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Abstract 
In this study a Soft Computing approach for the seismic fragility assessment of horizontal curved bridge is developed. In 
recent years, seismic fragility curves are often determined by using analytical method in structures. In order to build neural 
network structure, Nonlinear time history analysis is performed by 129 natural records in OpenSees. This records have 
been chosen from the PEER strong motion database and scaled on 0.1g to 1.3g. The structure of the neural network is 
based on input ground motions and output of nonlinear dynamic analyses of bridge. Arias Intensity, cumulative absolute 
velocity, characteristic intensity and specific energy density reflect the amplitude, the duration of a strong ground motion, 
the frequency content and energy  respectively, and they correlate well with structural damage. Kolmogorov-Smirnov and 
Shapiro-Wilk tests was performed to normalize the data. Approach to reducing the computational effort in the evaluation of 
fragility, a neural network was considered in this study, which can provide accurate predictions of the structural response. 
The proposed approach is applied for bridge and a reduction of magnitude is achieved in the computational effort.  

Keywords: nerual network; statistical distribution; fragility curve; bridge 

1. Introduction 
There are different methods of structural analysis. These methods are based on sophisticated scientific methods. 
Structural analysis methods based on mechanical principles theory, computational methods and results analysis 
obtain through the discrete numerical simulation. Moreover, heuristic methods have been proposed in recent 
decades compared with the results of computational methods are reliable. Recently, many studies of the 
computational methods such as neural networks and fuzzy logic are used in various fields of engineering. The 
use of which has been a growing trend in recent decades. There have many studies led to the fragility 
curves. Seismic vulnerability assessment can be expressed through fragility curve. Also, these curves 
demonstrate the need for retrofitting and the effect of the structural components in crisis management. 
Generation of curves to empirical methods, analytical and heuristic can be derived. 
Mander studies led to fragility curves that were used to determine the seismic vulnerability of highway bridges. 
In comparison with experimental methods, this method improved the reliability factor of fragility curves [1]. 
Sang et al. stated the analysis results of fragility in highway bridges under earthquake with regards to spatial 
variation. Their study illustrated the fragility is underestimated in cases that the bridges are analyzed by similar 
excitations in comparison to when it is Dissimilar [2]. Yamazaki et al. Stated the effects of isolation the structure 
onto the fragility curves in a simple approach  [3]. The studies of Hoom Kim et al.  declared improvement in 
fragility after retrofitting [4]. The Nielson et al. works led to fragility curves of different types of highway 
bridges [5]. Padget and Destreches presented a methodology for finding fragility curves of retrofitted bridges and 
achieved the improvement in fragility [6]. Studies of CarloMarano and et al. is Analytical evaluating of essential 
facilities fragility curves by using a stochastic approach [7]. Mitropoulou et al. provided fragility curves of 
regular and irregular structures based on neural networks and illustrated the fragility results are very appropriate 
using a neural network approach. The methodology is based on the assumption that demand values follow the 
lognormal distribution; thus, fragility curves in lognormal distribution are expressed in two parameters (mean 
and standard deviation) [8]. Rajeev et al. demonstrated that seismic vulnerability of reinforced concrete 
structures with irregular consideration [9]. The derivation of state-dependent fragility curves for masonry 
buildings by analytical method used in Penna et al. work [10].  Goda et al. Handle Incremental dynamic analysis 
of wooden structures and effect of dominant earthquake scenarios on seismic fragility [11]. Hancilar et al. 
provided the fragility of probabilistic analysis in school buildings by using common analytical methods [12]. 
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Siquera et al. presented fragility curves for isolated bridges in eastern Canada using data from experimental 
results [13]. Fragility analysis of skewed bridges in The Southeast of the US has indicate in Yang et al. Research 
[14]. It was observed, with the exception of reference [8] a limited number of studies have provided fragility 
curves using neural networks to reduce computational efforts.  

