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Abstract 

This work presents an efficient strategy for dealing with reliability-based design problems of complex structural systems 

under earthquake excitation. The excitation is modeled as a non-stationary stochastic process which combines a point-

source model with a velocity pulse model. The solution of this class of problems is computationally very demanding due to 

the large number of structural analyses required during the design process.  A model reduction technique combined with an 

appropriate optimization scheme is proposed to carry out the design process efficiently in a reduced space of generalized 

coordinates. In particular, a method based on substructure coupling technique for dynamic analysis is implemented to define 

a reduced-order model for the structural system. The re-assembling of the reduced-order model matrices due to changes in 

the values of the design variables are avoided during the optimization process. The effectiveness of the proposed 

methodology is demonstrated with one application problem consisting in the reliability-based design of a bridge structural 

model. 

 

Keywords: Advanced simulation techniques; High dimensional reliability analysis; First excursion probability; Model 

reduction techniques; Reliability-based design optimization. 
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1. Introduction 

Structural optimal design via deterministic mathematical programming techniques has been widely accepted as a 

viable tool for engineering design. However, in most structural engineering applications response predictions are 

based on models involving uncertain parameters. This is due to a lack of information about the value of system 

parameters external to the structure such as environmental loads or internal such as system behavior. Under 

uncertain conditions the field of reliability-based optimization provides a realistic and rational framework for 

structural optimization which explicitly accounts for the uncertainties [1,2]. In the present work, structural 

design problems involving finite element models under stochastic earthquake loading are considered. The design 

problem is formulated as the minimization of an objective function subject to multiple design requirements 

including standard and reliability constraints. The probability that any response of interest exceeds in magnitude 

some specified threshold level within a given time duration is used to characterize the system reliability. This 

probability is commonly known as the first excursion probability [3]. The corresponding reliability problem is 

expressed in terms of a multidimensional probability integral involving a large number of uncertain parameters. 

The solution of reliability-based design problems involving finite element models under stochastic excitation 

requires a large number of finite element analyses to be perform during the design process. These analyses 

correspond to finite element re-analyses over the design space (required by the optimizer), and over the uncertain 

parameter space (required for reliability estimation). Consequently, the computational demands depend highly 

on the number of finite element analyses and the time taken for performing an individual finite element analysis.  

Thus, the computational demands in solving reliability-based design problems of complex structural systems 

may be large or even excessive. In order to cope with these difficulties a model reduction technique combined 

with an appropriate optimization scheme is proposed to carry out the design process efficiently in a reduced 

space of generalized coordinates. The goal is to reduce the time consuming operations involved in the re-

analyses and dynamic responses of medium/large finite element models. Specifically, a model reduction 

technique based on substructure coupling for dynamic analysis is considered in the present implementation [4]. 

The proposed method corresponds to a generalization of substructure coupling applicable to a class of linear and 

nonlinear systems. The technique includes dividing the linear components of the structural system into a number 

of substructures obtaining reduced-order models of the substructures, and then assembling a reduced-order 

model for the entire structure.  

The organization of this work is as follows. The formulation of the reliability-based design problem is 

presented in Section 2. Next, the characterization of the structural systems of interest is considered in Section 3. 

Implementation issues such as reliability estimation, optimization strategy and model reduction are discussed in 

Sections 4, and 5. The integration of the model reduction technique into the design process is discussed in 

Section 6. The effectiveness of the proposed strategy is demonstrated in Section 7 by the reliability-based design 

of a bridge structural model. The paper closes with some final remarks. 

