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Abstract 
The efficiency of a recently introduced spectral based intensity measure (IM) is assessed, used for the assessment of the 
seismic collapse capacity of highly inelastic frame structures with deteriorating backbone curve vulnerable to the degrading 
effect of gravity loads (P-delta effect). This IM is derived from the geometric mean of the spectral pseudo-acceleration over 
a certain period interval considering period elongation due to inelastic deformations and gravity loads, as well as higher 
mode effects. The IM optimization is achieved by using the mode in which 95% of the effective modal mass is exceeded as 
a lower bound period of the averaging interval. The IM upper bound period is 1.6 times the fundamental period. The 5%-
damped spectral pseudo-acceleration at the system’s fundamental period is the benchmark IM. In a parametric study on 
generic frames, characteristic structural parameters are varied to quantify their impact on the performance of the IMs. The 
proposed IM minimizes collapse capacity due dispersion due to record-to-record variability for one-story and multi-story 
structures. Compared to the benchmark IM, the “optimal” IM increases the efficiency in average by about 20% for material 
non-deteriorating structures, and by 30% for medium material deteriorating systems. 

Keywords: collapse capacity; efficiency; geometric mean of spectral acceleration; intensity measure; P-delta effect 
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1. Introduction 
In earthquake engineering analysis an intensity measure (IM) is used to quantify the severity of a seismic event 
and the ground motion uncertainty, represented by one parameter or a vector of a few parameters related to a set 
of appropriately selected earthquake records. The IM also serves as a scale factor for non-linear dynamic 
analysis. Since there is no unique definition of intensity of an earthquake record, several IMs have been 
proposed. They can be classified into (a) elastic ground motion based scalar IMs such as peak ground 
acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD), (b) elastic and inelastic 
spectral based IMs such as spectral acceleration and spectral displacement at the fundamental period of the 
structure, as well as spectral values related to higher modes effect or period elongation (see e.g., [1 - 9]), and (c) 
vector valued IMs (e.g., [6, 10]). Currently, the most widely accepted IM is the 5% damped pseudo-spectral 
acceleration at the (fundamental) period of the structure,   T1 , which serves in the present study as the benchmark 
IM.  

Although many advanced IMs have been proposed, there are still some limitations such as the derivation 
of attenuation relations, the selection of the spectral values in case of higher modes and period elongation 
incorporation, and their validation for several structural systems, among others. In addition, most studies on the 
suitability of commonly used IMs (e.g., Jalayer et al. [11], O’Donnell et al. [12]) do not focus on the collapse 
limit state.  

According to Luco and Cornell [3] and Bianchini et al. [4], an appropriate IM should comply with four 
properties. The first property is the hazard computability (practicability), i.e., for the IM appropriate ground 
motion prediction equations must be available to quantify the ground motion hazard at the site. The property of 
efficiency refers to the record-to-record (RTR) variability of peak structural response. It is measured by an 
appropriate Engineering Demand Parameter (EDP), and should be low at any level of the IM. The more efficient 
an IM is, the smaller is the number of ground motion records required to predict the structural response within a 
certain confidence level. The property of sufficiency describes the conditionally statistical independence on an 
IM on seismological characteristics, such as the magnitude,  Mw , and the source-to-site distance,  R . The fourth 
property is scaling robustness, which refers to the independence of the IM from scaling factors. 

