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Abstract 
This paper describes statistical procedures for characterizing and accounting for uncertainty in earthquake fragility models. 
Both fully analytical and non-parametric bootstrap methods are used to describe the conditional probability distribution of 
damage exceedance given an intensity measure. This enables the development of confidence intervals for fragility curves 
for any confidence level of interest. When analyzing annual collapse rate, the uncertainty in fragility curves gets propagated 
when integrated with the seismic hazard curve. This study therefore proposes methods to estimate the moments as well as 
the full distribution of the resulting annual damage exceedance rate. This is a significant improvement from current practice, 
which only use the “expected fragility” to integrate with the hazard curve, thus producing a single value for annual collapse 
rate. Using an example for a building analyzed through incremental dynamic analysis for a site in Oakland CA, this study 
demonstrates the significant uncertainty surrounding the annual collapse rate and demonstrates simplified methods to 
characterize this uncertainty through a closed-form beta-distribution model. 
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1. Introduction 

In performing seismic loss estimation it is necessary to characterize the vulnerability of the exposed portfolio. 
This vulnerability is usually described by relating a ground motion intensity measure (IM) to the probability of 
exceeding various damage states (DS), a process which has become fundamental for analyzing the risk of 
buildings and structures [1]–[5]. These damage to ground-motion relationships can be developed through expert 
judgment [6], based on structural analysis [7]–[9] , or empirical information [10]–[13]. Regardless of the source 
of data, the creation of a fragility “model” involves some form of regression-based analysis of the data, resulting 
in a one-to-one relationship between a ground-motion intensity measure and a probability of experiencing a 
certain level of damage, taking the form of a continuous fragility curve or a discreet damage probability matrix.  

 When discussing fragility, the response of a structural system can be described in binary terms; a building 
either exceeds or does not exceed a specific damage state. A fragility curve therefore describes the mean 
conditional response of the system as a function of a ground-motion intensity measure. This conditional mean 
response is the probability of exceeding the damage state of interest. Due to the limited data used to fit any 
regression model, the fragility curve (mean response) has uncertainty, which can be characterized in terms of 
confidence intervals. The uncertainty in future response is the combination of the uncertainty in the fragility 
curve, as well as the variability in response around this curve. It is described in terms of prediction intervals. In a 
strict sense, the prediction interval for any single building is always {0,1}, since the data itself is binary (e.g. 
collapse or non-collapse). 

 This paper describes both analytical (closed form) and simulation-based methods for calculating the 
uncertainty in fragility models. While applicable for any damage state, this paper focuses on collapse as the main 
example. In addition, the study explores methods to propagate the uncertainty in the fragility model so as to 
characterize the probability distribution of collapse rate. Results from this paper make evident the importance of 
accounting for uncertainty in fragility models. In particular, it demonstrates that collapse rate is very sensitive to 
uncertainty in fragility models. A simplified method is proposed to model the probability distribution of collapse 
rate without the need for any simulation. 

 Two data-sets are used to demonstrate the methods described. A hypothetical empirical earthquake damage 
data set is shown in Table 1. Since it is an empirical data set (presumably gathered as part of a post-earthquake 
damage survey), it contains different number of buildings at different and non-uniformly distributed intensity 
measures. The buildings are of the same structural building type and only the collapse damage state is used as 
demonstration. 

 The data from Table 2 are obtained from the collapse performance assessment of an 8-story infill frame 
building using the Incremental Dynamic Analysis technique [14], based on the methodology developed by 
Burton and Deierlein [15] for simulating seismic collapse in non-ductile reinforced concrete frame buildings 
with infill. Nonlinear dynamic analysis was conducted on a two-dimensional model developed in OpenSees [16] 
using 44 far-field ground motions. The first mode spectral acceleration (Sa) is used as the ground motion 
intensity measure. The results from this analytical model take the form of a count of the number of ground 
motions leading to collapse for every incremental intensity measure. 

Table 1. Empirical earthquake damage data (hypothetical data set) 
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Table 2. Analytical data from Incremental Dynamic Analysis of an 8-storey concrete frame building with infill. 

