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Abstract 
This paper presents a probabilistic seismic demand model for predicting the pseudo-acceleration response of a linear 
nonstructural component attached to a linear structure. The model relates the response of the component with the pseudo-
acceleration response of the generic mode of vibration of the supporting structure. Interaction between component and 
structure is ignored. Independency of the model on the specific characteristics of seismic hazard at the site is showed. The 
model is used to develop a method for direct generation of uniform hazard floor response spectra. By using the method floor 
spectra are determined through a closed-form expression, given the mean annual frequency of interest, the non-structural 
component damping ratio, the modal properties of the structure, and three uniform hazard spectra representing seismic 
hazard at the site. 
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1. Introduction 
Floor response spectra (FRS) may be derived rigorously from floors’ acceleration histories, based on structural 
response-history analysis, or estimated approximately using a predictive equation and a ground response 
spectrum (GRS). Among the two alternatives, the latter is preferred in common practice, and is widely adopted 
in seismic codes (e.g., [1, 2]). Its appeal consists in the fact that a response-history analysis of the building is not 
required, and only a standard response spectrum, rather than a set of ground motion time-series, is needed to 
model seismic action at the site. In particular, in the case of codes’ equations, seismic input is usually 
represented simply by the peak ground acceleration. The price for this simplicity is the generally poor 
approximation of the predicted FRS (as shown, e.g., in [3, 4]). 

Several researchers have worked on predictive equations, employing a range of approaches, from 
analytical to numerical, deterministic or probabilistic. Yasui et al. [5] proposed an equation, derived analytically 
by using the Duhamel integral for the determination of the linear NSC’s response supported on a linear structure. 
Afterwards, the equation was modified by Vukobratović and Fajfar [6] to account for the possible inelastic 
behavior of the structure. This is explicitly considered also in the empiric equations of Singh et al. [7], Sullivan 
et all. [8], and Petrone et al. [9]. The common characteristic of these equations is that they can all be considered 
deterministic models for the nonstructural demand, since they generate FRS by amplifying the structural demand 
represented by the GRS with a factor which does not account for the record-to-record variability of the 
amplification. 

Probabilistic approaches have evolved in parallel. Many have used random vibration theory to produce 
probabilistically-characterized FRS (so-called “stochastic” methods; e.g., Singh [10] and Der Kiureghian et al. 
[11]). More recently efforts have been directed at quantifying the uncertainties in the FRS estimates due to 
ground motion variability, based on response-history analysis (e.g., [12, 13]). Jiang et al. [14, 15] proposed a 
probabilistic seismic demand model (PSDM) for the maximum response of the NSC, but only in the case of 
NSC-structure tuning. In general, the problem inherent with probabilistic approaches is the lack of closed-form 
expressions for calculating FRS [10, 13], or their limited range of applicability dependent on simplifying 
assumptions made for the seismic excitation, such as the stationary of the ground motion process [11]. 

The present work proposes a closed-form PSDM that can be used to predict the (pseudo-) acceleration 
response of a linear NSC, with any period and damping, attached to a linear structure. The PSDM is derived for 
light NSCs, whose limited interaction with the structure can be neglected. The model is used to develop a 
practice-oriented analytical method for direct generation of uniform hazard FRS (UHFRS), namely, of FRS 
whose ordinates characterized by a given value of the mean annual frequency (MAF) of being exceeded. The 
method requires seismic input in terms of uniform hazard spectra (UHS) of base motion and can be easily 
implemented within conventional modal response spectrum analysis. 

2. Probabilistic closed-form floor response spectra 
Consider a light NSC attached to the fth floor of a MDOF structure excited at the base by a ground acceleration 
üg. By modeling the NSC as an elastic damped SDOF system, and neglecting dynamic interaction effects 
between the structure and the NSC, the response of the latter can be obtained by solving the following equation 
of motion 

 üNSC + 2ξNSCωNSCu̇NSC + ωNSC
2 uNSC = −üf

t (1) 

where üf
t is the total (absolute) acceleration of the fth floor, uNSC is the relative displacement of the NSC with 

respect to floor f, ωNSC(= 2π TNSC⁄ ) and ξNSC are the circular frequency and the damping ratio of the NSC, 
respectively. By assuming the behavior of the supporting structure linear, and by applying to its response the 
modal superposition method, Eq. (1) becomes 