2. Fragility assessment 
Seismic fragility curves can be expressed using two-parameter lognormal distribution functions. These 
parameters are median and lognormal standard deviation, which are used to evaluate fragility as a function of the 
intensity measure, and the estimation of these parameters is achieved using maximum likelihood estimation [8]. 
The lognormal model is the most widely utilized. A brief description of likelihood function is introduced the 
following form  : 

ℒ (µ1,µ2 , . . . , µ𝑛,𝛽1,𝛽2 , . . . ,𝛽𝑛) =  ∏ ∏ 𝐹𝑅(𝐼𝑀𝑖 ,𝑦𝑗)𝑥𝑖𝑗𝑛
𝑗=1

𝑁
𝑖=1  (1) 

 
here 𝐹𝑅 is defined as a fragility function (cumulative distribution function) for a specific state of damage, 𝐼𝑀𝑖 is 
the intensity measure. If the i-th realization of the structure sustains the state of damage under  𝐼𝑀𝑖then  𝑥𝑖𝑗 is 
equal to 1 otherwise its zero. The total number of structural realizations after the earthquake by N and the total 
number of  the limit states is assigned to n. Therefore, 𝐹𝑅 Is written as follows : 

  𝐹𝑅(𝐼𝑀) = Ф�ln �𝐼𝑀�µ𝑗�
𝛽𝑗

�                                                                                                                       (2) 

where Φ(·) commonly denotes the standard normal cumulative distribution function.  µ𝑗  , 𝛽𝑗 the median and 
logarithmic standard deviation of the fragility curve for  jth damage state, respectively.  By applying the 
harmony search optimization algorithm in the next section acheive the two parameters μ and β of Eq. (1) that 
maximize ln(ℒ). The median is the quantity that has 50% probability of not being exceeded. 

2.1  Incremental Dynamic Analysis 
The incremental dynamic analysis (IDA) approach is a parametric analysis method that can provide a clear 
expression of the relationship between the demand and the seismic capacity of the structure (Fig.1). It involves 
performing nonlinear dynamic analyzes of a structural model under a suite of ground motion records, each 
scaled to several IMs. Selecting the IM and engineering demand parameter (EDP) is one of the most important 
steps of the IDA methodology. PEER record ground motion was adopted in this study [16]. To perform a 
nonlinear dynamic analysis of the bridge, a set of ground motion records is required whose characteristics are 
consistent with the type of fault, magnitude, soil conditions and Distance from the site. In this current work, is 
used 129 ground motion records to analyze horizontal curved bridge to provide sufficient accuracy of seismic 
demands. In the work by researchers [4, 5, 6], the EDPs in bridges are classified into three categories based on 
the ductility of piers, bearings, and abutment deformation.  

 
Fig. 1 –IDA curves 
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2.2 Optimization algorithm 
In order to achieve ” maximum benefit with minimum cost” we usually depend on optimization techniques. For 
achieving this goal, the Harmony Search (HS) algorithm is proposed and apply to solve the optimization 
problem [8]. A lot of problems in different scientific fields are formulated as optimization problems and solved 
using different optimization algorithms. The development and application of optimization models have attracted 
increasing attention among researchers in the last decade. The Essential parameters of these algorithm are 
harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) which control the component of 
solutions and also affect convergence rate. HMS and BW are harmony memory size and bandwidth respectively. 
“n” is used for assigning the number of pairs of decision variables (equivalent to the number of music 
instruments), an HM with the size of HMS can be defined as :  

  HM=

⎣
⎢
⎢
⎡ 𝑥11         𝑥21             𝑥2     

1      … 𝑥𝑛1   

𝑥12         𝑥22             𝑥2     
2      … 𝑥𝑛2    

…        …                 …              …
       𝑥1𝐻𝑀𝑆  𝑥2𝐻𝑀𝑆           𝑥3𝐻𝑀𝑆   … 𝑥𝑛𝐻𝑀𝑆⎦

⎥
⎥
⎤
                                                                                   (3) 

where [𝑥1𝑖 , 𝑥2𝑖 , …  𝑥𝑛𝑖 ] (i=1,2,…,HMS) is a solution position. HMS is typically set to be between 50 and 100. 
where the HMCR is the probability of selecting a component from the significant components stored in the HM 
and 1-HMCR is, therefore, the probability of creating HM randomly. In order to Improvise a new solution 
[𝑥1′ ,𝑥2′ , …  𝑥𝑛′ ] from the HM, each element of this vector solution, 𝑥𝑗′ is achieved based on the HMCR. The PAR 
determines the probability of a position from the HM to be grew. It should be noted, the generation of new 
solutions in the HS method causes full use of all the HM members, while algorithms such as genetic 
algorithms,generates fresh chromosomes using a maximum existing ones. With this approach, the new solution 
is evaluated. In this situation, If it is successful, a better fitness solution than that of the worst member in the 
HM, it will replace that one. Otherwise, it is eliminated. This process is repeated until a preset termination 
criterion, e.g., the maximal number of iterations, is reached.  