 
 

2. A simple fragility curve model 
The most common functional form used to describe earthquake fragility is the lognormal cumulative density 
distribution (CDF), as it has been found to provide good representation of earthquake damage fragility [9], [17]. 
It further has the characteristic of multiplicative reproducibility (the product of lognormally distributed random 
variables are lognormally distributed), which is convenient for reliability-based analysis [18], [19]. Several 
methods have been used for regression of lognormal CDF models, including method of moments [3], least 
squares estimation (LSE), and maximum likelihood estimation (MLE) . Alternative models have also been used, 
including other parametric models such as logistic regression [18], [20]–[23], semi-parametric models such as 
generalized additive models [24], [25] and fully non-parameteric models such as kernel-based regression [26]. 
This paper will use the parametric lognormal CDF model to illustrate characterization and propagation of 
uncertainty in damage prediction.  The maximum likelihood estimation method is used to estimate the model 
parameters, as it is statistically robust and generalizable to any data type. 

The dataset shown in Table 1 describes the exceedance and non-exceedance of a particular damage state 
for buildings at a specific ground-motion intensity (assumed recorded or estimated). While this represents a 
hypothetical empirical damage data set, the exact same analysis can be done on data from incremental dynamic 
analysis (IDA), replacing “number of buildings” with “number of ground motions.” Also while this example is 
conducted for the collapse damage state, the same process would be conducted for all other damage states of 
interest. 

A lognormal-CDF fragility curve fit by MLE can also be obtained through a generalized linear model 
(GLM) based regression. This alternative formulation is more convenient, as it is readily available in standard 
statistics software and GLM theory is very well established in statistics literature. Specifically, the lognormal 
CDF model fit with MLE is exactly equivalent to a GLM model with probit link function fit with the log of 
intensity measure [20], [24], [26], [23]. 

 
 

(1)  

where  is the expected response given predictor variables , and can therefore be thought of as 
the mean response . The term  is the linear predictor, which is related to the expected response through the 
link function . For developing a fragility function, Eq. 1 reduces to: 

 
 

(2)  

where  is the inverse probit link function equal to the cumulative distribution function of the standard 
normal distribution , and   and   are the MLE parameter estimates for the regression model. This GLM 
model will be used in the next section for the development of closed-form confidence intervals. 
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Fig. 1 Lognormal CDF fragility curve fitted using Maximum Likelihood Estimation (MLE) method 

 

3. Uncertainty in Fragility Curves 
One of the most common methods to measure and communicate uncertainty is by developing confidence 
intervals. Two methods are proposed for developing confidence intervals on fragility curves. The first consists of 
deriving the full analytical conditional distribution of expected probability of collapse. This derivation can be 
applied for any generalized linear model, including the lognormal CDF model described previously, as well as 
logistic, probit or cloglog models. The second approach utilizes the non-parametric bootstrap method and is 
applicable to all models including semi-parametric generalized additive models and the non-parametric kernel 
smoothing [23]. 

 

3.1 Closed form confidence intervals for fragility curves based on asymptotic normality: 

Recall from Eq. (1) that GLMs relate the mean of a response variable linearly to independent variables through a 
link function transformation. For developing a fragility function, the GLM model has only a single independent 
variable, as described by Eq. (2). The model is solved by MLE method, which provides parameter estimates  
and  , based on assumptions of a conditional distribution of the exponential family. 

Confidence intervals, which define the uncertainty in the expected value (uncertainty in the mean curve 
itself), can therefore be defined based on the uncertainty in parameter estimates. Standard MLE theory states that 
parameter estimates are asymptotically normal, with covariance matrix equal to the inverse of the Fisher-
information matrix [28]. More information on this derivation, called the “Cramér-Rao bound” can be found in 
various statistics textbooks [29]. For general intuition the Fisher-information measures the amount of 
information that an observation carries about unknown parameters needed to define the probability distribution 
of that observation. For fragility modeling, GLM theory hence states that the estimates  and   are unbiased 
and have bivariate normal distribution of the form: 

 

 

(3)  

where  is the inverse of the Fisher-information matrix. 

