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Abstract 

Tanks for hazardous liquid storage have proved to be vulnerable when destructive earthquakes appear. Their collapse leads 

to the spillage of the contained substances (flammable, explosive, toxic) negatively impacting in the surrounding environment 

and causing big economic losses for the region where they are located. This work`s goal is to determine the effectiveness of 

the systems of seismic isolation in supported cylindrical tanks, which store hazardous liquids, and to measure the incidence 

of certain parameters over the response.  In order to achieve this, it is necessary to perform a parametric analysis of the 

response history, with multiple runs and with a high computational cost. Due to that, a simple and fast method, based on the 

resolution of the problem through an Euler-Lagrange Equation is proposed in this article. As isolation devices, friction 

isolators of single friction pendulum were used. As an input, earthquakes with both vibratory and impulsive seismic movement 

characteristics were used. Both a base fixed and a base isolated tank were modeled, and as study parameters, the slenderness 

ratio of the tank and the period and the friction coefficient of the seismic isolation system were modeled. The seismic responses 

in terms of displacements of the free surface of the contained liquid, displacements of the isolation system and the normalized 

base shear were determined. The results state that the isolation system reduces the maximum response in all cases, but it 

increases its effectiveness as the tank slenderness ratio increases. The slender tanks are shown to be very sensitive to the 

system isolation period, while the thick tanks are strongly conditioned in its response by the friction coefficient. 

Keywords: seismic analysis, cylindrical tank, base isolation 
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1. Introduction 

Tanks for hazardous liquid storage have proved to be vulnerable against destructive earthquakes, as the ones in 

Valdivia, Chile in 1960, Alaska, United States, in 1964, Northdrige, California, United States, in 1994, Kobe, 

Japan in 1995 and Kocaeli, Turkey in 1999, among others. Their collapse leads to the spillage of the contained 

substances, negatively impacting in the surrounding environment and causing big economic losses for the region 

where they are located. This motivates the seismic behavior study of the tanks, and the development of new 

techniques for their protection, such as the base seismic isolation.  

The seismic behavior of tanks has been studied for several years by many authors. In 1933, Westergaard [1] 

determined the pressure distribution of an incomprehensible fluid over a rigid dam of vertical wall during an 

earthquake. Afterwards, in 1949 Jacobsen [2] he stated the potential speed of a tank with fluid inside and around 

it when an impulsive translational displacement is experienced in its base, depreciating the connective part of the 

acceleration. Years later, in 1957 and 1963, Housner [3, 4] performed an analysis of the hydrodynamic pressure, 

developed when a fluid in a rigid wall container is subject to horizontal accelerations, including impulsive and 

connective pressures, and showing simplified equations for containers of different shapes. In 1973, Veletsos [5] 

developed a simplified procedure so as to assess the dynamic forces induced by the lateral component of an 

earthquake, taking into account the tank flexibility effects, but considering the impulsive forces. Then, in 1981 

and 1983, Haroun [6, 7] showed a method based in the mode overlapping of free lateral vibration so as to assess 

the flexibility influence of the wall in the tank seismic response. 

The seismic isolation technique applied to tanks has also a background. In 1997, Malhotra [8] showed that 

the seismic response of isolated tanks is reduced considerably without a significant increase of the swell in a free 

surface. In 2001, Wang [9] performed tank numerical simulations with a friction pendulum system (FPS), verifying 

that its effectiveness increases the tank slenderness ratio. In 2002, Shrimali y Jangid [10] performed a parametric 

analysis both on a thick tank and on a slender tank, so as to measure the incidence of the isolation period, the 

damping and the fluency force of the isolation system over the peak response of the tank, under a bidirectional 

excitation, taking into consideration the interaction effects, which turned to be negligible. In 2008 and 2012, 

Panchal and Jangid [11, 12] studied the response in cases of near-failure earthquakes of isolated tanks, with two 

newly friction pendulum system (FPS) devices, one with a variable friction pendulum system (VFPS) and another 

one with a variable curvature friction pendulum system (VCFPS), showing a better behavior than the FPS with a  

friction coefficient and bending radius that are constant with the movement. In 2010, Abalı and Uçkan [13] 

performed a parametric analysis of tanks with FPS isolators, so as to measure the incidence of the isolation period, 

the tank aspect and the friction coefficient ratio, in the tank response, taking into account the variation of the axial 

loading over the isolation system, due to the overturning moment and the vertical acceleration, and finding that 

said variation must not be ignored, mainly in slender tanks subject to near-fault seisms. In 2014, Saha [14] 

performed a parametric analysis so as to assess the response of a thick tank and a slender tank, by using equal 

linear modeled isolators and in bilinear form, showing that the equal linear model overestimates the response of 

slender tanks.       

