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Abstract 
Performance-based standards use plastic rotation as an important measure to determine whether the response meets the 
acceptance criteria for moment-resisting frames. Since plastic rotation is the key parameter in performance-based seismic 
engineering, the method used to calculate this quantity must be robust and accurate. Although engineers often rely on the 
plastic rotation output from structural analysis software packages to determine acceptable performance, the actual 
calculation methods usually depend on the analytical formulations utilized in the particular software. Difficulties in 
verifying the accuracy of the output results exist because material nonlinearity is often coupled with geometric nonlinearity 
in the analysis of moment-resisting frames, yet a robust analytical framework for the verification process is currently 
unavailable because of the lack of analytical theory. To address this problem, an analytical method to calculate the plastic 
rotations of plastic hinges in moment-resisting frames is presented in this research. The element stiffness matrices are 
rigorously derived using a member formulation, which includes the coupling of geometric and material nonlinearity effects 
from the beginning of the derivation. Numerical simulation is performed to calculate the nonlinear responses of structural 
models subjected to static and dynamic loads. Plastic rotations and other response measures are compared with those 
obtained using other methods of handling geometric nonlinearity to demonstrate the feasibility of the proposed analytical 
method. 
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1. Introduction 
Plastic rotation is one of the most important structural performance metrics for moment-resisting framed 
structures. Current performance-based standards, such as ASCE/SEI 41 [1], use plastic rotation as the primary 
performance measure in the assessment process. Relatively large lateral displacement and plastic rotations are 
expected to occur due to the flexibility of these frames. Therefore, the analysis of moment-resisting framed 
structures should possess the capability of handling both material nonlinearity and geometric nonlinearity in 
order to provide the outputs necessary for gauging acceptable performance when large displacements are 
expected [2-5]. 

Geometric nonlinearity causes a reduction in stiffness due to the axial compressive force acting on the 
entire length in the member, while material nonlinearity causes a reduction in stiffness concentrated at the plastic 
hinges of the member. These two nonlinear phenomena interact with one another in moment-resisting frames, 
but different structural analysis software packages and algorithms use different assumptions to capture the 
interaction. The most efficient approach is to handle material and geometrically nonlinearity independently. It 
can be shown that running an algorithm considering material nonlinearity by itself will produce reasonably 
accurate results. Moreover, separately running an algorithm considering geometric nonlinearity also can produce 
reasonably accurate results. However, when material nonlinearity is combined with geometric nonlinearity in an 
analysis, algorithms often neglect the interactions between these nonlinearities, resulting in limited consistency, 
reduced accuracy, and solution instability. As a result, plastic rotation, as the end product of the analysis, can 
differ significantly based on the approach taken in the nonlinear algorithm.   

One reason for the shortcoming in addressing the nonlinear interaction is that there is no analytical theory 
that can be used to measure this interaction. Therefore, a numerical solution is often employed that assumes the 
nonlinear interaction is automatically taken into account when both material and geometric nonlinearities are 
independently captured and combined. In view of this shortcoming, the present research proposes a method to 
accurately calculate the plastic rotation while capturing the interaction of material nonlinearity and geometric 
nonlinearity using an analytical theory based on fundamental principles of structural mechanics. Element 
stiffness matrices are first derived using a member with plastic hinges subjected to axial compression; therefore, 
both geometric nonlinearity and material nonlinearity along with their interactions are captured from the 
beginning of the formulation. The element stiffness matrices are then assembled in the global stiffness matrices 
to perform both nonlinear static analysis and nonlinear dynamic analysis. Numerical simulations are then 
performed on simple frames to calculate plastic rotations, and the results are compared with those obtained from 
other methods of analysis that consider different forms of geometric nonlinearity. 

2. Stiffness Matrices for Geometric and Material Nonlinearities 
The use of stability functions for analyzing moment-resisting framed structures is here derived to determine the 
element stiffness matrices of frame members with plastic hinges at both ends. The original theory was first 
developed for elastic members in the 1960’s [6-7] without any consideration of yielding and formation of plastic 
hinge, but it found limited application because of its complexity in the closed-form solution as compared to those 
methods of using either the P-∆ stiffness approach [8] or the geometric stiffness approach [9]. However, when 
large lateral deflections in framed structures are expected, excessive geometric nonlinearity is coupled with 
excessive material nonlinearity, and the first-order or second-order approximation of the geometric nonlinearity 
may not be able to capture the nonlinear behavior accurately. Therefore, stability functions are used to 
investigate the differences in plastic rotation calculations as compared to other geometric nonlinearity 
formulations. 