3.  Artificial neural networks 

Artificial neural networks (ANNs) are family of biologically-inspired models (generally, the human brain), since 
they are composed of elements that perform in a manner analogous to the elementary functions of a biological 
neuron. In neural networks, a number of elements (neurons) with strong internal communications are 
coordinated to work together to solve problems. Processing empirical data, artificial neural networks transfer the 
knowledge or rules hidden in the data to the network structure, an action called learning. Basically, the ability to 
learn is the most important feature of a smart system. Through programming, a data structure called “node” is 
designed in such networks which can act like a neuron. In a neural network, nodes have two modes: active and 
passive and  each edge has a weight. An artificial neural network is comprised of components, layers and 
weights. The behavior of a network is dependent on the communication between its members. Generally, there 
are three layers in neural networks: input, hidden, and output. The input layer includes raw information and the 
performance of a hidden layers is determined by inputs and the weight of connections between them and hidden 
layers. The performance of a output layer is related to the hidden unit activities and the weight of connections 
between hidden unit and output. By creating a network of these nodes and applying a training algorithm to it, the 
network can be trained. Despite the different neural networks, Multilayer neural networks can be used to learn 
nonlinear problems and problems involving various decisions. A backpropagation training set network includes 
n input-target pairs 𝐏 = [𝐈𝐃 , 𝐭𝐃]. If a set of weight parameters like w is allocated to network connections, a 
pattern like 𝐭(𝐈𝐃,𝐖,𝐀) is defined between the input vector ID and the output vector t [15] . The quality of this 
pattern is measured using the following error function. To use this descending gradient method, the output error 
must be calculated in Eq. (4) : 

E�W���⃗ � ≡ 1
2
∑ ∑ (tkd − okd)2k∈outputd∈D                                                                                                                 (4) 

3 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

E�W���⃗ � is the total output error, D is the set of training samples, Outputs is the total training outputs, tkd is the kth 
value of the objective function (corresponding to the kth output unit) for the dth training sample, and okd is the kth 
output value (corresponding to the kth output unit) for the dth training sample. Therefore, minimum iteration 
period of an algorithms are used to obtain the optimal values of W weight parameters [15]. Most of the 
numerical minimization methods are based on the following form : 

𝑊(𝑠+1) = 𝑂(𝑊(𝑠)) = 𝑊(𝑠) + ∆𝑊(𝑠)                                                                                                                    (5) 

The calculated error is distributed throughout the network on the backward path from the output layer through 
the network layers. In fact, the training algorithm tries to change the network weights in accordance with the 
following equation so that the sum of squared network errors can be minimized. The value of 𝛥𝑊(𝑠) is defined 
as: 

𝛥𝑊(𝑠) = −𝛼 𝜕𝐸
𝜕𝑊(𝑠) + 𝛽𝛥𝑊(𝑠 − 1)                                                                                                                       (6) 

In the above equation, α and β are constants with values between zero and one, and they control the learning rate 
and the partial changes in the network weight respectively. Furthermore, E indicates the error function, W is the 
weight vector, and s is an index showing the number of iterations. Different algorithms can be used to train the 
network. With due regard of the previous studies, the authors used the Levenberg-Marquardt algorithm (LMA) 
in this study[8,15].   

3.1  Feature extraction of  data 
It is difficult to extract the quantitative and qualitative features of an incremental nonlinear dynamic analysis 
curve, which also considers the characteristics of the earthquake as well as the structure. Due to the incremental 
procedure of IDA analysis, the extracted features do not have any specific distribution. On the other hand, each 
one of the earthquake features, such as Arias Intensity (IA), Cumulative Absolute Velocity (CAV),  
Characteristic intensity (IC) and specific energy density (SED) IMs, have a different range, which must be taken 
into consideration [8,15].   One of the most important and most common and basic assumptions in statistics is 
that the data is normal. Therefore, it must be ensured whether the data with this specific distribution can be used. 
More accurate results can be achieved by assigning appropriate distribution.  