2. Design Formulation 

The reliability-based design problem is characterized in terms of the following constrained non-linear 

optimization problem 

 

Min�			C��					
. �			g���	 � 0																		, � � 1,… , ��												�����	 � ���∗ � 0						, � � 1,… , ��	
											� ∈ � 

(1) 

where � ( �, � � 1,… , �!) is the vector of design variables with side constraints	�, C��	 is the objective 

function, g���	 � 0 is a standard constraint, and	�����	 � ���∗ � 0 is a reliability constraint where 	�����	 is a 

failure probability function and ���∗  is the target failure probability. The standard constraints are related to 

general design requirements such as geometric conditions, material cost components, availability of materials, 

etc. On the other hand, the reliability constraints are associated with design specifications characterized through 
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the use of reliability measures given in terms of failure probabilities with respect to specific failure criteria. For 

structural systems under stochastic excitation the probability that design conditions are satisfied within a 

particular period T provides a useful reliability measure [4]. Such measure is referred as the first excursion 

probability and quantifies the plausibility of the occurrence of unacceptable behavior (failure) of the structural 

system.  In this context, a failure event "���, #	 can be defined as "���, #	 � $���, #	 % 1 where $�  is the 

normalized demand function defined as 

 $���, #	 � max)*+,…,, 	 max-	∈	./,01
23)���, �, #	2

3)�∗  (2) 

where 3)���, �, #	 are the responses functions associated with the failure event	"�, 3)�∗  are the acceptable response 

levels and	# ∈ 4# is the vector of uncertain variables involved in the definition of the stochastic excitation.  The 

vector # is characterized by a probability density function	5�#	 which indicates the relative plausibility of the 

possible values of the uncertain parameters	# ∈ 4#. Note that the responses 3)���, �, #	 are functions of time (due 

to the dynamic nature of the excitation), the design vector	�, and the random vector	#. These response functions 

are obtained from the solution of the equation of motion that governs the structural system. Finally the 

probability of failure evaluated at the design � is formally defined as 

 �����	 � � 6 max)*+,…,, 	 max-	∈	./,01
23)���, �, #	2

3)�∗ % 17 (3) 

 where �.∙1 is the probability that the expression in parenthesis is true. Equivalently, the failure probability 

function evaluated at the design vector	� can be written in terms of the multidimensional probability integral 

 �����	 � 9 5�#		$#
�!���,#	:+	

 (4) 

where all terms have been previously defined. 

3. Structural Model 

A general type of nonlinear structural systems can be cast into the following equation of motion 

 ;<= ��	 > ?<@ ��	 > A<��	 � BC<��	, <@ ��	, D��	E > F��	 (5) 

where <��	 denotes the  displacement vector, <@ ��	 the velocity vector, <= ��	 the acceleration vector, BC<��	, <@ ��	, D��	E the vector of non-linear restoring forces, D��	 the vector of a set of variables which describes 

the state of the nonlinear components, and F��	 the external force vector. The matrices	;, ?, and A describe the 

mass, damping, and stiffness, respectively. Note that some of the matrices and vectors involved in the equation 

of motion depend on the vector of design variables � and/or the uncertain system parameters # and therefore the 

solution is also a function of these quantities. The explicit dependence of the response on these quantities is not 

shown here for simplicity in notation. The evolution of the set of variables D��	 is described by the first-order 

non-linear differential equation 

 D@ ��	 � G�<��	, <@ ��	, D��		 (6) 

where G represents a nonlinear vector function. This particular characterization of the nonlinear components 

allows to model different types of nonlinearities including hysteresis and degradation [5,6]. The equation of 

motion (5) together with equation (6) that describes the evolution of the set of variables D��	 constitute a system 

of coupled non-linear differential equations for <��	 and D��	. The previous formulation is particular well suited 

for cases where most of the components of the structural system remain linear and only a small part behaves in a 

nonlinear manner. 
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As previously pointed out the external force vector F��	 is modeled as a non-stationary stochastic process. 

Depending of the application under consideration and the available information different methodologies can be 

used for generating samples of these types of processes. Such methodologies include techniques based on 

filtered Gaussian white noise processes, stochastic processes compatible with power spectral densities, point 

source-based models, subevents source-based models, record-based models, etc. [3,7,8,9,10,11,12]. A common 

aspect  of the aforementioned methodologies is that the generation of the corresponding stochastic processes 

samples involves in general a large number of random variables, e.g. of the order of hundreds or thousands. 