 üNSCi + 2ξNSCωNSCu̇NSCi + ωNSC
2 uNSCi = −q̈it (2) 
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 uNSC = ∑ Γiϕi,fuNSCi
i  (3) 

in which Γi, ϕi,f and q̈it denote the participation factor, the shape at floor f (along the direction where the FRS of 
interest are calculated) and the total acceleration of the ith mode due to üg (in the considered horizontal direction 
of the earthquake excitation), respectively. Based on Eq. (2) uNSCi  can be interpreted as the displacement of the 
NSC attached to a linear SDOF system with the same dynamic properties (i.e., period and damping) of the ith 
mode of vibration of the structure. In other words, uNSCi  represents the NSC response to the seismic action 
filtered by the ith mode of vibration of the structure only. Given Eq. (2), the modal contribution to the (pseudo-) 
acceleration of the NSC can be defined as follows 

 Sa,NSC
i = ωNSC

2 �uNSCi �max (4) 

If the value of Sa,NSC
i  characterized by a given MAF were known, if it were known the seismic demand 

hazard in terms of Sa,NSC
i , the associated ordinate of the UHFRS could be calculated by a simple square root of 

the sum of the squares (SRSS) combination, or, in alternative, using a complete quadratic combination (CQC) 
rule [16, 17] 

 Sa,NSC = �∑ ∑ ρij�Γiϕi,f Sa,NSC
i � �Γjϕj,f Sa,NSC

j �ji  (5) 

in a way that matches the evaluation of any other structural demand by means of the modal response spectrum 
analysis. As it happens, the correlation coefficients ρij in Eq. (5) differ from the usual ones used to combine 
modal contributions to structural responses [16, 17], but they can be calculated using the equations recently 
proposed by Jiang et al. [14] derived based on random vibration theory1. 

Derivation of a relationship between modal contribution to the floor acceleration spectrum and MAF of 
exceedance is clearly the missing building block in the procedure to obtain UHFRS based on the conventional 
modal response spectrum method of analysis used in current practice. 

The MAF of Sa,NSC
i , can be seen as the result of an integral of the probability of exceedance G 

(complementary cumulative distribution function, CCDF) of Sa,NSC
i  (the engineering demand parameter EDP) 

given a level of seismic intensity (the IM), times the absolute value increment of the MAF of exceedance of that 
IM, over the entire range of its possible values 

 λSa,NSC
i (sNSC) = ∫ GSa,NSC

i (sNSC|y)|dλIM(y)|∞
0  (6) 

with Sa,NSC
i  = sNSC being the demand level in the NSC. Since λIM(y) is the seismic hazard curve (SHC) at the 

site, which is usually available or it can be easily obtained through a regular probabilistic seismic hazard analysis 
(PSHA), one needs to develop an EDP-IM relationship, or probabilistic seismic demand model (PSDM), to 
evaluate the CCDF GSa,NSC

i . Under suitable model assumptions for the SHC and the PSDM, the integral in Eq. 
(6) can be solved in closed form. Several such solutions are available, starting from the initial one by Cornell et 
al [19], based on linear interpolation in log-space of the hazard, to arrive at the most recent ones based on 
quadratic interpolation [20]. Using one such closed form, Sa,NSC

i  can be directly related to the chosen λ value. 

1 Even though the case of a MDOF structure excited by two plan orthogonal components of seismic excitation is outside the 
scope of this work, it is noted how in such a case Equation (5), similarly to what is done for any other response of interest, 
shall be applied for each horizontal component of the earthquake, and the obtained spectra shall be combined using an 
appropriate method (whose selection goes beyond the scope of the present work), such as the percentage rule [18] or the 
SRSS rule. 
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Herein, the inverted format of the closed-form expression by Vamvatsikos [20] is adopted in order to calculate 
Sa,NSC
i  associated with a given MAF 