2.1 Element Stiffness Matrix [ ik ] 

Four degrees of freedom (DOFs) are typically used to describe the lateral displacement and rotation at the two 
ends of a member of moment-resisting frames. To compute the element stiffness matrix ik , each of these 4 
DOFs is displaced independently by one unit as shown in Fig. 1 while subjected to an axial compressive load P. 
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Here, sV1 , sM1 , sV2 , and sM 2  represent the required shear forces and moments at the two ends of the member 
to cause the lateral displacements and rotations in the prescribed pattern, and 4,...,1=s  represents the four cases 
of unit displacement patterns of the member’s deflection. 
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Fig. 1 – Four cases of displacement patterns and the corresponding fixed-end forces 

Using the classical Bernoulli-Euler beam theory with homogeneous and isotropic material properties 
where the moment is proportional to the curvature and plane sections are assumed to remain plane, the governing 
equilibrium equation describing the deflected shape of the member can be written as 

 0)( =′′+′′′′ vPvEI  (1) 

where E is the elastic modulus, I is the moment of inertia, v is the lateral deflection, P is the axial compressive 
force of the member, and each prime represents taking derivatives of the corresponding variable with respect to 
the x-direction of the member. By assuming EI is constant along the member, the solution to the fourth-order 
ordinary differential equation becomes: 

 DCxkxBkxAv +++= cossin  (2) 

where EIPk =2 . Let kL=λ  to simplify the derivations, where L is the length of the member. The following 
four cases of boundary conditions (in reverse order) are now considered. 

Case 4:  
For Case 4 as shown in Fig. 1, imposing the boundary conditions 0)0( =v , 0)0( =′v , 0)( =Lv , and 1)( =′ Lv  on 
Eq. (2) gives 

 0)0( =v : 0=+ DB  (3a) 

 0)0( =′v : 0=+CkA  (3b) 

 0)( =Lv : 0cossin =++λ+λ DCLBA  (3c) 

 1)( =′ Lv : 1sincos =+λ−λ CkBkA  (3d) 

Solving simultaneously for the constants in Eq. (3) gives 

 
( )

( )
( )

( ) BDkACLBLA −=−=
−λ+λλλ

λ−λ
=

−λ+λλλ
λ−

= ,,
2cos2sin

sin,
2cos2sin

cos1
 (4) 

Therefore, Eq. (2) along with the constants in Eq. (4) gives the deflected shape for Case 4. The shears (i.e., 14V  
and 24V ) and moments (i.e., 14M  and 24M ) at the two ends of the member (see Fig. 1) are then evaluated using 
the classical Bernoulli-Euler beam theory formula: 

 vEIxM ′′=)(     ,      vPvEIxV ′+′′′=)(  (5) 
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Now taking derivatives of Eq. (2) and substituting the results into Eq. (5) while using the constants calculated in 
Eq. (4), the shears and moments at the two ends of the member for Case 4 in Fig. 1 are calculated as: 

 LEIcsBEIkvEIM ˆˆ)0( 2
14 ==′′−=  (6a) 

 23
14 0)0()0( LEIsPAEIkvPvEIV =×+−=′+′′′=  (6b) 

 ( ) LEIsBAEIkLvEIM ˆcossin)( 2
24 =λ+λ−=′′=  (6c) 

 ( ) 23
24 1sincos)()( LEIsPBAEIkLvPLvEIV −=×−λ−λ=′−′′′−=  (6d) 

where 

 ( )
λλ−λ−

λλ−λλ
=

sincos22
cossinŝ    ,     

λλ−λ
λ−λ

=
cossin

sinĉ    ,     ( )
λλ−λ−

λ−λ
=+=

sincos22
cos1ˆˆˆ

2

csss  (7) 

The minus signs appear in front of the equations for 14M  in Eq. (6a) and 24V  in Eq. (6d) because there is a 
difference in sign convention between the classical Bernoulli-Euler beam theory and the theory for the stiffness 
method of structural analysis. 