More recently, IMs based on the geometric mean of spectral pseudo-acceleration over a specific period 
interval have attracted the attention of several researchers. The studies of Tsantaki [13], Kampenhuber [14] and 
Tsantaki et al. [15] have shown that for P-delta vulnerable single-degree-of-freedom (SDOF) systems an IM 
based on the geometric mean concept of spectral accelerations satisfies better the properties of efficiency and 
sufficiency, compared with outcomes of benchmark studies [16, 17], where the 5% damped spectral pseudo-
acceleration at the structural period has been used as IM. Adam et al. [8] analyzed the efficiency of this IM for 
collapse prediction of three sets of P-delta vulnerable frame structures. Recently, Eads et al. [9] evaluated the 
efficiency and sufficiency of a similar IM for collapse prediction using almost 700 moment-resisting frame and 
shear wall structures. In their study the lower bound period of the period interval was set to 20% of the 
fundamental period and the upper bound period to three times the fundamental period. Also, Kazantzi and 
Vamvatsikos [18] compared the effectiveness of several IMs based on the geometric mean concept superposing 
the spectral acceleration read at different logarithmically and linearly equally spaced periods. In this study an IM 
that combines the spectral acceleration read at five periods ranging from the second-mode period to twice the 
first-mode period was found to perform best in terms of efficiency and sufficiency across the practical range of 
peak floor acceleration and interstory drift values of low-rise and high-rise structures.  

Adam et al. [19] proposed an optimized IM based on the geometric mean of spectral pseudo-acceleration 
for evaluating collapse capacity of multi-story moment-resisting frames vulnerable to global P-delta effects. This 
IM considers for first time a lower bound period of the averaging interval based on the mode in which 95% of 
the effective modal mass is exceeded. This paper presents the results of a parametric study on the efficiency of 
the latter IM [19] to prove its superiority over other classical spectral acceleration based IMs when predicting the 
collapse capacity of P-delta vulnerable structures.  
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2. Assessed Spectral Acceleration Based Intensity Measure 
In this study the efficiency of a spectral acceleration based IM for predicting the collapse capacity of P-delta 
vulnerable regular frame structures is evaluated. This intensity measure is composed of the geometric mean of n 
discrete spectral acceleration values   Sa (T (i) )  (  i = 1,...,n ) [4] 

 

  
Sa,gm(T (1) ,T (n) ) = Sa (T (i) )
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within the period interval  ΔT  

   ΔT = T (n) −T (1) , T (n) > T (1)  (2) 

This period interval  ΔT  has a lower bound period   T (1)  and an elongated upper bound period   T (n) . Also,   T (i)  
is the ith period of the set of n periods   T

(1) ,...,T (i) ,...,T (n) . In general,   T (i)  does not comply with a system 
period  T j . In contrast to Bianchini et al. [4], where  Sa  is discretized at 10 log-spaced periods within  ΔT , in 
Tsantaki et al. [19] and Kampenhuber [14]  Sa  is discretized at equally spaced periods   T (i)  within  ΔT  (Fig. 1), 
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Fig. 1 – Pseudo-acceleration of a ground motion record. Discrete pseudo-accleration values in period interval 

 ΔT . Lower bound period   T (1) , and upper bound period   T (n)  

In a parametric IDA study on P-delta vulnerable highly inelastic SDOF systems, Tsantaki et al. [15] found 
that the upper elongated period   T (n)  leading to the minimum RTR dispersion of the collapse capacity is around 
  1.6TSDOF , fluctuating between   1.4TSDOF  and   2.0TSDOF . According to this study, for these SDOF systems the 
“optimal” lower bound period   T (1)  corresponds to the elastic period, i.e.,   T

(1) = TSDOF . The collapse capacity 
dispersion due to RTR variability of SDOF systems based on the IM   Sa,gm(TSDOF ,1.6TSDOF )  is 50% lower 
than that obtained from the common IM   Sa (TSDOF )  [15]. 