3.1.1  Feature extraction of ground motion data  
Too much features is required for a complete description of strong ground motions. The selection of a ground 
motion intensity measure (IM) is very important to provide a probabilistic relationship between the ground 
motion hazard and the resulting seismic response of structures. Several studies have utilized the effects of using 
different IMs for Probabilistic Seismic Demand Models(PSDMs) analysis of structures such as the peak ground 
acceleration (PGA), the peak ground velocity (PGV), the damped spectral acceleration at the structure’s 
fundamental- mode period (SA(T1, 5%)) with ξ = 5%. IA, IC, CAV and SED IMs are indicative the amplitude, 
the duration, the frequency content and energy  of a strong ground motion, respectively [8,15]. Arias Intensity 
was expressed as a parameter related to the amplitude of the ground motion that indicate the potential damage of 
an earthquake as the time-integral of the square of the ground Acceleration : 

𝐼𝐴 = 𝜋
2𝑔 ∫ [𝑎(𝑡)]2𝑑𝑡  ∞

0                                                                                                                                            (7) 

Where g is the acceleration due to gravity (9.81 m/s2), a(t) is the acceleration time history. Then IA is determined 
in units of velocity. The CAV is included a complex index of strong ground motion damage ability and  is 
estimated as an area under absolute accelerogram According to the following equation : 

CAV = ∫ |a(t)|dt      Td
0                                                                                                                                           (8) 

Where a(t) is an absolute acceleration value in bracket duration(Td) between the first and last exceedances of 
some threshold acceleration. The threshold acceleration level is usually 0.05g. 

4 
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The types of spectra such as fourier spectra, power spectra or response spectra can be described of ground 
motion frequency content. Spectral parameters can be used in the form of dominant frequency, mean frequency, 
bandwidth, central frequency, etc. However, the IC is defined as follows : 

IC = arms1.5 Td0.5                                                                                                                                                         (9) 

Root mean square (RMS) acceleration ground motion parameter is defined as arms. SED is obtained by 
integrating velocity square over effective duration of an earthquake and has units of m2/s. This parameter 
captures the variation in kinetic energy input during Td and is defined in equation 10 : 

𝑆𝐸𝐷 = ∫ [𝑣(𝑡)]2𝑑𝑡  Td
0                                                                                                                                           (10) 

Hence, in order to establish a appropriate estimation of the seismic performance of the structure, a set of  
corrected strong ground motion records have been collected [16]. The strong ground motion data includes all 
types of soil, magnitudes (ML) ranging from 4.5 to 7.5, closest distance to the surface projection of the fault 
plane in the range of 20 to 70 km and types of faults. Fig. 2 presents acceleration response spectra of ground 
motions.  

 
Fig. 2 – Earthquake acceleration response spectra including 129 records 

 

3.1.2  Feature extraction of  NTHA outputs 

Similarly, response selection (targets) from NTHA analysis in NN is used as target values. Responses are also 
included in maximume piers ductility and maximume abutment diformations. The reason for selecting piers 
ductility is due to the superstructure is expected to remain linearly elastic under seismic loading. Obviously, the 
stability of the bridge is depended to the piers.  

4.  Fragility curves based on neural network results 

IDA is provided a comprehensive assessment of maximum response of  structure, sometimes called engineering 
demand parameter (EDP) versus appropriate intensity measure(IM) which is chosen to represent the seismic 
hazard (e.g. PGA, Sa). As it mentioned ANN model is a computational model that is inspired by the structure 
and the functionality of biological neurons. It is used as nonlinear statistical data modeling tool to model 
complex relationships between inputs and targets. As mentioned previously, ANNs are useful in applications 
where the underlying process is complex, such as nonlinear response estimation of structures. Therefore, the 
prediction of the seismic demand of structure based on NN for a  limit state, Architecture and network training is 
very important. Obviously, the ability to predict neural network is dependent to input parameters such as IA, IC , 
CAV  and SED which representative of earthquake ground motions.  