The goal of this work is stating the effectiveness of the seismic isolating systems in tanks, and measuring 

the incidence of certain parameters (isolation period, friction coefficient and slenderness ratio) over the response. 

In order to achieve this, it is necessary to perform a parametric analysis of the response history, with multiple runs 

and with a high computational cost. Due to that, a simple and fast method, based on the resolution of the problem 

through an Euler-Lagrange Equation is proposed in this article. 

2. Method 

So as to achieve the goal that was set forth, the following steps are fulfilled: i) Choose a model representing the 

physical behavior of the system: Housner Model is used; ii) Find the differential equations governing the system: 

Euler-Lagrange Equation is set forth, which leads to two ordinary differential equations of second order; iii) 

Reduce the order of the differential equations: State Equation is used, which enables the change from two ordinary 

differential equations of second order to four ordinary differential equations of first order; iv) Integrate the 

differential equations: the Runge Kutta numerical integration method of order three at a constant pace is used. 
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 2.1 Housner model 

Housner model proposes that the hydrodynamic response of a tank-liquid system is characterized by the 

participation of two different contributions, called impulsive component and convective component. The 

impulsive component represents the part of the liquid that moves in unison with the tank walls. The convective 

component represents the liquid moving with a long period waving movement, in the upper part of the tank. These 

two components may be deemed as uncoupled, because there are significant differences in their natural periods. 

In a tank supported on the floor, the waving amplitude is an indicator of the soil movement intensity. In the 

event a tank with its water-free surface is subject to a 𝑋̈(t) horizontal acceleration of the floor, the forces exerted 

over the tank by water are of two types. First, when the tank walls accelerate, they come and go, and one part of 

the water is forced to take part in this movement, which exerts a reactive force over the tank, which would exert a 

mi mass rigidly connected to the tank at a hi appropriate height. The mi mass is fixed to hi height so as that the 

horizontal force exerted by it is collinear with the resulting force exerted by the equivalent water. Second, the tank 

wall movement excites the water in oscillations, which subsequently exerts an oscillatory force over the tank. This 

oscillatory force is the same exerted by a mc mass which may horizontally oscillate against a kc restriction spring. 

The mc mass corresponds to the main oscillation mode of water, which is the most important mode in most of the 

seismic problems. In the event the equivalent system is subject to 𝑋̈(t) floor seismic accelerations, the forces 

exerted over the tank by the mi and mc masses shall be the same that water would exert over the tank. 

For a cylindrical tank of R radius, and H liquid height, the equations to obtain the model necessary 

parameters are: 

𝑚𝑖 = 𝑀 
tanh (

1.732 𝑅
𝐻

)

(
1.732 𝑅

𝐻
)

 (1) 𝑚𝑐 = 0.835 𝑀 
tanh (

1.835 𝐻
𝑅

)

(
1.835 𝐻

𝑅
)

 (2) 

𝜔𝑐
2 = 1.835 

𝑔 

𝑅
tanh (

1.835 𝐻

𝑅
) (3) 𝑘𝑐 = 𝜔𝑐

2 𝑚𝑐 = 4.032605 
𝑚𝑐

2

𝑀
 
𝑔 𝐻

𝑅2
 (4) 

ℎ𝑖 =
3

8
 𝐻 (5) ℎ𝑐 = 𝐻 [1 − (

𝑅

1.835 𝐻
) 𝑡𝑎𝑛ℎ (

0.9175 𝐻

𝑅
) ] (6) 

Where: R = radius of the tank cylinder; H = liquid height; ρ = liquid density; m = ρ π R2 H   mass of the 

contained liquid; mi = impulsive mass; mc = convective mass; g = 9, 81 m/s2 gravity acceleration; kc = convective 

rigidity; hi = impulsive height; hc = convective height 

2.2 Euler – Lagrange equation 

The Euler - Lagrange equation is obtained by applying the Principle of the Virtual Works to the Second Newton 