In contrast to an SDOF system, for MDOF systems a lower bound interval   T (1)  of IM   Sa,gm(T (1) ,T (n) )  
less than the fundamental period,   T

(1) < T1 , leads to a smaller collapse capacity dispersion, because higher mode 
effects are accounted for in agreement with Eurocode 8 [20] and ASCE/SEI 41-13 [21] specifications. From a 
recent study of Adam et al. [19] on various P-Delta vulnerable frame structures exhibiting non-deteriorating and 
deteriorating characteristics it is concluded that the lower bound period should not be a fixed fraction of the 
fundamental period   T1  (such as   0.2T1  or   0.4T1 ), because such an IM reduces the efficiency for SDOF systems. 
As a solution it is proposed to relate the lower bound period of averaging interval  ΔT , in analogy to Rayleigh 
damping, with 95% of the total effective cumulative modal mass  M , leading to the “optimal” IM [19], 
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   IMopt = Sa,gm(T0.95M ,1.6T1)  (4) 

3. Considered Set of Generic Frame Structures Vulnerable to P-Delta 
Different sets of generic multi-story frame structures are used to assess the efficiency of the IM defined in 
Eq. (4) at the collapse limit state. These N story moment-resisting single-bay frame structures of uniform height 
h, composed of rigid beams and elastic flexible columns, are similar to the ones described in Medina and 
Krawinkler [22]. To each joint of the frames an identical lumped mass   mi / 2 = ms / 2 , i = 1, ... , N, is assigned. 
According to the weak beam-strong column design philosophy, inelastic rotational springs are located at both 
ends of the beams and at the base. The bending stiffness of the columns and the initial stiffness of the springs are 
adjusted to render the desired straight-line fundamental mode shape. The springs exhibit a bilinear backbone 
curve, whose inelastic branch with reduced stiffness is characterized by the strain hardening coefficient α, which 
is the same for all springs. The springs strength is tuned to achieve simultaneous initiation of yielding at all 
spring locations in a static pushover analysis (without gravity loads) under a first mode design load.  

A bilinear hysteretic response of the springs is assumed. Unloading stiffness deterioration and cyclic 
strength deterioration of the bilinear hysteretic cyclic behavior is simulated with the modified Ibarra-Medina-
Krawinkler deterioration model [23, 24], but the backbone curve does not consider a negative post-capping 
stiffness to account for strength deterioration due to large rotational displacements. For the sake of simplicity, 
the controlling unloading stiffness deterioration and cyclic strength deterioration parameters,  ΛK  and  ΛS , 
respectively, are assumed to be equal for all springs of the frame,  ΛK = ΛS . Three selected material 
deterioration levels represent slow, medium, and rapid deterioration [24, 25]. 

Identical gravity loads are assigned to each story to simulate P-delta effects, implying that axial column 
forces due to gravity increase linearly from the top to the bottom of each frame. A first mode pushover analysis 
delivers strong evidence of the vulnerability of a structure to P-delta induced global seismic collapse [26, 30]. If 
the post-yield stiffness of the global pushover curve becomes negative, during severe seismic excitation, inelastic 
deformations combined with gravity may cause the structure to approach a state of dynamic instability, and the 
global collapse limit state is attained at a rapid rate. For the quantification of the P-delta vulnerability a second 
first mode pushover analysis disregarding gravity loads must be conducted. Then, from the bilinear 
approximation of both pushover curves the stability coefficients in the elastic range of deformation ( θe ), and the 
stability coefficient in the post-yield range of deformation ( θi ) can be identified [26, 30]. As an example, the 
black curve of Fig. 2 illustrates the global pushover curve of a considered frame structure, where the base shear 
 V  is plotted against the roof displacement  xN , disregarding the gravity loads in the nonlinear static analysis. 
The red pushover curve considers gravity loads, leading in this case to a negative post-yield stiffness due to the 
P-delta effect. Since the considered generic frames are designed for simultaneous yield initiation when subjected 
to a first mode pushover analysis, both pushover curves are actually bilinear. According to Medina and 
Krawinkler [22]  θi  can be much larger than  θe :   θi > (>)θe . When predicting the collapse capacity of a flexible 
structure, in many cases cyclic deterioration of the structural components can be disregarded. In those cases, a 
precondition for seismic collapse is that the post-yield tangent stiffness is negative, or alternatively expressed, 
the difference of inelastic stability coefficient  θi  and global hardening ratio  αs  is larger than zero, i.e., 