4.1 Description of example bridge and numerical simulation 
To demonstrate the development of analytical fragility curves, the three-Span Continuous Curved Steel Girder 
Bridge is used, which have the most abundant of the bridge in terms of the number of spans. The typical bridge 
configuration used in this study has three spans which all have the same length of 30.3 m giving an overall 
length of 90.9 m to the bridge and the height is 5.2m. The bridge structure created in OpenSees. The detailing for 

5 
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the typical reinforced concrete column, the discretization of beam and cross-sections of the superstructure  shows 
in Figure 3. When the superstructures are made continuous, the demand appears to shift partially from the 
bearings to the columns and abutments. The deck are modeled using elastic beam-column elements. The deck 
width for this bridge is also 15 m and constructed with eight steel plate girders. The bearing model considers 
high type bearings, that is typically used for longer spans and therefore deemed appropriate for this model. The 
nominal cylindrical strength for the concrete is assumed to be 20.7 MPa while nominal yield stress of reinforcing 
steel has a yield strength of 414 MPa. The unconfined concrete behavior of column and cap beam sections is 
modeled using the Concrete01 material as provided in OpenSees. This material uses the Kent-Scott-Park model 
which utilizes a degraded linear uploading-reloading stiffness and a residual stress. The elements for the columns 
and cap beams are generated using displacement beam-column elements in OpenSees that have an associated 
fiber section being representative of the true column section. The bridges use a 914.4 mm diameter circular 
column with 12 28.58mmɸ bars. It should be noted that the curvature of the bridge is 45 degrees, which is 
similar straight bridges can be analyzed [17] . 
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4.2  Statistical analysis of the distribution of inputs 
 
Analysis of the input data has shown that the input variables does not have a specific distribution. There are a 
number of methods that make some changes to data in order to normalize them. The log transform, the Box-
Cox transform, the log probability plot, Finney plot, and etc. are some of the available normalization methods. 
It was observed the results of Box-Cox  transform do not fall into an acceptable range for kurtosis and 
skewness, and therefore, the normality hypothesis is rejected. In Log transform method, Let xi be a variable, 
then the following transform is applied : 
𝑦 = 𝐿𝑛(𝑎𝑥𝑖 ± 𝑏)                                                                                                                                              (11) 

Where a is usually set to 1 and b has a positive or negative value.  
As it is shown in tables 1 and 2, the kurtosis and skewness values indicate that the normality hypothesis is 
confirmed. Also, the Kolmogorov-Smirnov and Shapiro-Wilk tests both confirm the normality of the data after 
applying this transform. The appropriate normal distribution fitted to each of the earthquake features, after 
applying the log transform. The linear formation of the data on Q-Q plot and the appropriate range of data in 
box plot, after applying the log transform (the finalized input data of the neural network) is shown in figure 4 
for Arias Intensity.  
4.3  NN predictions sheme 
When using neural networks to perform predictive modeling, the input layer contains all of the input fields or 
variables used to predict the outcome variable. In this section the prediction capabilities of the trained NN for 
two damage measure has been investigated. The objective of the NN prediction scheme is to estimate the EDP 
for various combinations of the four IMs that are represented reliable of the ground motions. 

 
 

Table 1 –Transformed data 

 
Iax Icx SEDx CAVx Iay Icy SEDy CAVy 

N Valid 129 129 129 129 129 129 129 129 
Missing 0 0 0 0 0 0 0 0 

Mean -2.13 -4.54 4.37 5.7 -2.09 -4.51 4.39 5.73 
Skewness -0.22 -0.43 -0.2 -0.31 -0.08 0.01 -0.17 -0.29 

Std. Error of Skewness 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 
Kurtosis 0.40 1.93 0.24 0.13 -0.05 -0.36 0.23 0.40 

Std. Error of Kurtosis 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 
 

Table 2 – Tests of Normality 

Transformed data Kolmogorov-Smirnov Shapiro-Wilk 
Statistic df Sig. Statistic df Sig. 