Law. The Principle of Virtual Works (PTV) states that “In a mechanical system, it is a necessary and sufficient 

condition of equilibrium that the work of the group of forces applied over virtual movements compatible with the 

bond be null”. For a system of M material points, the total virtual work is: 

𝛿𝑊 = ∑ 𝑭𝑖 ∙ 𝛿𝒓𝑖 = 0

𝑀

𝑖=1

 (7) 

 On the other hand, the second Newton law states that: 

𝑭𝑖 = 𝒑̇𝑖 (8) 

where 𝒑𝑖 is the linear momentum of the i-th particle. From expression (8), the following can be written: 

𝝋𝑖 = 𝑭𝑖 − 𝒑̇𝑖 = 0 (9) 

where 𝝋𝑖 may be interpreted as the net force to be applied over the particle to keep it in “equilibrium”. Then, 

as in every instant, the system stays in equilibrium under the action of 𝝋𝑖 the principle of virtual works is fulfilled: 
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∑ 𝝋𝑖

𝑀

𝑖=1

∙ 𝛿𝒓𝑖 = ∑(𝑭𝑖 − 𝒑̇𝑖)

𝑀

𝑖=1

∙ 𝛿𝒓𝑖 = ∑ 𝑭𝑖

𝑀

𝑖=1

∙ 𝛿𝒓𝑖 − ∑ 𝒑̇𝑖

𝑀

𝑖=1

∙ 𝛿𝒓𝑖 = 0 (10) 

By developing the first term of (10), we obtain: 

∑ 𝑭𝑖

𝑀

𝑖=1

∙ 𝛿𝒓𝑖 = ∑ 𝑭𝑖

𝑀

𝑖=1

∙ (∑
𝜕𝒓𝑖

𝜕𝑞𝑗

𝑁

𝑗=1

𝜕𝑞𝑗) = ∑ ∑ (𝑭𝑖 ∙
𝜕𝒓𝑖

𝜕𝑞𝑗

) 𝜕𝑞𝑗

𝑀

𝑖=1

𝑁

𝑗=1

= ∑ 𝑄𝑗

𝑁

𝑗=1

𝜕𝑞𝑗  (11) 

where 𝑞 [Nx1] is the vector of system degree of freedom (GDL), with N as the number of degrees of freedom; and 

𝑄𝑗 = ∑ (𝑭𝑖.
𝜕𝒓𝑖

𝜕𝑞𝑗
)𝑀

𝑖=1  are the components of the generalized forces. 

Next, the second term of (10) is developed: 

∑ 𝒑̇𝑖

𝑀

𝑖=1

∙ 𝛿𝒓𝑖 = ∑ 𝑚𝑖𝒓̈𝑖

𝑀

𝑖=1

∑
𝜕𝒓𝑖

𝜕𝑞𝑗

𝑁

𝑗=1

𝜕𝑞𝑗 = ∑ ∑ (𝑚𝑖𝒓̈𝑖 ∙
𝜕𝒓𝑖

𝜕𝑞𝑗

) 𝜕𝑞𝑗

𝑀

𝑖=1

𝑁

𝑗=1

 (12) 

From the inner product derivation, we have: 

𝑑𝒂

𝑑𝑡
∙ 𝒃 =

𝑑

𝑑𝑡
(𝒂 ∙ 𝒃) − 𝒂 ∙

𝑑𝒃

𝑑𝑡
 (13) 

By using 𝒂 = 𝑚𝑖𝒓̇𝑖 and 𝒃 =
𝜕𝒓𝑖

𝜕𝑞𝑗
 the following is obtained: 

∑ ∑ {
𝑑

𝑑𝑡
(𝑚𝑖𝒓̇𝑖 ∙

𝜕𝒓𝑖

𝜕𝑞𝑗

) − 𝑚𝑖𝒓̇𝑖

𝑑

𝑑𝑡
(

𝜕𝒓𝑖

𝜕𝑞𝑗

)}

𝑀

𝑖=1

𝑁

𝑗=1

𝜕𝑞𝑗 (14) 

If we consider the following equalities: 

𝑑

𝑑𝑡
(

𝜕𝒓𝑖

𝜕𝑞𝑗

) =
𝜕𝒓̇𝑖

𝜕𝑞𝑗

 (15) 
𝜕𝒓𝑖

𝜕𝑞𝑗

=
𝜕𝒓̇𝑖

𝜕𝑞̇𝑗

 (16) 

Then, by replacing (15) and (16) in (14): 