Case 3:  
For Case 3 as shown in Fig. 1, imposing the boundary conditions 0)0( =v , 0)0( =′v , 1)( =Lv , and 0)( =′ Lv , 
the constants in Eq. (2) can be solved by using a similar procedure as presented in Case 4 above. Then the shears 
and moments at the two ends of the member for Case 3 in Fig. 1 are calculated as: 

 2
13 )0( LEIsvEIM −=′′−=     ,      3

13 )0()0( LEIsvPvEIV ′−=′+′′′=  (8a) 

 2
23 )( LEIsLvEIM −=′′=     ,      3

23 )()( LEIsLvPLvEIV ′=′−′′′−=  (8b) 

where 

 λλ−λ−
λλ

=λ−=′
sincos22

sin2
3

2ss  (9) 

Case 2:  
For Case 2 as shown in Fig. 1, imposing the boundary conditions 0)0( =v , 1)0( =′v , 0)( =Lv , and 0)( =′ Lv  on 
Eq. (2) and following a similar procedure as presented in Cases 3 and 4 above, the shears and moments at the 
two ends are calculated as: 

 LEIsvEIM ˆ)0(12 =′′−=     ,      2
12 )0()0( LEIsvPvEIV =′+′′′=  (10a) 

 LEIcsLvEIM ˆˆ)(22 =′′=     ,      2
22 )()( LEIsLvPLvEIV −=′−′′′−=  (10b) 

Case 1:  
Finally for Case 1 as shown in Fig. 1, imposing the boundary conditions 1)0( =v , 0)0( =′v , 0)( =Lv , and 

0)( =′ Lv  on Eq. (2) and following a similar procedure as presented in Cases 3 and 4 above, the shears and 
moments at the two ends are calculated as: 

 2
11 )0( LEIsvEIM =′′−=     ,      3

11 )0()0( LEIsvPvEIV ′=′+′′′=  (11a) 

 2
21 )( LEIsLvEIM =′′=     ,      3

21 )()( LEIsLvPLvEIV ′−=′−′′′−=  (11b) 

In summary, based on Eqs. (6), (8), (10), and (11) for the above four cases, the element stiffness matrix of 
the ith member ik  for bending after incorporating axial compressive force using stability functions becomes: 
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where the superscript ‘SF’ is used to denote that the element stiffness matrix ik  is computed by using the 
stability functions method.   

Linearization of Eq. (12) can be performed by using Taylor series expansion on each term of the element 
stiffness matrix and truncating higher-order terms. Doing so gives 
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where the first matrix in Eq. (13) represents that classic stiffness matrix without considering any geometric 
nonlinearity, and the second matrix represents the geometric stiffness. The superscript ‘GS’ is used to denote that 
the element stiffness matrix ik  is computed by using the geometric stiffness method. Finally, the element 
stiffness matrix in Eq. (13) can be further simplified by retaining only the large P-∆ stiffness while ignoring the 
small P-δ effect. Doing so gives 
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where the superscript ‘PD’ is used to denote that the element stiffness matrix ik  is computed by using the P-∆ 
stiffness method.  

2.2 Element Stiffness Matrix [ ik ′ ] 

The second element stiffness matrix, ik′ , relates the plastic rotations at the plastic hinge locations (PHLs) of the 
ith member with the restoring forces applied at the DOFs. Two plastic hinges typically occur at the two ends of 
the member, and they are labeled as ‘a’ for plastic hinge at the ‘1’ end and ‘b’ for plastic hinge at the ‘2’ end as 
shown in Fig. 2. The transpose of the ik′  matrix is here constructed. This T

ik′  matrix relates the lateral 
displacements and rotations at the two ends of the member (i.e., the four cases of unit displacements presented in 
Section 2.1) with the moments at the PHLs (i.e., asM  and bsM , 4,...,1=s ). 
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Fig. 2 – Displacement patterns for computation of moments at the PHLs 
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Consider each of the four cases of unit displacements for the member as shown in Fig. 2, where the 
moments at the plastic hinges ‘a’ and ‘b’ (i.e., asM  and bsM , 4,...,1=s ) represent the desired quantities. By 
joint equilibrium based on Fig. 2, these moments for each of the four cases can be evaluated directly as presented 
in the following sub-sections. 