IAx 0.049 129 0.200 0.993 129 0.838 
ICx 0.046 129 0.200 0.976 129 0.032 

SEDx 0.054 129 0.200 0.991 129 0.599 
CAVx 0.074 129 0.16 0.988 129 0.39 
IAyx 0.05 129 0.200 0.994 129 0.872 
ICy 0.056 129 0.200 0.992 129 0.684 

SEDy 0.058 129 0.200 0.991 129 0.628 
CAVy 0.067 129 0.200 0.984 129 0.168 

 

 

Fig. 3 –Finite element model of horizontal steel curved  bridge  

7 
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Fig. 4 –Normalized, Q-Q and box plot of data (e.g Arias Intensity) 
Therefore, the number of input nodes of the NN is 4 with two hidden layers and hidden nodes which provides a 
compatibility between accurate predictions and computationally efficient calculations. The output layer has 4 
nodes corresponding to the EDP for the IMs. Thus, all processes performed up to this section is illistrated in 
Fig.5.  

 
Fig. 5 – Neural network based incremental dynamic analysis 

In the other words, the trend of using inputs and outputs data of the neural network is shown in the recent 
figure. Feedforward networks with tan-sigmoid transfer function in the hidden layer and linear transfer function 
in the output layer is used. This type of neural networks associated with the applications are estimates of 
regression functions efficiently. By trial and error out of 10 neurons in the hidden layer was determined. Figure 

8 
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6 represent the regression plot, histograms error and mean square error. The results of analyzing the time 
history of 129 earthquakes and the neural network predictions (ductility measure of piers in fragility curves) are 
represented in 13 seismic groups with the same PGAs.  

 

Fig. 6 –Regression plot, histograms error and mean square error for pier ductility 

 

 

5.  Results 
 
Two approaches are used for prediction. In the first approach, the prediction is performed within each one of 
the seismic groups (by increasing the PGA). 129 samples, extracted from the nonlinear dynamic analysis, are 
used in each one of the seismic groups. Firstly, in the second approach, the prediction is performed in a seismic 
group that contains all the input data from the previous 13 seismic groups. Despite having 1677 samples in 
recent approach, the evaluation results of the neural network with 4 outputs such as absolute maximum pier 
ductility in two directions showed low accuracy. Because of the incremental procedure of adding inputs and 
outputs, the data does not follow a proper distribution, and thus causes more complexities for the neural 
network. Therefore, for prediction in the second approach the outputs are computed separately and 4 neural 
networks are used. Average predicted results show more than 85 percent accuracy in regression (Table 3, 4). 
Fig 6 and 7 demonstrated the fragility curves at each different limit state based on NN and NTHA methods. The 
results obtained using the NN method are compared with those obtained by the conventional method of NTHA, 
In the first approach it was found that the probability of failure on extensive and collapse situation under-
estimated the seismic fragilities while the second approach shows little difference in high seismic intensity. 
Approach  
 

Table 3 – Prediction of  response structure by NN in thirteen seismic scale, in training, validation and testing 
steps for curvature ductility (Approach 1) 

Testing Validatin with training Training seismic 
scale(PGA) 

Results from NN  Results from NN  Results from NN   
Equation 𝑅  Equation 𝑅  Equation 𝑅   
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Y=0.91*Target + 0.0028 R=0.94  Y=1*Target - 0.005 R=0.95  Y= 0.86*Target + 0.00098 R=0.94  0.1g 
Y= 0.94*Target + 0.0023 R=0.92  Y= 0.94*Target + 0.01 R=0.96  Y= 0.87*Target + 0.0026 R=0.94  0.2g 
Y= 0.74*Target + 0.027 R=0.91  Y= 0.95*Target + 0.013 R=0.83  Y= 0.94*Target + 0.0031 R=0.96  0.3g 
Y= 0.77*Target + 0.0058 R=0.94  Y= 0.84*Target  - 0.035 R=0.94  Y= 0.91*Target + 0.0009 R=0.95  0.4g 
Y= 0.91*Target - 0.023 R=0.89  Y= 0.94*Target - 0.074 R=0.91  Y= 0.98*Target - 0.028 R=0.95  0.5g 
Y= 0.9*Target + 0.034 R=0.95  Y= 0.93*Target + 0.021 R=0.9  Y= 0.84*Target + 0.016 R=0.95  0.6g 
Y= 0.9*Target + 0.0099 R=0.93  Y= 0.85*Target + 0.032 R=0.90  Y= 0.84*Target + 0.0098 R=0.95  0.7g 
Y= 0.93*Target - 0.19 R=0.92  Y= 0.88*Target  - 0.098 R=0.93  Y= 0.93*Target  - 0.21 R=0.94  0.8g 
Y= 0.89*Target + 0.18 R=0.91  Y= 0.96*Target + 0.15 R=0.90  Y= 0.83*Target + 0.036 R=0.93  0.9g 
Y= 0.78*Target + 0.03 R=0.92  Y= 0.89*Target -0.041 R=0.95  Y= 0.84*Target - 0.013 R=0.92  1g 
Y= 0.89*Target + 0.16 R=0.89  Y= 0.86*Target + 0.22 R=0.94  Y= 0.86*Target + 0.04 R=0.95  1.1g 
Y= 0.94*Target - 0.12 R=0.95  Y= 0.87*Target + 0.13 R=0.95  Y= 0.94*Target + 0.0046 R=0.97  1.2g 
Y= 0.88*Target  - 0.0081 R=0.91  Y= 0.95*Target  - 0.1 R=0.91  Y= 0.83*Target - 0.17 R=0.96  1.3g 