∑ ∑ {
𝑑

𝑑𝑡
(𝑚𝑖𝒓̇𝑖 ∙

𝜕𝒓̇𝑖

𝜕𝑞̇𝑗

) − 𝑚𝑖𝒓̇𝑖 (
𝜕𝒓̇𝑖

𝜕𝑞𝑗

)}

𝑀

𝑖=1

𝑁

𝑗=1

𝜕𝑞𝑗 (17) 

Besides: 

𝑚𝑖𝒓̇𝑖 ∙
𝜕𝒓̇𝑖

𝜕𝑞̇𝑗

=
𝜕

𝜕𝑞̇𝑗

(
1

2
𝑚𝑖𝒓̇𝑖 ∙ 𝒓̇𝑖) =

𝜕

𝜕𝑞̇𝑗

(
1

2
𝑚𝑖𝑣𝑖

2)

=
𝜕𝑇𝑖

𝜕𝑞̇𝑗

 

(18) 

𝑚𝑖𝒓̇𝑖 ∙
𝜕𝒓̇𝑖

𝜕𝑞𝑗

=
𝜕

𝜕𝑞𝑗

(
1

2
𝑚𝑖𝒓̇𝑖 ∙ 𝒓̇𝑖) =

𝜕

𝜕𝑞𝑗

(
1

2
𝑚𝑖𝑣𝑖

2)

=
𝜕𝑇𝑖

𝜕𝑞𝑗

 
(19) 

Where 𝑇𝑖 =
1

2
𝑚𝑖𝑣𝑖

2 is the kinetic energy of the i-th particle. Then, by replacing (18) and (19) in (17): 

∑ ∑ {
𝑑

𝑑𝑡
(

𝜕𝑇𝑖

𝜕𝑞̇𝑗

) −
𝜕𝑇𝑖

𝜕𝑞𝑗

}

𝑀

𝑖=1

𝑁

𝑗=1

𝜕𝑞𝑗 = ∑ {
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

}

𝑁

𝑗=1

𝜕𝑞𝑗  (20) 

By replacing (11) in the first term of (10), and (20) in the second term of (10), the following is obtained: 

∑ 𝑄𝑗

𝑁

𝑗=1

𝜕𝑞𝑗 − ∑ {
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

}

𝑁

𝑗=1

𝜕𝑞𝑗 = 0 (21) ∑ {
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

− 𝑄𝑗}

𝑁

𝑗=1

𝜕𝑞𝑗 = 0 (22) 

In the equation (22) 𝑄𝑗 may be divided as the sum of the conservative forces (derived from a potential 

function) and the non-conservative forces: 
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𝑄𝑗 = 𝑄𝑗
𝐶 + 𝑄𝑗

𝑁𝐶 = −
𝜕𝑉

𝜕𝑞𝑗

+ ∑ 𝑭𝑖
𝑁𝐶 ∙

𝑀

𝑖=1

𝜕𝒓𝑖

𝜕𝑞𝑗

 (23) 

By replacing (23) in (22): 

∑ [
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

+
𝜕𝑉

𝜕𝑞𝑗

− 𝑄𝑗
𝑁𝐶] 𝛿𝑞𝑗 = 0

𝑁

𝑗=1

 (24) 

As the virtual movements are arbitrary, for fulfilling the equation (24), each term must be null, that is: 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗

) −
𝜕𝑇

𝜕𝑞𝑗

+
𝜕𝑉

𝜕𝑞𝑗

− 𝑄𝑗
𝑁𝐶 = 0 (25) 

The previous equation represents the sum of forces in equilibrium. In order to apply it, the total energy 

(kinetic energy called T and potential energy called V) of the system (cascade) and it is derived regarding the q 

generalized coordinates (minimum number of independent coordinates, needed to describe the system = number 

of degrees of freedom), and the QNC non-conservative forces  are also added, so as to obtain, in this way, the 

differential equations governed by the system. 

The steps to be followed so as to formulate the problem in terms of the  Euler – Lagrange equation are the 

following: i) Choose an origin of coordinates; ii) Define the degrees of freedom; iii) Define position and speed 

vectors; iv) Estimate the kinetic energy; v) Estimate the potential energy (elastic plus gravitational); vi) Estimate 

the non-conservative forces; vii) Assemble the equation 

2.2.1 Origin of coordinates 

The problem of one base fixed tank and another base isolated tank may be idealized by the following schemes, by 

putting two punctual masses (impulsive and convective) pursuant to the Housner model. The FPS isolators may 

be characterized by the curvature radium of a concave surface, which defines the isolation period, and by the 

friction coefficient in the sliding surface, which defines the energy dissipation and the system dampening; while 

it is variable in time with the sliding speed and the contact pressure, for this case, it is supposed to be constant. 