Therefore the evaluation of the failure probability function for a given design (Eq. 4) constitutes a high-

dimensional problem which is extremely demanding from a numerical point of view.  

4. Reliability Estimation and Optimization Scheme 

The reliability constraints of the nonlinear constrained optimization problem (1) are defined in terms of first 

excursion probability functions. These reliability measures are given in terms of high-dimensional integrals. The 

difficulty in estimating these quantities favors the application of simulation techniques to cope with the 

probability integrals. It is important to note that each sample, in the context of simulation, implies the solution of 

the set of non-linear differential equations (5) and (6) that characterizes the structural model (a dynamic finite 

element analysis). Therefore an efficient simulation technique is required in the context of the present 

formulation. A general applicable method named subset simulation is adopted here [13].  In this advanced 

simulation technique the failure probabilities are expressed as a product of conditional probabilities of some 

chosen intermediate failure events, the evaluation of which only requires simulation of more frequent events. 

The intermediate failure events are chosen adaptively using information from simulated samples so that they 

correspond to some specified values of conditional failure probabilities. Therefore, a rare event simulation 

problem is converted into a sequence of more frequent event simulation problems. The method uses a Markov 

chain Monte Carlo method based on the Metropolis algorithm for sampling from the conditional probabilities. 

This is the most widely applicable simulation technique because it is not based on any geometrical assumption 

about the topology of the failure domain. In fact, validation calculations have shown that subset simulation can 

be applied efficiently to a wide range of dynamical systems including general linear and non-linear systems 

[14,15]. In addition, subset simulation is very-well suited for parallel implementation in a computer cluster. This 

feature allows a very efficient numerical implementation of this advanced simulation technique. For a detailed 

description of subset simulation, from the theoretical and practical point on view, the reader is referred to [13]. 

On the other hand, the solution of the reliability-based optimization problem defined in Eq. (1) can be 

obtained in principle by a number of techniques such as standard deterministic optimization schemes or 

stochastic search algorithms [16,17]. In particular, a class of interior point algorithms based on the solution of 

the first-order optimality conditions is implemented here [18]. The scheme has proved to be quite effective for a 

wide range of applications in the context of deterministic and stochastic optimization problems. The details of 

the aforementioned algorithm can be found in [19]. 

5. Substructure Coupling Technique 

The solution of the reliability-based optimization problem (1) is computationally very demanding due to the 

large number of dynamic analyses required during the design process. In fact the reliability estimation at each 

design requires the evaluation of the system response at a large number of samples in the uncertain parameter 

space (of the order of hundreds or thousands). In addition, the iterative nature of the optimization strategy may 

impose additional computational demands. Consequently, the computational cost may become excessive when 

the computational time for performing a dynamic analysis is significant. To cope with this difficulty, a model 

reduction technique is considered in the present formulation. In particular, a method based on substructure 

coupling technique for dynamic analysis is implemented in order to define a reduced-order model for the 

structural system [4,20]. The general idea of the methodology is to divide the linear components of the structural 

system into a number of linear substructures obtaining reduced-order models and then assembling a reduced-

order model for the entire structural system. More specifically, after the division of the structure linear 

components into substructures, the model reduction technique involves two basic steps: definition of sets of 
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substructure modes; and coupling of the substructure-modes models to form a reduced-order system model. The 

dimension of the reduced-order model can be substantially smaller (one or more orders of magnitude) than the 

dimension of the original unreduced model. Details of the procedure can be found in the previous references.   