  θi −αs > 0 , compare with Fig. 2.  
Rayleigh damping coefficients were computed by assigning a damping ratio of 5% to the first mode and to 

the first mode with a cumulative modal mass of at least 95% of the total mass. The corresponding damping 
matrix is proportional to the mass matrix and the current stiffness matrix. 
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Fig. 2 – Global pushover curve of a considered generic P-delta vulnerable multi-story frame structure (red 

curve), and the corresponding outcome desregarding gravity loads (black curve) [19] 

Collapse capacity dispersion due to RTR variability of the considered P-delta vulnerable multi-story 
frames is primarily influenced by [8, 19] 
 the fundamental period   T1  (without gravity loads), 
 the negative slope of the post-yield stiffness  θi −αS  in the capacity curve, 
 the period elongation due to inelastic deformations, and 
 higher modes, correlated with the number of stories N and the structural periods. 

In this study the elastic fundamental period   T1 , the negative post-yield stiffness ratio  θi −αS , and the 
number of stories N serve as variables. Variation of these parameters affects the fundamental period including 
the effect of gravity loads, which is subsequently denoted as   T1

PΔ . The period elongation at collapse is largely 
controlled through  θi −αS , and deterioration of the unloading stiffness and strength. Thus, results are presented 
both for frames with non-deteriorating springs and springs subjected to medium deterioration.  
 In total 2048 generic frame structures are studied. All predefined basic model parameters of the 
considered generic frame structures are summarized in Table 1. 

Table 1 – Range of basic model parameters of the considered generic frame structures 

Parameter Description Parameter range 

N Number of stories 1, 3, 6, 9, 12, 15, 18, 20 

  T1  Fundamental period 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 

 θi −αS  Negative post-yield stiffness ratio 
0.03, 0.04, 0.05, 0.06, 0.10, 0.20, 0.30, 
0.40 

α  Strain hardening coefficient of rotational 
springs 0.03 

 ΛK = ΛS  
Deterioration parameter for no 
deterioration; and slow, medium, and rapid 
deterioration 

∞ , 2.0, 1.0, 0.5 

4. Collapse Capacity and its Record-to-Record Variability 
The Incremental Dynamic Analysis (IDA) procedure is used to predict the collapse capacity. An IDA consists of 
a series of time history analysis, in which the intensity of a particular ground motion is monotonically increased. 
As a result, the IM is plotted against the EDP (here the roof drift). The procedure is stopped when this parameter 
grows unbounded, indicating structural collapse. The corresponding IM, 

 
IMi collapse

, is referred to as the 
structural collapse capacity subjected to that particular ground motion record indicated by subscript i,  



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

6 

 
 
CCi = IMi collapse

 (5) 

Since the collapse capacity is highly record dependent, this quantity is computed for each record of the 
selected ground motion set, and subsequently evaluated statistically. According to Shome and Cornell [28] the 
set of corresponding collapse capacities can be represented by a log-normal distribution. The log-normal 
distribution is characterized by the median lnCCµ  of the natural logarithm and the standard deviation β  of the 
logarithm of individual collapse capacities  [29], 

 
  
β = (lnCCi − µlnCC )2

r −1i=1

r
∑  (6) 

r is the number of utilized ground motion records, and thus, of the individual collapse capacities,  CCi , 
  i = 1,...,r . 

Ground motion induced uncertainties of the collapse capacity of the testbed structures are computed 
employing the far-field ground motions of the LMSR-N record set [22]. The LMSR-N bin contains 40 ground 
motions recorded in California on NEHRP site class D during earthquakes of moment magnitude  Mw  between 
6.5 and 7 and closest distance to the fault rupture between 13 km and 40 km. This set of records has strong 
motion duration characteristics insensitive to magnitude and distance [22]. 
  