Since the parameter estimates have an asymptotically multivariate normal distribution, their linear 
combination is also normal. In other words, the linear predictor  has normal distribution 
centered at such that: 
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(5)  

The variance and covariance terms are obtained from the corresponding indices of the inverse of the Fisher-
information matrix  

 

 

(6)  

where  is the  term of the Fisher-information matrix, and  is the log-likelihood function used for 
the MLE estimation. 

While the Fisher-information equations can sometimes be solved analytically by taking the partial 
derivatives of the log-likelihood function, in most cases they need to be solved numerically. Conveniently, this 
covariance matrix is actually a bi-product of the MLE estimation used to fit the original curve, as it is needed for 
the Iteratively Reweighted Least Square algorithm. It can therefore be readily extracted from standard software 
packages (R Statistical Computing software, Matlab). 

Given the basic formulation of the GLM described by Eq. (1), it follows that the mean probability of 
collapse  is the transformation of a normally distributed random variable  through the link function 

. Since this transformation is strictly monotonic, the distribution of  can be related to the 
distribution of  through substitution: 

 
 

(7)  

 
 

(8)  

We know that  is normally distributed with parameters described in equations Eq. (4) and Eq. (5). Therefore: 

 

 

(9)  

Any percentile of interest  can then be obtained by solving the inverse distribution function. We find the value 
of  for which : 

 

 

(10)  

The moments and  terms from equations Eq. (4) and Eq. (5). can be substituted into Eq. (10) to define the 
confidence interval corresponding to any percentile limits of interest. 

We can further obtain the full probability density function for the expected collapse probability. Once 
again, since the transformation function is strictly monotonic, the distribution of  can related to the 
distribution of : 

 

 
(11)  

 

 
 

(4)  
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We conduct the appropriate substitution: 

 
 

(12)  

 

 

(13)  

 

 

(14)  

Combining results from Eqs. 12, 13, 14 into 11, we obtain: 

 

 

(15)  

Which can also be rewritten as: 

 

 
(16)  

Fig. 2 shows an example of the curve for expected probability of collapse, its 90% confidence interval and its 
complete conditional distribution at two intensity measures of interest. 

 
Fig. 2 Confidence interval (dashed lines) and conditional distribution of expected probability of collapse at 

PGA=0.5g and 1.25g. 

 

Eq. (10) and Eq. (15) can be generalized for other link functions , such that: 

  (17)  
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(18)  

where  is the first derivative of the inverse link function. 

 

3.2. Confidence intervals through non-parametric bootstrap method 

Another common method to obtain the confidence intervals on regression curves is through the non-parametric 
bootstrap method. In this approach, regression analysis is conducted iteratively for numerous random sub-
samples of the data. The process involves randomly sampling datasets with replacement from the training 
dataset, each sample of equal size to the original dataset [28]. The sampling is done on the binary data, not the 
fraction of buildings exceeding the damage state. Regression is conducted for each bootstrap dataset, from which 
a distribution of regression curves (or parameter estimates) is obtained. The pointwise confidence band can then 
be obtained by taking the and  percentile of all bootstrap curves at each IM level (the bootstrap 
percentile interval), or by plugging in the mean, variance and correlation of the bootstrap parameter estimates 
into Eq. (4) and Eq. (5) and plugging those in the quantile function of Eq. 10 (the normal interval). 

The bootstrap method has the advantage of characterizing the uncertainty of any regression model, 
including non-parametric models. The analytic and bootstrap-based confidence bands for parametric models 
(including all GLMs) will coincide as the number of bootstrap samples approaches infinity [28]. 

The confidence intervals describe the uncertainty in the expected probability of collapse for any ground 
shaking intensity. The next section describes a method to characterize the uncertainty in annual collapse rate, an 
important measure for understanding the risk of structural collapse over the lifetime of a building. 

 

4. Uncertainty in Collapse Rate 
The rate of collapse is computed by integrating the collapse fragility curves with the ground motion hazard 
curve, as shown in Eq.19. 