6. Optimal Design Based On Reduced-Order Model 

The previous model reduction technique is quite general in the sense that dividing the structure into substructures 

and reducing the number of physical coordinates to a much smaller number of generalized coordinates certainly 

alleviates part of the computational effort. However, the generation of the reduced-order model at each design 

implies the computation of the so-called normal modes associated with each substructure [4]. This procedure can 

be computationally very expensive due to the substantial computational overhead that arises at substructure 

level. In order to make the model reduction technique more efficient a particular parametrization scheme in 

terms of the design variables is considered in the present formulation.  Specifically, it is assumed that the 

stiffness and mass matrix of each substructure depend on only one of the design variables. Such dependency can 

be linear or nonlinear. Of course, different substructures may depend on different design variables. It should be 

pointed out that the previous parametrization is often encountered in a number of practical applications. By using 

this parametrization scheme it can be shown that the reduced-order matrices (mass, stiffness and damping) can 

be written explicitly in terms of the design variables. In other words, the reduced order matrices can be expressed 

in terms of a set of matrices which are independent of the values of the vector of design variables θ and a set of 

parametrization functions [20,21]. To save computational time these matrices are computed and assembled once 

for a reference model. Therefore there is no need to compute these matrices during the iterations of the design 

process due to changes in the value of the design variables. This feature results in substantial computational 

savings. In addition, the formulation guarantees that the reduced order model is based on the exact substructure 

modes for all values of the design variables. For the more general case, that is, when the substructure matrices 

depend on more than one design variable the reduced-order model matrices should be re-assembled for new 

values of the vector of design variables. This repeated computation, however, is usually confined to a small 

number of substructures in many practical applications. So, even in the more general case a significant saving 

may still arise. Finally, it is noted that parallelization techniques are also possible at the model level. In fact, the 

definition of all substructure matrices in generalized coordinates can be carried out in parallel, reducing the 

computational time of the proposed implementation even further. 

7. Application Problem 

To evaluate the effectiveness of the proposed methodology the reliability-based design of the bridge structural 

model shown in Figure 1 is considered. The bridge is curved in plan and has a total length of 119 m. It has 5 

spans of lengths equal to 24.0m, 20.0m, 23.0m, 25.0m, and 27.0m, respectively, and four piers of 8m height that 

support the girder monolithically. Each pier is founded on an array of four piles of 35 m height. The piers and 

piles are modelled as column elements of circular cross-section with 1.6 m and 0.6 m diameter, respectively. The 

deck cross section is a box girder which is modelled by beam and shell elements. It rests on each abutment 

through two rubber bearings that consist of layers of rubber and steel plates, with the rubber being vulcanized to 

the steel plates. The rubber bearings are characterized by the external diameter H�, internal diameter H�  and the 

total height of rubber I�. The force-displacement characteristics of the rubber bearings are modelled by a biaxial 

hysteretic behavior [22]. An analytical model based on a series of experimental tests conducted for real-sized 

rubber bearings is used in the present application. For a detailed description of the analytical model that 

describes the nonlinear behavior of the bearings the reader is referred to [22,23]. The interaction between the 

piles and the soil is modelled by a series of translational springs along the height of the piles with stiffnesses 

varying from 11200 T/m at the base to 0.0 T/m at the surface. The following values of the material properties of 

the concrete structure are considered. The Young's modulus is taken to be E= 2.0 x 10
10

 N/m
2
, the Poisson ratio 

ν=0.2, and mass density ρ=2500kg/m
3
. Finally, a 3% of critical damping is added to the model. The selected 

finite element model for the bridge structure has 10.068 degrees of freedom. 
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Figure1. Finite element model of bridge structure 

 

The bridge structure is subjected to ground acceleration in a direction defined at 25
o
 with respect to the x axis. 

The ground acceleration is modelled as a non-stationary stochastic process. In particular, a stochastic point-

source model characterized by a series of seismicity parameters such as the moment magnitude and rupture 

distance is considered in the present implementation [8,9]. The model is a simple, yet a powerful means for 

simulating ground motions with high and low frequency components. The methodology, which was initially 

developed for generating synthetic ground motions, has been reinterpreted to form a stochastic model for ground 

excitation [24]. The input for the stochastic excitation model involves a white noise sequence and a series of 

seismological parameters as previously pointed out. Details of the entire procedure can be found in [8,23]. The 

duration of the excitation is equal to T=30s with a sampling interval equal to ∆t=0.01s. Based on the 

characterization of the point source model it can be shown that the generation of the stochastic ground motion 

samples involves more than 3.000 random variables for the duration and sampling interval considered. Thus, the 

vector of uncertain parameters # involved in the problem has more than 3.000 components. For illustration 

purposes, Figure 2 shows a synthetic excitation sample generated by the stochastic point-source model. It is 

emphasized that the proposed reliability-based design strategy is not restricted in any way to this particular 

excitation model. In fact, alternative ground motion models can be used as well. For the dynamic analysis a 

homemade finite element code was implemented.  