5. Efficiency Study  
Subsequently, the efficiency of the “optimal” intensity measure 

 
IMopt  is qualitatively and quantitatively 

assessed. Fig. 3 shows dispersion parameter β  for nine sets of frames with non-deteriorating material properties 
subjected to the 40 LMSR-N ground motions based on  IMopt , and for comparison also for four additional IMs. 
The “classical” IM   Sa (T1) , i.e. the spectral pseud-acceleration read at the fundamental period (without gravity) 

  T1 , serves as benchmark. The spectral pseudo-acceleration at the fundamental period affected by P-
delta,  Sa (T1

PΔ ) , is the second comparative IM. The geometric mean IM   Sa,gm(T1,1.6T1)  with lower bound   T1  
and upper bound   1.6T1  considers the effect of period elongation, while IM   Sa,gm(0.2T1,1.6T1)  also covers the 
higher modes. In contrast to 

 
IMopt  in IM   Sa,gm(0.2T1,1.6T1)  the lower bound is a fixed value, i.e.   0.2T1 . As 

observed, for all structures 
 
IMopt  is more efficient than both single target IMs   Sa (T1)  and   Sa (T1

PΔ ) . Moreover, 
for the majority of structures it is the most efficient IM, and in the remaining cases, the deviation to the most 
efficient one is no more than 5%. The plots in Fig. 3 group the frames according to the number of stories N 
(Figs 3a-c), the negative post-yielding stiffness ratio (Figs 3d-f), and the period of vibration (Figs 3g-i).  

In Figs 3a, 3b, and 3c the collapse capacity variability is presented as a function of the number of stories 
N, for frames that have the same period   T1 = 3.5s , but different  θi −αS . As observed, the collapse capacity 
dispersion increases as the number of stories increases. For the two frame sets with significant P-delta effect 
(i.e.,  θi −αS  is 0.10 and 0.20) the dispersion reduction based on 

 
IMopt  is between 20 and 40% compared to IM 

  Sa (T1) , see Figs 3b and c. In contrast, the efficiency increase of 
 
IMopt  for structures exposed to moderate P-

delta effect (  θi −αS = 0.03 ) is 5 to 14% only (Fig. 3a). These figures also show that for one-story structures 

 
IMopt  with variable lower bound period is more efficient than IM   Sa,gm(0.2T1,1.6T1)  with fixed lower bound 
period, in particular if  θi −αS  becomes large. In those cases, however, IM   Sa,gm(T1,1.6T1)  exhibits the same 
efficiency than 

 
IMopt , because obviously an SDOF system has no higher modes to be considered in the IM 

definition. Thus, it can be concluded that 
 
IMopt  combines the advantages of IMs   Sa,gm(T1,1.6T1)  and 

  Sa,gm(0.2T1,1.6T1)  without the necessity to distinguish between one-story and multi-story structures when 
selecting the appropriate IM. For the long-period structures, T1 = 3.5s, with various parameter configurations 
shown in this figure both single-target IMs   Sa (T1)  and   Sa (T1

PΔ )  lead to a similar efficiency of the collapse 
capacity prediction with the exception of the one-story frame with   θi −αS = 0.20  where   Sa (T1

PΔ )  is 
significantly more efficient, see Fig. 3c. 
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Fig. 3 – Dispersion of the collapse capacity for nine frame sets with parameters as specified. No material 

deterioration. Benchmark IM   Sa (T1) , IM   Sa (T1
PΔ ) , one IM considering period elongation, one IM considering 

both period elongation and higher mode effects as specified, and “optimal” IM 
 
IMopt . LMSR-N record set 

Figs 3d, 3e, and 3f show the collapse variability for flexible frames with a fundamental period of 3.5s as a 
function of the negative post-yield stiffness ratio for frames of one (Fig. 3d), nine (Fig. 3e), and 18 (Fig. 3f) 
stories. These figures confirm that collapse capacity dispersion decreases for systems with a steeper  θi −αS , 
because they are more prone to collapse and less dependent on RTR variability. For instance, for 