The isolator is modeled by a rigid bar with the same radius than the concave sliding surface. Said bar is articulated 

in both ends and connected to another horizontal rigid bar which represents the tank base, where a rigid vertical 

bar is then built, representing the walls of the anchored tank, and which is connected to the two Housner masses 

representing the contained liquid.  The origin of coordinates is placed in the union of the rigid vertical bar (wall) 

and the rigid horizontal bar (bottom). 

2.2.2 Degrees of freedom 

The problem of the isolated tank shows two degrees of freedom, which correspond to the horizontal displacements 

of the two masses: the impulsive one (part of lower and medium water moving along with the rigid walls of the 

tank) with xi displacement generated by the pendulum movement of the isolation system when being excited by a 

seism, and the convective one (part of upper water oscillating and generating waves in the free surface) with a xc 

displacement. In the case of the base fixed tank, there is only one degree of freedom or independent displacement, 

which corresponds to the convective mass, since the impulsive mass is rigidly fixed to the tank walls and these 

are, in turn, anchored to the base, it has a displacement that coincides with the one from the ground during an 

earthquake. This is clearly observed when drawing the schemes in a deformed position in the Fig. 1.  

As from here, the development will be followed only in the case of the isolated tank with two degrees of 

freedom. The case of the base fixed tank with only one degree of freedom may be obtained easily as from the first 

one or the model of base isolated can even be forced so as to work as a fixed base, by placing a curvature radius 

that is  Rc≈0 and a friction coefficient that is µ=PGA. 

The degrees of freedom, in terms of displacement, speed and acceleration, are: 

𝒒 = [
𝑥𝑖

𝑥𝑐
] (26) 𝒒𝒗 = [

𝑣𝑖

𝑣𝑐
] = [

𝑥𝑖̇

𝑥𝑐̇
] (27) 𝒒𝒂 = [

𝑎𝑖

𝑎𝑐
] = [

𝑥𝑖̈

𝑥𝑐̈
] (28) 
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 Fig. 1 – Degrees of freedom: base fixed (left) and base isolated (right) 

The θ rotation and the Δy vertical displacement which generate the FPS isolators due to their pendulum 

movement, may be defined according to the xi displacement of the impulsive mass. 

As from the equation of a circle, “y” is found: 

𝑥𝑖
2 + 𝑦2 = 𝑅𝑐

2 (29) 𝑦 = √𝑅𝑐
2 − 𝑥𝑖

2  (30) 

As from Fig. 1, Δy and θ are obtained: 

∆𝑦 = 𝑅𝑐 − 𝑦 = 𝑅𝑐 − √𝑅𝑐
2 − 𝑥𝑖

2 (31) 𝑠𝑒𝑛𝜃 =
𝑥𝑖

𝑅𝑐

 (32) 𝜃 = 𝑎𝑟𝑐𝑠𝑒𝑛 (
𝑥𝑖

𝑅𝑐

) (33) 

2.2.3 Vectors of position and speed 

The position of the impulsive and convective masses is defined regarding the chosen origin of coordinates, and 

according to the assigned degrees of freedom, giving the name of ri to the impulsive position vector and rc to the 

convective position vector. The “y” coordinate is obtained as the corresponding h height plus the Δy vertical 

displacement which are caused by the isolators.  

𝒓𝒊 = [

𝑥𝑖

ℎ𝑖 + 𝑅𝑐 − √𝑅𝑐
2 − 𝑥𝑖

2] (34) 𝒓𝒄 = [

𝑥𝑖 + 𝑥𝑐

ℎ𝑐 + 𝑅𝑐 − √𝑅𝑐
2 − 𝑥𝑖

2] (35) 

The speed vectors are obtained as from the previous ones by means of the use of Jacobian J to obtain the 

derivatives of the position vectors regarding the degrees of freedom.  

𝒓̇ =
𝜕𝒓𝑇

𝜕𝒒
𝒒̇ = 𝑱𝒒̇ (36) 

2.2.4 Kinetic energy 

The kinetic energy is calculated for each mass of the system, along with its corresponding speed vector. 