 
Sa,NSC
i (λ) = exp �a + 1

2k2
�−k1 + �k12

q
− 4k2

q
ln λ

k0�q
��

q = 1
1+2k2σ2

 (7) 

in which k0, k1 and k2 are the coefficients of a quadratic approximation, in the log-space, of the SHC expressed 
in terms of the spectral (pseudo-) acceleration at the period Ti of the ith mode of vibration the structure, λSa(Ti), 
and a and σ are the parameters defining the following PSDM 

 lnsNSC = a + lns + σε (8) 

which relates the seismic intensity level Sa(Ti) = s with the level sNSC of the demand in the NSC. Because ε is a 
standard normal random variable, the parameter a represents, in the log-space, the median dynamic amplification 
factor of the NSC’s response with respect to that of the structure (i.e., with respect to that of the ith mode of 
vibration the structure), while σ represents its logarithmic standard deviation (i.e., the record-to-record 
variability). In general, shape and parameter values of a PSDM depend on the properties of the considered 
structure, in particular on the extent to which its response enters in the inelastic range and how well the chosen 
IM captures this nonlinearity, as well as on how much multiple modes contribute to the EDP of interest. Further, 
parameters may also exhibit a dependence on the site seismicity, represented through the suite of ground motion 
records selected to support the parameters estimation. Limiting the scope to linear NSCs supported on linear 
MDOF structures, the parameters a and σ of the PSDM in Eq. (7) depend on the dynamic properties of both the 
NSC and the mode of vibration of the structure, with negligible dependence on the site seismicity. Their values 
can be estimated using the following equations [21] 

 a = at rn1   r ≤ 1
a = at + n2(rn3 − 1)  r > 1 (9) 

 σ = σt [1 − (1 − r)n4]  r ≤ 1
σ = σt + n5(r − 1)  r > 1  (10) 

where r = TNSC Ti⁄ ; the two coefficients at and σt represent the “tuning” values (i.e., at r = 1) of a and σ, 
respectively; the coefficients n1, n2, n3, n4 and n5 determine the variation of a and σ for r ≠ 1. Each of these 
seven coefficients depends on ξNSC, and can be calculated through a third order polynomial p of z = 
ln(100ξNSC) as follows [21] 

 p = m0 + m1z + m2z2 + m3z3 (11) 

The values of m0, m1, m2 and m3 are reported in Table 1 and Table 2 for at, n1, n2, n3 and for σt, n4, n5, 
respectively. Note that m0 equals the value of the coefficient at ξNSC = 1%. Thus, the value of m0 for the at 
coefficient indicates, for example, that when ξNSC = 1% and r = 1 the median acceleration response of the NSC 
is e2.4935 ≅ 12 times that of the ith mode of vibration the structure. 

Table 1 – Coefficients of the polynomial given in Eq. (11)  
to calculate the parameters of the proposed model for a [21] 

at n1 n2 n3 
m0 m1 m2 m0 m1 m2 m0 m1 m2 m3 m0 m1 m2 m3 

2.4935 -0.3465 -0.0810 2.1504 0.0166 -0.1065 3.2978 0.4937 -0.3367 0.2933 -2.1410 0.7249 0.0819 -0.0369 
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Table 2 – Coefficients of the polynomial given in Eq. (11)  
to calculate the parameters of the proposed model for σ [21] 

σt n4 n5 
m0 m1 m0 m1 m2 m0 

0.3338 -0.0737 2.1527 0.1944 -0.1466 0.2000 

 

To conclude, the steps of the method can be summarized as follows. 

1. Input seismic action at the base is required in terms of UHS. At least three are needed, for different mean 
return periods 𝑇𝑅, if the hazard curvature is non negligible. This is the representation of the seismic 
action usually provided by codes and used by engineers to evaluate structural demands by means of 
modal response spectrum analysis; 

2. Modal analysis of the structure is carried out to yield periods, mode shapes, participation factors and 
damping ratios for all significant modes; 

3. Seismic hazard curve in terms of spectral acceleration 𝑆𝑎 for each significant mode can be obtained from 
the UHFRS, in terms of MAF-IM pairs (𝜆 = 1/𝑇𝑅, 𝑆𝑎(𝑇𝑖)). The coefficients 𝑘 = (𝑘0, 𝑘1, 𝑘2) of the 
quadratic approximation are then readily obtained; 