 
IMopt  the 

nine-story structure with   θi −αS = 0.03  exhibits dispersion  β = 0.51 , for   θi −αS = 0.40  it decreases to 

 β = 0.26 . Also, 
 
IMopt  is more efficient on SDOF frames with a large negative post-yield stiffness ratio. For 

instance, for the one-story frame with   θi −αS = 0.40  the 
 
IMopt  dispersion is only 42% of the dispersion based 

on IM   Sa (T1) . For this structural configuration the dispersion based on the single-target IM   Sa (T1
PΔ )  is of the 

same order as for IM   Sa (T1) . On average the reduction of the dispersion based on 
 
IMopt  is about 20% 

compared to benchmark IM   Sa (T1) . The results for the one-story frames confirm that with increasing  θi −αS  
the efficiency of 

 
IMopt  becomes larger compared to   Sa,gm(0.2T1,1.6T1) . For the same structures the collapse 

dispersion for IM   Sa (T1
PΔ )  is in the same order as for 

 
IMopt , and thus, much smaller than for IM   Sa (T1) . 
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The effect of different fundamental periods of vibration in 1-, 9-, and 18-story frames is presented in 
Figs 3g, 3h, and 3i, respectively. The parameter   θi −αS = 0.20  is constant, and periods   T1  between 0.5 and 4.0s 
are spaced at 0.5s in the three frame sets. Figs 3g to 3i show that the dispersion is not significantly affected by 
period   T1 . More important for dispersion is the number of stories. While for one-story structures and 

 
IMopt  the 

variability β  fluctuates around 0.20, for the nine-story and 18-story frames it is in average 0.26. The efficiency 
enhancement of 

 
IMopt  compared to that of IM   Sa (T1)  does not follow a uniform trend. However, it is more 

pronounced for SDOF systems than for the multi-story frames, as discussed before. The results confirm that both 
for one-story and multistory frames 

 
IMopt  is in general most efficient. For SDOF systems the efficiency of 

 
IMopt  and IM   Sa,gm(T1,1.6T1)  is identical, and for IM   Sa (T1

PΔ )  closer to 
 
IMopt  than to IM   Sa (T1) . For 

MDOF systems the efficiency of 
 
IMopt  and IM   Sa,gm(0.2T1,1.6T1)  is similar. 
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Fig. 4 Dispersion of the collapse capacity for nine frame sets with parameters as specified. Medium material 

deterioration. Benchmark IM   Sa (T1) , IM   Sa (T1
PΔ ) , one IM considering period elongation, one IM considering 

both period elongation and higher mode effects as specified, and “optimal” IM 
 
IMopt . LMSR-N record set 
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Subsequently, it is investigated whether the findings for material non-deteriorating P-delta vulnerable 
frames can be transferred to structures that also are exposed to material deterioration, as defined in Table 1. 
Fig. 4 shows the collapse capacity dispersion for similar generic frames to those of Fig. 3, but with medium 
deterioration of strength and stiffness. To quantify the efficiency enhancement of the alternative IMs with 
respect to the benchmark IM   Sa (T1) , Fig. 5 represents the ratio of the dispersion of the four alternative IMs with 
respect to β  based on IM   Sa (T1) .  

Comparison of the outcomes of Figs 3. and 4 reveals that the general trend of β  with respect to the 
number of stories N, negative post-yield stiffness ratio  θi −αS , and fundamental period   T1 is the same, 
confirming  the superior 

 
IMopt  efficiency. However, the magnitude of β  becomes (much) smaller compared to 

the non-deteriorating counterparts; in particular, if the negative post-yield stiffness ratio is small, i.e. 