 

Figure 2. Ground acceleration time history sample 

 

y
x

z

0 5 10 15 20 25 30

�
1.5

�
1

�
0.5

0

0.5

1

1.5



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

7 

 

7.1  Design Problem 

The reliability-based design problem is defined in terms of the optimization problem 

 

Min�			C��															�����	 � ���∗ 					, � � 1, 2	
													� ∈ � 

(7) 

where � ( �, � � 1,… ,6) is the vector of design variables, C��	 is the cost function which is assumed to be 

proportional to the total volume of rubber in the bearings and to the total volume of the pier elements, and ���∗ 	� 	10LM, � � 1,2 are the corresponding target probabilities. The design variables include the diameter of the 

piers circular cross section, the external diameter of the bearings and the total height of rubber of the bearings. 

Design variables +,  N,  O, and  M are related to the diameter of the circular cross section of the four piers, while 

design variables  P and  Q are associated with the external diameter and total height of rubber of the bearings 

located at the abutments. The relationship between the design variables and the actual structural parameters is 

given by HR� �	 �HSR�, i � 1,2,3,4, H� �	 PHS� and I� �  QIS�, where  HR�, � � 1,2,3,4 are the diameters of the 

circular cross section of the piers, H� is the external diameter of the bearings,  I� is the total height of rubber of 

the bearings, and HSR� (1.6m), HS� (0.8m), and IS� (0.17m) are the corresponding nominal values of the structural  

parameters. The side constraints for the design variables are given by: 0.75 �  � � 1.25, � � 1,2,3,4; 0.75 � P � 1.25, and 0.88 �  Q � 1.47. Failure, that is unacceptable performance, is defined in terms of the relative 

displacement of piers and the relative displacement of the rubber bearings. Thus, the corresponding failure 

probability functions are given by 

 

��Y� 	 � � 6 max-∈./,Z1
|u]��, �, #	|0.10m 7 % 1	

��̂ � 	 � � 6 max-∈./,Z1
|δ��, �, #	|
0.07m 7 % 1 

(8) 

where u]��, �, #	 represents the maximum relative displacement between the deck girder and the base of the 

rubber bearings at each abutment (in the x or y direction), and `��, �, #	 denotes the maximum relative 

displacement between the top of the piers and their connection with the pile foundations (in the x or y direction). 

It is noted that the estimation of the failure probability functions for a given design � represents a high-

dimensional reliability problem. In fact, as previously pointed out, 3.000 random variables are involved in the 

corresponding probability integral (Eq. 4). Regarding the excitation, the same set of samples generated by the 

stochastic excitation model is used throughout the design process (common random number stream approach). 

7.2  Definition of Reduced-Order Finite Element Model 

Considering the previous design formulation the bridge structure is divided into a number of substructures. The 

division is guided by a parametrization scheme so that the substructure matrices for each one of the introduced 

substructures depend on only one of the design variables. In particular, the structural model is subdivided into 

six linear substructures and two nonlinear substructures as shown in Fig. 3. Substructure a+ is composed by the 

pile elements, substructures aN, aO, aM, and aP include the different pier elements, and substructure aQ 

corresponds to the deck girder. Finally, substructures ab and ac are the nonlinear substructures composed by the 

rubber bearings located at the left and right abutments, respectively. With this subdivision substructures a+ and aQ do not depend on the design variables, while substructures aN, aO, aM, and aP depend on the design variables  +,  N,  O, and  M respectively, and design variables  P and  Q are associated with the nonlinear substructures ab 

and ac.  
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Figure 3. Substructures of the finite element model 