4. The “quadratic” hazard curve for each mode, combined with the probabilistic dynamic amplification 
function, or PSDM, produces the modal contribution to the UHFRS; 

5. The UHFRS is finally obtained from a modal combination rule. 

It is important to observe that, based on the proposal, UHFRS can be calculated with closed-form 
expressions (i.e., Eq. (5), (7), (9), (10) and (11)) once a set of 3 (arbitrarily) selected UHS is given, and the 
modal properties of the structure are known. The additional input parameters which need to be specified are the 
damping ratio of the NSC, and the MAF of exceeding the FRS. It is also worth noting once again how the 
method integrates within the usual workflow of structural analysis via the modal response spectrum method, 
without requiring any response history analysis, being of straightforward implementation within a structural 
analysis software or even, more simply, in a conventional spreadsheet. Finally, the method is the only one 
rigorously accounting for the input ground motion uncertainty (including record-to-record variability) within 
such a simplified analysis framework. 

3. Insight into the proposed PSDM 
In order to develop the proposed PSDM, a cloud analysis approach was adopted. A suite of ground motion 
records was filtered through the SDOF system representing the ith mode of vibration of the supporting structure, 
and responses were then used as input motion to calculate the response of NSCs with varying periods and 
damping ratios. Mass ratios were kept low, such as to avoid any dynamic interaction issue. The PSDM was 
estimated via simple linear regression of the obtained Sa,NSC

i  values on the corresponding values of Sa(Ti). In the 
remainder of this section, period and damping of the supporting SDOF structure, as well as spectral ordinates 
Sa,NSC
i  and Sa(Ti) will be shortened to TS and ξS, Sa,NSC 

In order to explore the variation of the PSDM with period and damping of both the supporting structure 
and the NSC, the 20x21x2x8=6720 cases were analyzed: TS = 0.1s: 0.1s: 2s, TNSC = 0: 0.1TS: 2TS, ξS = 2%, 5%, 
and ξNSC = 1%, 2%, 3%, 5%, 7% 10%, 15% and 20%. According to the definition given in [14, 15], the TNSC = 
TS and ξNSC = ξS case will be named hereafter as “tuning case”, and the corresponding FRS ordinate denoted 
with Sa,NSC

t . This specific NSC-structure system will be used in some of the sections that follow to illustrate 
results representative of general trends found in all of the considered case studies. 

Given the central role played by this PSDM in the proposed method for floor spectra evaluation, the 
following sub-sections provide details on its derivation and discuss it more in depth. In particular, the ground 
motions used to support parameter derivation are presented, the functional form is justified, the type of soil and 
seismic region influence on the PSDM is discussed, and the parameters’ variation with periods and damping 
ratios of both the NSC and the structure is shown. Further details about sufficiency of the chosen conditioning 
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IM with respect to Sa,NSC, and about changes in the PSDM when different definitions for Sa are used (i.e., Sa 
representing the spectral acceleration of the arbitrary ground motion component rather than the geometric mean 
or the maximum of the two horizontal components), can be found in Lucchini et al. [22]. 

3.1 Ground motions 
Ground motions were selected from the international database by Campbell and Bozorgnia [23]. Exclusion of 
records showing a recognizable pulse in the velocity trace (identified using the method by Shahi and Baker [24]), 
and records from earthquakes with moment magnitude Mw smaller than 5 resulted in 715 ground motions 
records, denoted in the following as “Set 1”. For each record, the NSC response was initially obtained using a 
single arbitrarily selected horizontal component of the ground motion. Regression analyses were then carried out 
using the entire set of motions (Set 1) or four other subsets: “Set 2”, with ground motions of the database 
recorded in seismic zones worldwide except California (307 records); “Set 3”, with ground motions of the 
database from Californian earthquakes only (408 records); “Set 4”, with ground motions from Set 3 and stations 
characterized by a value of the shear wave velocity VS30 lower than 360 m/s (230 records); “Set 5”, similar to Set 
4 but with ground motions from stations characterized by a VS30 value higher than 360 m/s (178 records). 