 

 
 

Table 4 – Prediction of  response structure by NN in a in a seismic data set, in training, validation and testing 
steps for curvature ductility (Approach 2) 

Testing Validatin with training Training For all imputs 
Results from NN  Results from NN   Results from NN   

Equation 𝑅  Equation 𝑅  Equation 𝑅   
Y=0.98*Target + 0.058 R=0.95  Y=0.96*Target + 0.064 R=0.97  Y=0.97*Target + 0.054 R=0.98  Response-XP 
Y=0.96*Target -0.078 R=0.97  Y=0.93*Target-0.11 R=0.96  Y=0.96*Target - 0.057 R=0.98  Response-XN 
Y=0.91*Target + 0.13 R=0.94  Y=0.91*Target + 0.11 R=0.95  Y=0.95*Target + 0.064 R=0.98  Response-YP 
Y=0.91*Target - 0.081 R=0.95  Y=0.89*Target -0.14 R=0.95  Y=0.95*Target - 0.073 R=0.97  Response-YN 

 

 
 
 
 
 

  

  
Fig. 7 –Comparison of the fragility curves by NN (Approach 1) and NTHA methods  
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Fig. 8 –Comparison of the fragility curves by NN(Approach 2) and NTHA methods 

 

 

6. Conclusion 
 

The primary objective of this study was to achieve seismic fragility curves of the structure using “Soft 
Computing based framework” tools and to compare analytically seismic fragility approach. Indeed, the proposal 
of a new approach based fragility evaluation is the most significant highlight. Comparing the fragility curves of 
the neural network and time history analysis shows that the curves have proper compliance in two directions. In 
both of the  approaches, the difference of these curves is reasonable from slight to collapse limit states; which  
considering the non linearity and complexity of the problem that must be solved by the neural network. The only 
significant difference of probability of failure between the curves is due to the range of damage index and the 
coefficients of linear equations fitted in the neural network. Obviously, the number of training samples increases, 
it becomes more functionality and efficiency of the network. Note that the curves for the second approach have a 
better performance in high seismic intensity. In future research, for a structural benchmark, its main advantage is 
the reduction of time in the extraction of fragility curves by applying NN. The fragility curves based approach 
discussed here can be extended to include uncertainties, the reliability of the neural network and accuracy remain 
potential issues for investigation.  

7. References 
[1] Mander J, (2000): Fragility curve development for assessing the seismic vulnerability of highway bridge. University at 

Buffalo, State University of New York. 

[2]  Kim SH, Feng MQ (2003):  Fragility analysis of bridges under ground motion with spatial variation,  International 
Journal of Non-Linear Mechanics 38, 705 – 721. 