𝑇(𝒒, 𝒒̇) = ∑
1

2
𝒓̇𝑘

𝑇𝑚𝑘𝒓̇𝑘 =

𝐿

𝑘=1

∑
1

2
(𝐽𝑘𝒒̇)𝑇𝑚𝑘(𝐽𝑘𝒒̇)

𝐿

𝑘=1

 (37) 

2.2.5 Potential energy 

The Vg gravitational potential energy (present in the two masses when arising due to the isolators) and the Vs 

elastic potential energy (present in the spring of the convective mass). Then, the two contributions are added. 

𝑉𝑔(𝒒) = ∑ 𝑚𝑘𝑔𝑟2,𝑘

𝐿

𝑘=1

 (38) 𝑉𝑠(𝒒) = ∑
1

2
𝑢𝑘

𝑇𝑚𝑘𝑢𝑘

𝐿

𝑘=1

 (39) 

2.2.6 Non-conservative forces 

In this problem, there are two conservative forces dissipating energy, Fa force of dampening in the water connective 

movement and Fr force corresponding to the friction in the friction pendulum isolators: 
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𝐹𝑎 = −𝑐𝑐𝑣𝑐𝑠𝑖𝑔𝑛(𝑣𝑐) (40) 𝑐𝑐 = 2𝑚𝑐𝜔𝑐𝜉𝑐 (41) 

𝐹𝑟 = −𝜇𝑁𝑠𝑖𝑔𝑛(𝑣𝑖) (42) 𝑁 = 𝑚𝑔𝑐𝑜𝑠𝜃 +
𝑚𝑣𝑡

2

𝑅
= 𝑚 [𝑔𝑐𝑜𝑠𝜃 +

(𝑣𝑖𝑐𝑜𝑠𝜃)2

𝑅
] (43) 

These forces must be projected regarding the degrees of freedom, and for them, the work they perform is 

calculated (position vector of the application point multiplied by the force vector) and then it is derived regarding 

the degrees of freedom. 

The friction force of the pendulum deserves a more detailed analysis. The normal intervening force varies 

inversely with the θ rotation angle and it is the addition of the weight radial component and the centripetal force. 

The sense of the friction force is contrary to the sense of speed force. 

2.2.7 Euler Lagrange equation 

The Euler-Lagrange equation may be interpreted as the addition of different terms of forces in equilibrium, since 

the system energies are derived regarding the degrees of freedom:  

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑗̇

) −
𝜕𝑇

𝜕𝑞𝑗

+
𝜕𝑉

𝜕𝑞𝑗

= 𝑄𝑗
𝑁𝐶                             

→     𝐴 − 𝐵 + 𝐶 = 𝐷 

(44) 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑗̇

) =
𝜕

𝜕𝑞𝑗̇

(
𝜕𝑇

𝜕𝑞𝑗̇

) 𝑞𝑗̈ +
𝜕

𝜕𝑞𝑗

(
𝜕𝑇

𝜕𝑞𝑗̇

) 𝑞𝑗̇    

→     𝐴 = 𝐴1 + 𝐴2 

(45) 

By adding the FS external seismic force to the addition of the EL total force, the result is showed in Eq. 

(46). Since the system must be in dynamic equilibrium, the addition of all the internal and external forces must 

be null, the result is showed in Eq. (47): 

 𝐸𝐿 = 𝐴1 + 𝐴2 − 𝐵 + 𝐶 − 𝐷 + 𝐹𝑠 (46) 𝐸𝐿 = 𝐴1 + 𝐴2 − 𝐵 + 𝐶 − 𝐷 + 𝐹𝑠 = 0 (47) 

In this way, two differential equations of second order are obtained, since the problem shows two degrees 

of freedom. 