3.2 Functional form 
The functional form adopted to predict Sa,NSC given Sa is a standard log-log linear model, in which the error term 
is assumed normally distributed and with an approximately constant standard deviation. This model allows the 
implementation of the PSDM into the equation of Vamvatsikos [20] for convolving seismic hazard and 
nonstructural demand. In particular, the two models reported in Fig. 1, fitted using a least squares approach, were 
investigated: a standard two-parameter model with intercept a and slope b parameters, and a one-parameter 
model, in which the slope b of the linear regression is fixed equal to 1, and thus only the intercept a has to be 
estimated. 

 
Fig. 1 – Functional form of the regression and 

analyses results for the case of Sa,NSC
t  obtained using the set of records 5 

As shown by the results reported in Fig. 1 (representative of the results obtained for all of the 6720 
considered case studies), the value of the slope was found to be very close to 1. Because of that, the one-
parameter model was finally adopted to build the PSDM. In this model, ea is equal to the estimate of the median 
value of the Sa,NSC Sa⁄  ratio. In other words, as already noted in the previous section of the article, the coefficient 
a assumes the meaning of the mean (logarithmic) dynamic amplification factor of the NSC’s response with 
respect to that of the structure. 

3.3 Dependence on soil conditions and seismic region 
Regression results on the subsets of motions previously identified as sets 2 to 5 were used to investigate to what 
extent the PSDM parameters depend on soil conditions and seismic region. The rationale was that, were the 

6 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

parameters to be found sufficiently independent of these factors, and in particular of the regional seismicity, a 
unique set of regression coefficients could be supplied for use in any country without the need to perform local 
fits. The results of these analyses are exemplified through selected plots in Fig. 2. It can be observed that the use 
of ground motions representative of rock or soil site conditions does not produce a significant change in the 
result of the regression. This finding agrees with conclusions reached by Bo et al. [15] when investigating the 
effect of soil characteristics on the Sa − Sa,NSC relationship for the NSC-structure tuning case. The same 
negligible influence is observed if ground motions recorded in a specific seismic region (California, in the 
considered case) or worldwide are used. 

 
Fig. 2 – Results of regressions on datasets of records representative of different  

soil conditions and seismic regions (left and right panel, respectively) 

To conclude, the proposed PSDM can be considered as site independent for all practical purposes, and can 
be applied regardless of the specific characteristics of seismic hazard at the site. 

3.4 Parameters’ variation with periods and damping ratios 
The parameters a and σ of the proposed PSDM for Sa,NSC as expressed in Eq. (9) and Eq. (10) can be interpreted 
as follows. They represent, in the log-space, mean and dispersion of a normalized FRS produced by a SDOF 
supporting structure. Abscissa and ordinate of the spectrum, in fact, are expressed in a normalized form being 
divided by period and (pseudo-) acceleration response of the structure, respectively. This means that Eq. (9) and 
Eq. (10) are implicitly based on the assumption that the Sa,NSC Sa⁄  ratio, i.e., the dynamic amplification factor of 
the NSC’s response with respect to that of the structure, depends rather than on TNSC and TS individually, on 
their ratio r = TNSC TS⁄ . The goodness of this assumption can be assessed by looking at the plots of Fig. 3, which 
report the parameters of PSDMs corresponding to different NSC-structure pairs estimated using as exciting 
ground motions the records from Set 5. The a(r) and σ(r) curves shown in the plots are obtained from the 
responses of NSCs with different periods of vibration TNSC, attached to structures characterized by the same TS 
value. It can be observed that in case the latter changes, the variations of the curves are quite limited. The most 
significant variations occur, in fact, in cases the amplification of the NSC is small and thus the accurate 
evaluation of its response is of reduced if not negligible importance. Note that, for example, in the case of TS = 
0.5 s the maximum variation of σ and a occurs near r equal to 0.5 and 2, respectively. The median amplification 
ea at these two values of r is about 1.5, while at r = 1.0 it is equal to 11.1. Fig. 3 reports also the a and σ curves 
calculated with Eq. (9) and Eq. (10). The equations’ coefficients are derived from PSDMs built through 
regression of Sa,NSC Sa⁄  values obtained from all the considered TS cases. In particular, for at and σt the actual 
values of the parameters of the PSDM built for the NSCs with TNSC = TS are adopted. The coefficients n, 
instead, are calibrated with nonlinear least-squares fitting of the a and σ curves. As it can be noted by observing 
the right plot of Fig. 3, coefficient n5 was calibrated by solving the minimization problem in the range 1.5 < r < 
2 (and not for r > 1). By using this approach, for r > 1 the value of σ is always overestimated, but the predicted 
slope of the curve is consistent with the actual value of the observed linear trend. 