-0,1
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3

P[
Li

m
it 

St
at

e 
P ׀

G
A

] 

PGA(g) 

Seismic Fragilty Curve of Bridge, 
 Curvature Ductility Measure, Moderate Damage   

 

NN (L)
NTHA (L)
NN (T)
NTHA (T)

-0,1
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3

P[
Li

m
it 

St
at

e 
P ׀

G
A

] 

PGA(g) 

Seismic Fragilty Curve of Bridge, 
 Curvature Ductility Measure, Slight  Damage    

 

NN (L)
NTHA (L)
NN (T)
NTHA (T)

-0,1
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3

P[
Li

m
it 

St
at

e 
P ׀

G
A

] 

PGA(g) 

Seismic Fragilty Curve of Bridge, 
 Curvature Ductility Measure, Collapse  Damage   

 
NN (L)
NTHA (L)
NN (T)
NTHA (T)

-0,1
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3

P[
Li

m
it 

St
at

e 
P ׀

G
A

] 

PGA(g) 

Seismic Fragilty Curve of Bridge, 
 Curvature Ductility Measure, Extensive Damage   

 
NN (L)
NTHA (L)
NN (T)
NTHA (T)

11 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

[3] Rezaul Karim K, Yamazaki  F (2007): Effect of isolation on fragility curves of highway bridges based on simplified 
approach. Soil Dynamics and Earthquake Engineering, 27, 414–426.  

[4] Kim SH, Shinozuka M, (2007): Development of fragility curves of bridges retrofitted by column jacketing. 
Probabilistic Engineering Mechanics 19 (2004) 105–112. 

[5] Nielson B (2005): Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones, A Thesis a presented 
to the Academic Faculty. 

[6] Padgett, JE. and DesRoches, R  (2007): Sensitivity of Seismic Response and Fragility to Parameter Uncertainty.  
Journal of  Structural  Engineering, (ASCE) 133 (12), 0733-9445. 

[7] Carlo Marano G, Greco R, Morronea E, (2011): Analytical evaluation of essential facilities fragility curves by using a 
stochastic approach. Engineering Structures 33(2011), 191–201. 

[8] Mitropoulou CC,Papadrakakis M, (2011):  Developing fragility curves based on neural network IDA predictions. 
Engineering Structures 33 (2011) 3409–3421.  

[9] Rajeev P, Tesfamariam S, R  (2012): Seismic fragilities for reinforced concrete buildings with consideration of 
irregularities. Structural Safety 39 (2012) 1–13.  

[10]  Penna A,Rota M, Mouyiannou M, Graziotti F, Magenes G (2013): An analytical procedure for the derivation of state-
dependent fragility curves for masonry buildings. Recent Advances in Earthquake Engineering and Structural 
Dynamics 2013 (VEESD 2013).  

[11]  Goda K, Yoshikawa H (2013): Incremental dynamic analysis of wood-frame houses in Canada: Effects of dominant 
earthquake scenarios on seismic fragility. Soil Dynamics and Earthquake Engineering. 48 (2013) 1–14.  

[12]  Hancilar U, Çaktı E, Erdik M, Franco G ,Deodatis G (2014): Earthquake vulnerability of school buildings: 
Probabilistic structural fragility analyses. Soil Dynamics and Earthquake Engineering 67(2014)169–178.  

[13]  Siqueira GH, Sanda AS,Paultre P, Padgett JE (2014): Fragility curves for isolated bridges in eastern Canada using 
experimental results. Engineering Structures 74 (2014) 311–324.  

[14]  Walter Yang  CH, Werner SD, DesRoches R (2015):  Seismic fragility analysis of skewed bridges in the central 
southeastern United States, Engineering Structures 83 (2015) 116–128.   

[15]  Lagarosa ND, Fragiadakisa M (2007): Fragility Assessment of Steel Frames Using Neural Networks. Earthquake 
Spectra, 23, No. 4, pages 735–752. 

[16]  PEER ground motion database. 

[17]  Open System for Earthquake Engineering Simulation (OpenSees).  

12 

http://ngawest2.berkeley.edu/
http://opensees.berkeley.edu/

	Abstract
	1. Introduction
	2. Fragility assessment
	2.1  Incremental Dynamic Analysis
	2.2 Optimization algorithm
	3.  Artificial neural networks
	Artificial neural networks (ANNs) are family of biologically-inspired models (generally, the human brain), since they are composed of elements that perform in a manner analogous to the elementary functions of a biological neuron. In neural networks, a...
	3.1  Feature extraction of  data
	7. References