Case 1:  
For Case 1 as shown in Fig. 2, imposing the boundary conditions 1)0( =v , 0)0( =′v , 0)( =Lv , and 0)( =′ Lv  
gives the moments 1aM  and 1bM  (also see Eq. (11)) as: 

 
2

111 LEIsMM a ==     ,      2
211 LEIsMMb ==  (15) 

Case 2:  
For Case 2 as shown in Fig. 2, imposing the boundary conditions 0)0( =v , 1)0( =′v , 0)( =Lv , and 0)( =′ Lv  
gives the moments 2aM  and 2bM  (also see Eq. (10)) as: 

 LEIsMM a ˆ122 ==     ,      LEIcsMM b ˆˆ222 ==  (16) 

Case 3:  
For Case 3 as shown in Fig. 2, imposing the boundary conditions 0)0( =v , 0)0( =′v , 1)( =Lv , and 0)( =′ Lv  
gives the moments 3aM  and 3bM  (also see Eq. (8)) as 

 
2

133 LEIsMM a −==     ,      2
233 LEIsMMb −==  (17) 

Case 4:  
Finally, for Case 4 as shown in Fig. 2, imposing the boundary conditions 0)0( =v , 0)0( =′v , 0)( =Lv , and 

1)( =′ Lv  gives the moments 4aM  and 4bM  (also see Eq. (6)) as 

 LEIcsMM a ˆˆ144 ==     ,      LEIsMMb ˆ244 ==  (18) 

In summary from Eqs. (15) to (18), the transpose of stiffness matrix ik′  for the ith member becomes 
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Once the T
ik′  matrix in Eq. (19) is derived, the ik′  matrix can be written as:  
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where the superscript ‘SF’ is used to denote that the element stiffness matrix ik  is computed by using the 
stability functions method.   

2.3 Element Stiffness Matrix [ ik ′′ ] 

The third element stiffness matrix, ik ′′ , relates the moments at PHLs ‘a’ and ‘b’ of the ith member with a unit 
plastic rotation at each of these PHLs. To determine the ik ′′  matrix, the goal is to compute the plastic hinge 
moments aaM , abM , baM , and bbM  due to a unit plastic rotation at either ‘a’ or ‘b’ as shown in Fig. 3. These 
moments for each of the two cases can be evaluated directly by using joint equilibrium as presented in the 
following sub-sections. 
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Fig. 3 – Displacement patterns for computation of moments due to unit plastic rotations 

Case ‘a’:  
For Case ‘a’ of Fig. 3, imposing a unit plastic rotation 1=θ′′a  and 0=θ′′b  gives (see Eq. (20)) 

 LEIsMM aaa ˆ2 ==     ,      LEIcsMM aba ˆˆ4 ==  (21) 

Case ‘b’:  
For Case ‘b’ of Fig. 3, imposing a unit plastic rotation 0=θ′′a  and 1=θ′′b  gives (see Eq. (20)) 

 LEIcsMM bab ˆˆ2 ==     ,      LEIsMM bbb ˆ4 ==  (22) 

Therefore, in summary from Eqs. (21) and (22), the element stiffness matrix ik ′′  for the ith member 
becomes 
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where the superscript ‘SF’ is used to denote that the element stiffness matrix ik  is computed by using the 
stability functions method.  