7 
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Fig. 3 – PSDM’s coefficients expressed as functions of r obtained for different structural periods: values 

observed and estimated with the proposed Eq. (9)-(10) (denoted with solid and dashed lines, respectively) 

Fig. 4 reports the a and σ curves obtained for different damping ratio values of the NSC. In this case, the 
third order polynomial of ln(100ξNSC) given in Eq. (11) is used to approximately calculate the coefficients of 
Eq. (9) and Eq. (10). The values adopted for m0, m1, m2 and m3 in Eq. (11) are estimated through a least-
squares approach as follows: in the case of at and σt, by fitting the tuning values of a and σ obtained with the 
different considered ξNSC ratios; in the case of the coefficients n, instead, by fitting the values of a and σ, 
observed on both r and ξNSC, to Eq. (9) and Eq. (10) with at and σt already calibrated. Comparisons of the 
results obtained for the two investigated structural damping ratios showed that actually m slightly varies with ξS. 
Because of that, the proposed PSDM was approximately assumed independent on ξS, and the values of m 
reported in Table 1 and Table 2 calibrated using the mean (average) a and σ curves obtained in the two cases of 
ξS = 2% and ξS = 5%. Based on these values, it can be also noted that in some cases, e.g. for at and σt, a 
polynomial of order lower than three could be actually used to accurately calculate the coefficient. Note that 
while in the observed a(r) curves the location of the peak depends in general on the actual value of ξNSC, 
according to the proposed model the peak always occur at r = 1. The results obtained in the investigated case 
studies showed, however, that the errors produced by such approximation are negligible. 

 
Fig. 4 – PSDM’s parameters expressed as functions of the TNSC TS⁄  ratio r for different NSC’s damping ratios: 

values observed (solid) and estimated (dashed) with Eq. (9)-(10)-(11) 

8 
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4. Adopted closed-form for the MAF of nonstructural response 
As already stated, Eq. (7) that calculates seismic demand for a given value of the MAF is derived by inverting 
the closed-form of Vamvatsikos [20]. It is easy to demonstrate that Eq. (7) can be used only if the following 
condition is satisfied 

 Δ = q�k12 − 4k2ln λ
k0�q

� > 0 (12) 

In order to obtain Eq. (7), in fact, a quadratic equation with discriminant Δ obtained by transforming the 
closed-form has to be solved. As underlined in Vamvatsikos [20], the condition (11) is always satisfied “for any 
limit state of engineering significance”. However, when the proposed PSDM for the nonstructural response is 
used, it can happen in some cases that the condition is not satisfied. This occurs in particular at high values of r, 
when the values of the parameters a and σ are very low and high, respectively, i.e. when the response of the NSC 
is significantly deamplified with respect to that of the structure and highly dispersed. Even though such cases are 
not of engineering interest, they are evaluated when the ordinates of the FRS around the fundamental period of 
vibration the structure are analyzed and the contribution of the higher modes is calculated. In order to deal with 
the evaluation of such cases without modifying the expression of Eq. (7) used to calculate Sa,NSC

i , the following 
approximation is proposed 

 Sa,NSC
i (λ, r > 3) ≈ Sa,NSC

i (λ, r = 3) (13) 

Note that for r > 3, the acceleration level of the NSC is in general very low, being the mean value of the 
dynamic amplification factor much lower than 1 (e.g., see Fig. 4). Thus, it is reasonable to assume the error 
produced by such approximation as negligible.  

5. Example application 
The MDOF structure selected as example case study is a 6-story 3-bay reinforced concrete frame located in 
Milan, Italy. The modal properties of the structure, i.e., modes’ shape and corresponding periods T and 
participating mass ratios PMR, are reported in Fig. 5. Each mode of vibration is assumed to have a damping ratio 
equal to 5%. 