  θi −αS = 0.03 . For instance, for the first frame set, whose results are shown in Figs 3a and 4a, consideration of 
medium material deterioration reduces the dispersion β  to 50% compared to the non-deteriorating systems. 
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Fig. 5 Dispersion of the collapse capacity based on alternative IMs over the dispersion for benchmark IM 

  Sa (T1) . Nine frame sets with parameters as specified. Medium material deterioration. LMSR-N record set 
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Note that the efficiency of 
 
IMopt  with respect to the benchmark IM   Sa (T1)  significantly improves. The 

corresponding plots of the collapse capacity ratios of Fig. 5 show that the efficiency enhancement is on average 
about 30%, compared to 20% for non-deteriorating frames. 

The three-dimensional bar plots of Figs 6 and 7 provide a global overview of collapse capacity dispersion. 
Fig. 6 shows the dispersion based on IMs   Sa (T1)  and 

 
IMopt  for a set of medium deteriorating frames with 

  θi −αS = 0.20  as a function of period   T1 and number of stories  N . Additionally, the dispersion ratio for these 
two IMs is depicted. The structures of Fig. 7 have a period of   T1 = 3.5s , and the dispersion is plotted against 

 θi −αS  and  N . 
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Fig. 6 Dispersion of the collapse capacity for 72 frames with   θi −αS = 0.20  plotted against the number of stories 
and the fundamental period. (a) IM   Sa (T1) , (b) IM 

 
IMopt , (c) dispersion ratio. Medium material deterioration. 
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Fig. 7 Dispersion of the collapse capacity for 64 frames with   T1 = 3.50s  plotted against the number of stories and 

the negative post-yield stiffness ratio. (a) IM   Sa (T1) , (b) IM 
 
IMopt , (c) dispersion ratio. Medium material 

deterioration. LMSR-N record set 

6. Summary and Conclusions 
In this study an “optimized” spectral acceleration based intensity measures (IMs) for P-delta vulnerable generic 
moment-resisting frames at their collapse limit state has been assessed. This “optimal” IM, 

 
IMopt , is based on 

the geometric mean of the spectral pseudo-acceleration,   Sa,gm , over a certain period interval. The “optimal” 
upper bound of the period interval for the geometric mean IM is 1.6 times the system period without 
consideration of gravity loads. Thus, period elongation either a result of large inelastic deformations in the case 
of small negative post-yield stiffness slopes, or the result of the presence of gravity loads in systems with steeper 
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slopes is covered. The IM optimization is achieved by using a lower bound corresponding to the structural period 
associated with the exceedance of 95% of the total effective mass. In a parametric study considering a set of 
2048 generic frames the efficiency of these IM to reduce collapse capacity dispersion due to the record-to-record 
(RTR) variability has been evaluated, and compared to two single target spectral IMs and to two geometric mean 
of the spectral pseudo-acceleration based IMs. The single target spectral IMs are the 5% damped spectral 
pseudo-accelerations   Sa (T1)  and   Sa (T1

PΔ )  at the elastic fundamental period without and with consideration of 
gravity loads,   T1  and   T1

PΔ , respectively. The intensity measure IM   Sa,gm(T1,1.6T1) , with the lower bound 
period   T1  and the upper bound period   1.6T1 , considers the effect of period elongation only; while 

  Sa,gm(0.2T1,1.6T1) , with the fixed lower bound period   0.2T1 , also covers higher mode effects. The collapse 
capacity dispersion due to record-to-record variability of the evaluated structures is mainly affected by the 
fundamental period   T1 , the negative post-yield stiffness ratio  θi −αS , the number of stories N, and material 
deterioration. From the results of this parametric study it can be concluded that 

 
IMopt  is in general more 

efficient than the considered benchmark IMs. This IM allows a consistent “optimal” representation for both 
SDOF and MDOF systems. In particular the enhancement with respect to the traditional benchmark IM   Sa (T1)  
the efficiency of efficiency of 

 
IMopt  increases in average up to 30%. The results and conclusions of this study 

are valid only for P-delta vulnerable hysteretic systems, where the post-capping range of deformation is not 
attained. 
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