2.4 Global Stiffness Matrices 
By using the element stiffness matrices computed in Eqs. (12), (20), and (23), the assembly of these matrices 
into the global stiffness matrices K , K′ , and K ′′  follows a straightforward procedure. A number of textbooks 
have discussed this procedure in great detail [10]. Consider a framed structure having a total of n DOFs and m 
PHLs, the resulting global stiffness matrices can be obtained by this assembly procedure and are often written in 
the form: 
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The resulting stiffness equation for computing the response of the structure with both geometric and material 
nonlinearities can therefore be written as [11]: 
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where iF  and ix  ( ni ,...,1= ) denote respectively the global applied forces and displacements at the DOFs, and 
iM  and iθ′′  ( mi ,...,1= ) denote respectively the local moments and plastic rotations at the PHLs. 
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3. Numerical Illustration Using Static Loading 
Consider a two-dimensional frame as shown in Fig. 4(a) with one column member and one beam member, where 
both members have the same elastic modulus E, moment of inertia I, and length L. The column is subjected to a 
constant axial force P, and the frame is subjected to a lateral force oF . Assume both members are axially rigid. 
The resulting structural model is a three-DOF system (labeled here as 1x , 2x , and 3x ) as shown in Fig. 4(a). In 
addition, three PHLs are identified as shown in Fig. 4(a) with the corresponding component models for the 
moment vs. plastic rotation relationship as shown in Fig. 4(b). The moment vs. plastic rotation relationships 
exhibit strain hardening behaviors with iθ′′  denoting plastic rotation, iM  the moment, YiM  the yield moment, and 

tik  the hardening stiffness of the ith plastic hinge, where 3,2,1=i .  

 Based on these labeled DOFs and PHLs, Eq. (25) becomes 
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where ŝ , ĉ  and s  are defined in Eq. (7) and s′  is defined in Eq. (9) for Member 1 as shown in Fig. 4(a).  
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Fig. 4 – Moment frame with 3 degrees of freedom and 3 plastic hinge locations 

To perform analysis on the frame with both geometric and material nonlinearities, let the applied force as 
shown in Fig. 5(a) be FFo 48=  and 23.0 LEIP = . Assume a post-yield stiffness of LEIkkk ttt 3321 ===  for 
all three plastic hinges. Let the yield moments of the plastic hinges be FLMY 181 = , FLMY 152 = , and 

FLMY 253 = . This gives the component models of moment vs. plastic rotation relationships for the 3 PHLs as 
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3.1 Step 1 
Equation (26) is now used to perform structural analysis. First assume that the frame remains elastic under the 
applied load (i.e., 0321 =θ′′=θ′′=θ′′ ). The first three equations of Eq. (26) can be used to solve for the 
displacements at the DOFs, and the last three equations of Eq. (26) can be used to compute the resulting 
moments. Doing so gives 
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Since the computed moments of FLM 2616.311 =  and FLM 9474.182 =  are both larger than the corresponding 
yield moment, this indicates that both PHL #1 and PHL #2 have yielded.  

3.2 Step 2 
After determining that both PHLs #1 and #2 have yielded due to the applied force of FFo 48= , this step begins 
by directly assuming that both PHLs #1 and #2 have yielded. The moment vs. plastic rotation relationships in 
Eq. (27) become 

 LEIFLM 11 318 θ′′+=     ,      LEIFLM 22 315 θ′′+=  (29) 

and 03 =θ′′  is still assumed. Then extracting the first five equations in Eq. (26) gives 
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Now substituting Eq. (29) into Eq. (30), the stiffness equation becomes 
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Note that by substituting 1M  and 2M  into Eq. (30), the left hand side of Eq. (31) becomes all known quantities, 
and the unknown quantities are the DOFs and PHLs on the right hand side of the equation. 

Solving for the unknown quantities in Eq. (31) gives 
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Then the moments at each plastic hinge are calculated using the last three equations of Eq. (26), i.e., 
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Since the computed moments for 1M  and 2M  are both larger than the corresponding yield moment, this means 
the original assumption is correct. Therefore, in summary, the calculated responses are 

 
















−=
















EIFL
EIFL
EIFL

x
x
x

2

2

3

3

2

1

4855.3
9710.6
8184.10

   ,    
















−
=

















FL
FL
FL

M
M
M

9130.20
9130.20
3325.30

3

2

1

   ,    
















=
















θ′′
θ ′′
θ ′′

0
9710.1
1108.4

2

2

3

2

1

EIFL
EIFL

 (34) 

3.3 Results from Using Different Stiffness Matrices 
Sections 3.1 and 3.2 demonstrated the procedure for calculating the response of the frame with both geometric 
and material nonlinearities. Similar procedures can be performed with a variation of stiffness matrices, such as 
using the geometric stiffness in Eq. (13) or the P-∆ stiffness in Eq. (14). By using the geometric stiffness, the 
responses are calculated as 
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and by using the P-∆ stiffness, the responses are calculated as  
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Comparing the results in Eq. (35) with those in Eq. (34) shows that the use of geometric stiffness approximates 
stability functions very well. But the comparison between Eq. (36) and Eq. (34) shows that there is a larger 
difference, especially in the calculation of the plastic rotations where the error is about 1% for the simple frame 
with statically applied load only. 