 
Fig. 5 – MDOF 6-storey structure: modal properties 

Seismic hazard at the site is modelled with the SHC reported in Fig. 6, and a suite of hazard-consistent 
ground motions (e.g., refer to [25] for the definition of hazard consistency). A total of 200 motions (20 records 
for 10 levels of Sa) have been selected by means of the conditional spectrum method [26], and used in a 
multiple-stripe analysis [27] to estimate exact PSDMs for the NSCs. 

9 
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Fig. 6 – MDOF 6-storey structure: SHC with the 10 conditioning intensity levels used to select the records 

required to run the multiple-stripe analysis (left), and the three computed UHS used in the proposed method 
(right) 

In order for the validation to be correct, by this meaning that differences come only from the method itself 
and its approximations, results from the proposed method should be computed employing UHS that are 
consistent with the site seismicity and the ground motion records used in the response-history analyses. Thus, 
rather than performing PSHA at periods other than the conditioning one T1 = 1.0 s in order to build the UHS, 
spectral ordinates at Sa∗ = Sa(T∗ ≠ T1) have been obtained using the SHC for the conditioning IM, λSa, and the 
conditional distribution of Sa∗ given Sa obtained from records, through the expression 

 λSa∗ (s∗) = ∫GSa∗ |Sa(s∗|s) �dλSa(s)� ≅ ∑ G�Sa∗ |Sa(s∗|st)�ΔλSa(st)�
NS
t=1  (14) 

where NS is the number of seismic intensity levels (i.e., stripes) considered, st is the intensity level of the tth 
stripe, and the CCDF of Sa∗ given Sa is approximately obtained from records as 

 G�Sa∗ |Sa(s∗|st) = 1
NR
∑ I�Sa,l

∗ > s∗|Sa = st�
NR
l=1  (15) 

where NR is the number of records at the intensity level st, Sa,l
∗  is the value of Sa∗ obtained from the lth record, 

and I(∙) denotes the indicator function which is equal to 1 for Sa,l
∗ > s∗ and 0 otherwise. Fig. 6, on the right, 

shows the three UHS obtained and used in the proposed method. 

Fig. 7 shows the UHFRS for different damping ratios and two different floor levels of the structure, 
obtained as follows. The exact UHFRS are derived from DHCs, expressed in terms of Sa,NSC, obtained similarly 
to the MAF of Sa∗. In the case of the approximate estimates of the UHFRS, the parameters of the PSDMs for the 
NSCs are determined from Eq. (9)-(10)-(11). Modal contributions to the floor spectra Sa,NSC

i  are calculated with 
Eq. (7). For the ith mode of vibration of the structure, the Sa(Ti) hazard curve, used to estimate the values of k0, 
k1 and k2, is derived from the spectral ordinates at Ti of the set of UHS. Three interpolation points only, 
corresponding to TR values equal to 30, 140 and 475 years, respectively, are used to approximate the hazard 
curves. The simple SRSS rule is finally used to combine the Sa,NSC

i  values and obtain the UHFRS. The 
comparisons reported in the figure show the ability of the proposed method to accurately predict UHFRS. 
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Fig. 7 – MDOF 6-storey structure: exact vs approximated UHFRS 

6. Conclusions 
A method to generate uniform hazard floor response spectra (UHFRS) for linear MDOF structures was 
presented. UHFRS are determined through a closed-form expression, given the target mean annual frequency, 
the nonstructural component damping ratio, the modal properties of the structure and (at least) three uniform-
hazard (pseudo-) acceleration response spectra (UHS) at the base of the structure. The method is based on a new 
proposal of a probabilistic seismic demand model (PSDM) which relates the base spectral acceleration (Sa) with 
the floor spectral acceleration. Results reported in the paper showed that the PSDM can be considered as site 
independent. Because of that, the proposed equation to calculate the UHFRS can be applied regardless of the 
specific characteristics of seismic hazard at the site. Such independency and the use of UHS make the method 
ready for an easy adoption into international seismic codes.  
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