 
 (19)  

where  is the probability of collapse at a ground motion intensity  and  is the mean 
annual frequency of exceedance of a ground motion intensity . In practice this is computed by summing over 
all intensity measures the product of the probability of collapse conditioned on IM and the change in hazard 
curve over the IM increment: 

 
 (20)  

Typically, the annual collapse rate is computed with the expected fragility curve and therefore does not account 
for the uncertainty embeded in the fragility model. The uncertainty in annual collapse rate can be computed 
exactly by conducting bootstrap simulations similar to the process for obtaining non-parametric bootstrap 
confidence interval on the fragility curve described earlier. In this way, each bootstrap simulated fragility curve 
is integrated over the hazard curve following Eq. (19). The distribution over numerous bootstrap samples defines 
the empirical distribution of annual collapse rate. 

Alternatively, the distribution of annual collapse rate can be estimated. It follows from Eq. (20) that the 
annual collapse rate  is the sum of the product of random variable terms  with constants terms 

. The distribution of collapse probability conditioned on IM was derived earlier and is 
described in Eq. (15). This distribution is centered on the mean collapse fragility curve and is bounded between 0 
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and 1. It can in fact be closely approximated by a beta distribution. Following this line of thinking,  can be 
approximated as the sum of beta distributed random variables scaled by constant terms. While this has no simple 
solution, Johannesson (1995) [30]  provided a method to estimate the sum of beta distributed random variables 
as another beta distribution with matching moments. For our purposes, the moments of distribution for annual 
collapse rate are estimated as: 

 
 (21)  

 

 
(22)  

Since the collapse probability distributions conditioned on any two intensity measures  and are linked to 
the same parameters  and  , these distributions are therefore perfectly correlated. Therefore the correlation 
coefficient . The terms  and  are the moments of the probability of collapse conditioned on 

 and can be quickly estimated using the first-order mean centered approximation: 

 
 (23)  

 

 
(24)  

We can now obtain the approximate moments of the collapse rate distribution by plugging in the conditional 
moments from equations Eq. (23) and Eq. (24) into Eq. (21) and Eq. (22), and obtain its estimated beta 
distribution parameters: 

 
  

 

 
(25)  

 

 

(26)  

These results will be used in the following sections to quantify the uncertainty in collapse risk of a building. 

 

4. Estimation of the full probability distribution of collapse rate 
Much of the uncertainty in the collapse risk of a structure arises from the limited number of ground-motions used 
to fit the analytical collapse fragility curve. Table 2 contains the incremental dynamic analysis results for an 8-
story infill frame building subjected to 44 ground-motions at IM increments of 0.1g. This data-set will be used to 
develop a collapse fragility curve for this building and evaluate its annual collapse rate. 

The building of interest is located in Oakland, California. The hazard curve for the site is computed using 
the open source seismic hazard assessment tool OpenSHA [31] for  at a site with  . 

In a first demonstration, the GLM model from Eq. (2) (lognormal CDF fit) is fit to the data from Table 2. 
This data was obtained by performing 1056 dynamic non-linear analyses (44 ground-motions at 24 increments). 
The non-parametric bootstrap simulation method is used to generate 10,000 fragility curves, each integrated with 
the hazard curve following Eq. (19) to obtain an empirical distribution of collapse rate. The algorithm below 
further describes the steps to obtain the estimated beta distribution of collapse rate. 
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Fig. 3 - Bootstrap distribution of collapse rate (histogram) compared with the estimated distribution modeled as a 
beta distribution (black curve). 
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Fig. 3 demonstrates that the annual collapse rate has significant uncertainty, even while it resulted from over 
1000 dynamic analyses. It further demonstrates that the estimated beta distributed collapse rate distribution is in 
very close agreement with the empirical distribution. 

5. Conclusion 
This paper provides exact analytical formulations for the conditional probability distribution of damage-state 
exceedance for any fragility curve that can be represented as a generalized linear model (including the lognormal 
CDF fragility curve formulation). This allows for the development of confidence intervals for any confidence 
level of interest. The uncertainty in fragility curves gets propagated when integrated with the seismic hazard 
curve. This study proposes methods to estimate the moments as well as the full distribution of the resulting 
annual damage exceedance rate. This is a significant improvement from current practice, which only use the 
“expected fragility” to integrate with the hazard curve, thus producing a single value for annual collapse rate. 
Using an example for a building analyzed through incremental dynamic analysis for a site in Oakland CA, this 
study demonstrates the significant uncertainty surrounding the annual collapse rate and demonstrates methods to 
measure this uncertainty. 
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