 

Based on the previous substructures the reduced order model is characterized as follows. Ten generalized 

coordinates are retained for substructure	a+, two for each one of substructures aN, aO, aM, and aP and ten for 

substructure aQ. Validation calculations show that this reduced order model is adequate in the context of the 

present application. In fact, the error between the modal frequencies using the full nominal reference finite 

element model and the modal frequencies computed using the reduced-order model falls below 0.5% for the 

lowest six modes. The corresponding matrix of MAC-values (modal assurance criterion) between the first six 

modal vectors computed from the unreduced finite element model and from the reduced-order model is shown in 

terms of a 3-D representation in Figure 4. It is observed that the values at the diagonal terms are close to one and 

almost zero at the off-diagonal terms. Thus, the modal vectors of both models are consistent. The comparison 

with the lowest 6 modes is based on the fact that the contribution of the higher order modes (higher than the 6
th
 

mode) in the dynamic response of the model is negligible. 

 

 

Figure 4. MAC-values between the mode shapes computed from  the unreduced finite element model and from 
the reduced-order model 
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In summary, a total of 28 generalized coordinates are retained for the six linear substructures. On the other hand, 

the number of interface degrees of freedom (between the substructures) is equal to 60 in this case. The 

dimension of the resulting reduced-order model represents a 99% reduction with respect to the dimension of the 

unreduced model. Thus, a drastic reduction in the number of degrees of freedom is obtained with respect to the 

original unreduced finite element model. Validation calculations show that the reduced-order model and the full 

finite element model are equivalent in the context of this design problem. Therefore, the design process of the 

bridge structural model is carried out by using the reduced-order model. It is important to note that the 

calibration and definition of the reduced-order model is done off-line, before the design procedure takes place. 

7.3  Numerical Results 

Taking advantage of the reduced-order model one particular design scenario is investigated in detail in order to 

get insight into the reliability and general performance of the bridge structure under consideration. Specifically 

the interaction between bridge structural components and rubber bearing parameters is studied. To this end the 

design space in terms of the diameter of the circular cross sections of the piers and the external diameter of the 

rubber bearings is constructed. The design variables associated with the diameters of the circular cross sections 

of the piers are linked to one design variable	 R�d� �  + �  N �  O �  M, while the design variables  P 

associated with the external diameter of the rubber bearings is denoted as	 edf��gh.  Design variable related to 

the total height of rubber of the bearings is kept constant and equal to its lower bound value, i.e.,  Q � 0.88 ( I�=0.15 m). Figure 5 shows some objective contours and iso-probability curves as well as the final design. The 

design space is shown in terms of the actual values of the diameter of the circular cross sections of the piers HR 

(HR 	�  R�d�	HSR) and the external diameter of the rubber bearings H�  ( H�  =  edf��gh HS�). From the figure it is 

observed that the probability of failure event "N decreases as the diameter of the circular cross sections of the 

piers increase. In this case the piers become stiffer and therefore the relative displacements between the top of 

the piers and their connection with the piles foundations decrease. It is also seen that the failure event "N is 

controlled by the diameter of the circular cross sections of the piers for values of this quantity close to its lower 

bound, i.e. HR < 1.45m. In this range of values the iso-probability curves are almost perpendicular. So, the effect 

of the external diameter of the isolator is negligible. In other words, the flexibility of the pier elements controls 

the relative displacements between the top of the piers and their connection with the piles foundations, as 

expected. Contrarily, for values of this quantity close to its upper bound, i.e. HR > 1.70m a strong interaction 

between the diameter of the circular cross sections of the piers and the external diameter of the rubber bearings is 

observed. Thus, for rigid pier elements the relative displacements between the top of the piers and their 

connection with the piles foundations is controlled by both design variables, that is, HR and H�. In fact, the iso-

probability curves indicate that for example an increase in the diameter of the circular cross sections of the piers 

