a mass m0 = m, equal to the 

floor masses. The isolator system is represented by a bilinear mechanism with initial stiffness kis,1 = 0.20k1, 

where k1 is the stiffness of the first story, degraded stiffness kis,2 = 0.1kis,1 and yield strength Fis,y = 1834 KN, 

corresponding to about 5% of the total weight of the structure (including the mass of the slab). The yield 

displacement of the isolator is x0 = 1.29 cm. Added viscous damping characterized by a damping constant cad = 

2·ad (4·m·kis,1)
0.5, in which ad =5% is provided in the isolator system.  

We select to use the standard step-by-step numerical formulation in terms of the relative displacements 

(u0, ui) (i=1,10) with respect to the moving ground surface (below the isolators), in which u0 is the deformation 

of the isolator. In this formulation, it is necessary to assemble the global damping matrix 

{0}
[ ] [ ] [ ] [ ]

{0} [0]

T

ad

global ad s s

c
C C C C

 
    

  

                                                       (10) 

in which [Cs] is the damping matrix for the unrestrained superstructure (including the mass m0 above the 

isolators). It should be noted that the global damping matrix may not be classical. 

Hall [8] and Ryan and Polanco [9] have shown that the mass proportional term in a Rayleigh damping 

matrix leads to unrealistic results in the case of base-isolated structures. For this reason, we use the LSQK 
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expansion without the mass proportional term for [Cs] in which the matrices [m] and [ ]k  are calculated for the 

unconstrained superstructure. A series of order M = 14 is used with max = 2(k1/m)0.5 = 91.5 rad/s, which is an 

upper bound of the maximum frequency for this type of structure.  

Table 4 lists the natural frequencies (fu) and obtained modal damping ratios (u) for the unconstrained 

superstructure model. It is clear that the damping matrix proposed leads to a very good agreement between the 

target and the calculated damping ratios. Table 4 also lists the initial natural frequencies (fis,i) and the 

approximate modal damping ratios (is) of the isolated structure; the latter are calculated as the diagonal terms of 

the reduced modal damping matrix (which is not diagonal in this case) for three values of added damping (ad) in 

the isolators (although only the case ad=5% is considered in the rest of the paper). Also included in Table 4 is an 

estimate of the “tangent” natural frequencies (fis,t), obtained by assuming that the stiffness of the isolators 

corresponds to the degraded value kis,2. 

Table 4 – Natural frequencies and modal damping ratios for the unconstrained and isolated systems. 

Mode #
Initial freq. Tangent freq.

fis,i (hz) fis,t (hz) ad = 0 ad = 5% ad = 10%

1 0.00 0.00 0.73 0.30 0.80 2.70 4.60
2 1.73 4.96 2.04 1.77 4.10 6.50 8.90
3 3.24 5.04 3.44 3.26 4.70 6.60 8.50
4 4.70 4.96 4.84 4.72 4.80 6.20 7.60
5 6.10 5.03 6.19 6.10 4.90 6.00 7.10
6 7.42 4.97 7.49 7.43 4.90 5.70 6.60
7 8.70 5.03 8.76 8.71 5.00 5.60 6.30
8 9.98 4.98 10.02 9.98 5.00 5.50 6.00
9 11.24 5.01 11.28 11.24 5.00 5.40 5.80

10 12.50 5.00 12.52 12.50 5.00 5.30 5.60
11 13.73 4.99 13.75 13.73 5.00 5.20 5.30

Unconstrained superstructure

i fu (hz) u (%)
Approximate modal damping ratio is (%)

Isolated structure

 

The response of the isolated structure subjected to a harmonic horizontal ground acceleration 

sin( t)g fu A   was computed by direct integration for several values of excitation frequency and amplitude. 

The duration of the input acceleration (number of cycles) was selected so that stationary conditions were reached 

and the integration time step was set between 1/100 and 1/200 of the period of the excitation (Tf = 2/f).  

First, it was assumed that the superstructure has infinite strength and remains in the linear range, so that 

the effects of inherent damping can be accounted for by using a constant damping matrix. The plot in Fig. 6a 

shows the frequency response functions for the base slab (above the isolators) of the building (i.e. the amplitude 

of the normalized harmonic displacement at the first degree of freedom as a function of the excitation 

frequency), calculated for different values of the excitation amplitude A. The plot clearly shows that for 

sufficiently high excitation amplitudes, resonance occurs at a frequency of 0.295 hz. For an amplitude A=0.10g, 

the ductility response is U0/x0 = 33. These results are in excellent agreement with the approximate analytical 

expressions provided by Luco  [17] for a 1-DOF linear structure on a bilinear isolator on rigid soil, which would 

predict a resonant frequency of 0.296 hz and a maximum ductility for A = 0.10g of U0/x0 = 34.  