4. Numerical Illustration Using Dynamic Loading 
Consider the one-story one-bay moment-resisting frame as shown in Fig. 5(a) with members assumed to be 
axially rigid. This frame has a total of 3 DOFs (i.e., 3=n ) and 6 PHLs (i.e., 6=m ) as shown in the figure. 
Assume that the frame has a mass of 7.318=m  Mg and a damping of 0%. Also, let 200=E  GPa, 

810995.4 ×== cb II  mm4, 62.7=bL  m, 57.4=cL  m, and 338,5=P  kN. Assume that the plastic hinges exhibit 
elastic-plastic behavior with moment capacities of 130,3=bM  kN-m for the beam and 909,3=cM  kN-m for the 
two columns. The frame is then subjected to the 1995 Kobe earthquake ground motion as shown in Fig. 5(b) but 
magnified with a scale factor of 1.3 to produce a larger response with more yielding at the plastic hinges, and 
Fig. 6 shows the horizontal displacement response of the floor using the stability functions (SF) method. In 
addition, results from a commercial software package developed based on the geometric stiffness (GS) method 
and from another commercial software package developed based on the P-∆ stiffness (PD) are also presented in 
the figure as a comparison. As shown in Fig. 6, consistency in the model among various algorithms is achieved 
based on the observation at the first few seconds of the response history, but the responses deviates once yielding 
occurs in the models. 
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Fig. 5 – One-story one-bay moment-resisting steel frame subjected to the 1995 Kobe earthquake 
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Fig. 6 – Displacement responses of the frame using various geometric nonlinearity formulations  

with non-convergence in the solution algorithm for GS at 3.46 seconds 

The plastic rotation responses at selected plastic hinges are presented in Fig. 7. By comparing SF with PD 
in Fig. 7, it can be seen that even though the local plastic rotation responses change suddenly (i.e., jumps) due to 
yielding at the same time steps, the magnitudes of the changes are different. Given the expected accuracy of SF 
that it is analytically derived, this suggests that the P-∆ stiffness method may not be a good approximation when 
plastic rotation is accummulated over time, such as in the case of a dynamic analysis. At the same time, 
comparing SF and PD with GS in Fig. 7 shows that the non-convergence issue is only found in GS, indicating 
that a fundamental problem exists in either GS or the software package itself. This may be attributed to the 
difficulty of incorporating geometric stiffness in a dynamic analysis, where update in stiffness due to material 
nonlinearity causes non-convergence in the solution algorithm that can only account for geometric nonlinearity. 
However, further research is needed to examine why such non-convergence exists. 

5. Conclusion 
Plastic rotation in moment-resisting frame is an important parameter for assessing structural performance under 
seismic actions, and therefore it needs to be calculated correctly. In this research, fundamental principles were 
used to derive the stiffness matrices of a member with plastic hinges subjected to an axial load to capture the 
interaction between geometric nonlinearity and material nonlinearity using stability functions. This results in a 
rigorous method for calculating the plastic rotation demand of framed structures for both nonlinear static 
analysis and nonlinear dynamic analysis. Comparing the results using stability functions with other methods for 
handling geometric nonlinearity shows that the present approach has the advantage for being theoretically 
derived, and therefore it is believed to be of higher accuracy whenever there is a discrepancy of results. 
However, further research is necessary to explain why there is such a discrepancy, especially for the case of 
nonlinear dynamic analysis. 
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Fig. 7 – Plastic rotation responses at selected PHLs using various geometric nonlinearity formulations  

with non-convergence in the solution algorithm for GS at 3.46 seconds 

6. Disclaimer 
No formal investigation to evaluate potential sources of uncertainty or error, or whether multiple sources of error 
are correlated, was included in this study. The question of uncertainties in the analytical models, solution 
algorithms, material properties and as-built final dimensions and positions of members versus design 
configurations employed in analysis are beyond the scope of the work reported here. 
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