is compensated by a decrease in the external diameter of the bearings. In other words, for such combination of 

the design variables HR and H� the probability of failure remains invariant. On the other hand it seen that the 

failure event "+ is mainly controlled by the external diameter of the rubber bearings. Actually, the iso-probability 

curves associated with failure event "+ show a relatively weak interaction between the diameter of the circular 

cross sections of the piers and the external diameter of the rubber bearings. The probability of this event 

decreases as the external diameter of the isolators increases. The final design for this scenario is given by HR=1.64m and H�= 0.67m (point B in the figure) where both reliability constraints are active. 
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Figure 5. Design space in terms of the circular cross sections of the piers and the external diameter of the rubber 
bearings 

 

The results shown in Figure 5 can also be used to demonstrate the benefits of designing the isolators and the 

bridge structure simultaneously.  For example, if the design process involves only the isolators and the diameter 

of the circular cross sections of the piers is kept constant at their upper bound values (Hi= 2.0m), the optimal 

design is given by H� = 0.75m (point A in the figure) with a corresponding normalized cost equal to C=1.4. On 

the other hand, if the diameter of the circular cross sections of the piers is also considered as design variable the 

final design moves from point A to point B, with a decrease of the normalized cost in about 30%. Thus, taking 

into account the interaction between the design variables associated with the bridge structure and the isolators 

during the design process is quite beneficial in terms of the cost of the final design. It is clear that the above 

observations and remarks give a valuable insight into the complex interaction of the design variables on the 

performance and reliability of the bridge structural system. 

7.4 Computational Cost 

Table 1 shows the on-line computational costs involved in the assemblage of the finite element model and the 

computation of the dynamic response for a given design considering the full finite element model and the 

reduced-order model. These operations and procedures are performed at each iteration of the design process. It is 

seen that the time difference by using the full finite element model and the reduced-order model is quite 

significant. Actually the ratio between these times is almost 100. The off-line computational cost, that is the cost 

of calculations related to the definition of the reduced-order model which is performed once during the design 

process, corresponds to approximately two full analyses (finite element model generation and dynamic response) 

of the unreduced model in this case. Considering this cost an overall speedup value of more than 10 is obtained 

by the proposed methodology in solving this particular design problem. In this context the speedup is the ratio of 

the execution time by using the unreduced model and the execution time by using the reduced-order model. The 

reduction in computational effort is achieved without compromising the accuracy of the final design.  Finally, it 

is noted that once the reduced-order model has been defined several design scenarios in terms of different 

objective functions, reliability constraints, side constraints, etc. can be explored and solved efficiently. So, higher 

speedup values (up to two orders of magnitudes) can be obtained for the overall design process of the bridge 

structure. 
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Table 1. On-line computational costs for a given design  

Task  

Description      

Full FE model  

Time (s) 

Reduced model  

Time (s) 

FE model generation  52.9 0.013 

Modal analysis 0.74 0.052 

Numerical Integration 

Sum of different tasks 

1.7 

55.34 

0.51 

0.575 

 

8. Conclusions 

A general strategy for dealing with a class of reliability-based design problems of finite element models under 

stochastic earthquake loading has been presented. It consists in the integration of a model reduction technique 

with an appropriate optimization scheme. The design process is carried out in a reduced space of generalized 

coordinates. In particular, a model reduction technique based on substructure coupling technique for dynamic 

analysis is considered in the present implementation. The reduction technique, which is applied to the linear 

components of the structural systems, produces highly accurate models with relatively few substructure modes. 

The numerical results demonstrate that the computational effort involved during the design process is reduced 

significantly with respect to the process considering the unreduced finite element model. In fact, good speedup 

values were obtained. On the other hand, the reduction in computational effort is achieved without 

compromising the accuracy of the design process. Based on the results of this study it is concluded that the 

proposed approach is potentially an effective tool for solving a class of reliability-based design problems 

involving complex structural systems under stochastic excitation such as ground motions.  
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