Then, we consider the case in which the superstructure as a finite strength, corresponding to that 

described in section 3. In this case, for sufficiently high excitation amplitudes both the isolator and the 

superstructure yield, and the effect of the inherent damping model can be of relevance. Fig. 6b shows the 

frequency response curves for the base slab (U0/x0) [with x0 = 1.29 cm] and the top of the building (U10/x10) [with 

x10 = 8.29 cm corresponding to the roof yield displacement] for an excitation amplitude A = 0.20g obtained with 

the Constant C and the Elastic velocity damping models. In the latter case, the dissipative force is calculated as 

{ } [ ]{ } [ ]{ }d s e adf C u C u  , where { }u  and { }eu  are, respectively, the total relative velocity and the “elastic” 

velocity vectors. 

Results indicate that the resonant frequency is reduced to 0.225 hz with respect to the elastic 

superstructure case (0.295 hz), and that the two damping models can lead to significant differences in the 
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calculated response. The maximum ductility of the isolators obtained with the Elastic velocity damping model 

(115.8) is 34% higher than that given by the Constant C model (86.7). The normalized displacement of the roof 

(U10/x10,) shows a 43% increase from 28.4 (Constant C) to 40.6 (Elastic velocity damping).  

Even though structural properties and excitation levels were selected with the aim of reproducing 

realistic situations, the calculated harmonic response is clearly too high for a real structure. It is reasonable to 

expect that the transient response to an actual earthquake motion will be limited due to the short duration of the 

various harmonic components of the signal. The important investigation of the effects of the critical excitation 

on the transient response of base-isolated structures is currently underway. 

 
Fig. 6 – Frequency response functions of the isolated ten-story building model: (a) elastic superstructure, 

ductility response at the base (U0/x0); (b) inelastic superstructure, ductility response at the base (U0/x0) and at the 

top (U10/x10) for A=0.20g and comparison of Constant C and Elastic velocity damping models. 

5. Conclusions 

(1) A new model for the inherent damping force which depends on an estimate of the “elastic” component of 

velocity rather than the total velocity, which includes elastic and plastic components, has been presented.  The 

proposed damping model [Eq. (7)] is such that: (i) it reduces to the standard model in the linear case, (ii) the 

damping forces are mostly associated with loading and unloading, (iii) the inherent damping is clearly separated 

from the hysteretic damping due to inelastic action,  (iv) there is no remnant inherent damping force at the end of 

the structural motion, and (v) the calculation can be done efficiently and does not represent a significant  

additional burden. In fact, the new approach takes less computational time than the use of Rayleigh damping 

with a tangent stiffness matrix. In addition, if the damping matrix [ ]c in Eq. (7) is based on Eq. (2b) as suggested 

by Bernal [4], or by the modal approach [Eq. (3)] as suggested by Carr [5] and Chopra and McKenna [15], or by 

use of Eq. (4b), then the damping forces at massless degrees of freedom would be zero. 

(2) Analyses of the calculated seismic inelastic response of a 10-story building with different models of the 

inherent damping indicate that the proposed new damping model leads to results similar to those obtained by use 

of viscous models based on the instantaneous tangent stiffness, and to a significantly larger response than that 

obtained by standard viscous models (Rayleigh, optimized Caughey series, Modal damping matrix) based on the 

initial structural properties. The new model leads to 10 to 25% more energy dissipated by hysteresis depending 

on the seismic excitation, and to a reduction of 37 to 55% of the energy dissipated by inherent damping. 

(3) The optimized Caughey series obtained by the authors ([22], [23]) to obtain a viscous damping matrix 

represent a significant improvement over the Rayleigh damping matrix for analyses using the initial and 

degraded structural properties. However, there is a significant additional computational cost to the Caughey 

series approach when the instantaneous tangent stiffness is used. 

(4) It has been confirmed numerically that a harmonic critical excitation exists for a multi-story structure 

supported on a bilinear hysteretic isolator system. This extends the analytical findings for a simple bilinear 
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oscillator (Caughey [16]) and for a 1-DOF structure resting on a bilinear hysteretic isolator (Luco [17]), that 

even in the presence of hysteretic damping, a critical amplitude of the harmonic excitation exists, beyond which 

the resonant response of the structure can be unbounded. The role of the  viscous damping model on the response 

at the critical excitation was examined. 
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