2.3 State equation 

As from the two Euler-Lagrange equations obtained, the acceleration of the impulsive and convective masses is 

intended to be solved. For this, an L linear matrix is assembled by putting the terms accompanying the accelerations 

that are looked for. This matrix is the mass matrix assessed in q=0.  Then, the non-linear part of the equations may 

be expressed as: 

𝑁𝐿 = 𝐸𝐿 − 𝑎. 𝐿 (48) 

Remembering that EL=0, the acceleration must be solved as: 

𝑎 = −𝐿−1. 𝑁𝐿 (49) [
𝑥𝑖̈

𝑥𝑐̈
] = [

𝑓1(𝑥𝑖 , 𝑥𝑐 , 𝑥𝑖̇, 𝑥𝑐̇) 
𝑓2(𝑥𝑖 , 𝑥𝑐 , 𝑥𝑖̇, 𝑥𝑐̇)

] (50) 

By making a change to state variables and their derivatives, the problem must be taken to a state equation 

with the form: 

𝑿̇(𝑡) = 𝑨. 𝑿(𝑡) + 𝑩. 𝒇(𝑡) (51) 

Where X is the state vector, f is the input vector (ground acceleration), A is the state matrix and B is the 

input matrix. In this way, instead of solving two ordinary differential equations of second order, four ordinary 

differential equations of first order are solved: 

[

𝑥𝑖̇

𝑥𝑐̇

𝑥𝑖̈

𝑥𝑐̈

] =
𝑑

𝑑𝑡
[

𝑥𝑖
𝑥𝑐

𝑥𝑖̇

𝑥𝑐̇

] = [

𝑥𝑖̇

𝑥𝑐̇

𝑓1(𝑥𝑖 , 𝑥𝑐 , 𝑥𝑖̇, 𝑥𝑐̇)

𝑓2(𝑥𝑖 , 𝑥𝑐 , 𝑥𝑖̇, 𝑥𝑐̇)

] (52) 

The problem must be solved now by integrating the four differential equations and defining four initial 

conditions of the variables that are looked for. In this way, the two displacements (both impulsive and convective) 

of the system and their corresponding speeds are obtained. 
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2.4 Numerical integration 

The explicit Runge Kutta method of order 3 is used: 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

4
(𝐾1 + 2𝐾2 + 𝐾3) (53) 𝐾1 = 𝑓(𝑡𝑛, 𝑦𝑛) = 𝑓𝑛 (54) 

𝐾2 = 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 + 𝐾1

ℎ

2
) (55) 𝐾3 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 − 𝐾1ℎ + 2𝐾2ℎ) (56) 

This method enables to numerically integrate the differential equations. The following value (yn+1) is stated 

by this value (yn) plus the product of the interval size (h) multiplied by an estimated slope. The slope is a weighted 

average of slopes, where K1 is the slope at the beginning of the interval; K2 is the slope in the medium point of the 

interval, by using K1 so as to determine the “y” value in tn+h/2 point by means of the Euler method; and K3 is the 

slope at the end of the interval, with “y” value determined by K2. The three slopes are averaged by assigning a 

higher weight to the slope at a medium point. 

2.5 System of FPS isolation 

The frictional pendulum isolators are the most advisable to be placed in the base of liquid storage tanks, since the 

Tb isolation period only depends on the Rc curvature radius of the sliding concave surface, and therefore, it keeps 

being constant, although the tank weight changes due to variations in the level of the contained liquid.  

 The force developed in the isolator is the sum of the restoring force, generated by the tangential component 

of the W weight, acting over the curved surface, and a friction force, caused by the reaction of the normal 

component of weight, acting over the curved surface. The restoring force controls the system rigidity according to 

the Rc curvature radius of the sliding concave surface, and the friction force controls the dampening of the system 

according to the µ friction coefficient between the slider and the sliding concave surface. The isolation period and 

the force developed in the isolator are obtained as: 

𝑇𝑏 = 2𝜋√
𝑅𝑐

𝑔
 (57) 𝐹𝑏 =

𝑊

𝑅𝑐

 𝑥 + 𝜇 𝑊 𝑠𝑖𝑔𝑛 𝑥̇ (58) 

During the isolator operation, the W axial load may vary by the addition to the weight of the effects of 

seismic increase, which generates the structure overturning momentum, and by the vertical component of the 

ground acceleration. On the other hand, the µ friction coefficient may vary pursuant to the sliding speed and to the 

normal pressure over the sliding surface. In this article, for simplicity, said variations are not considered and are 

assumed as constant values. These effects must be included in a more complete analysis, for future research. 

The friction coefficient increases quickly with the sliding speed until a certain value, beyond which it stays 

almost constant. In the case of contact between a Teflon slider and a stainless steel sliding surface, this effect is 

explained as follows. At low speeds and after the initial cycle, a very thin layer of Teflon is transferred to the 

stainless steel and the sliding occurs between both pieces of Teflon. At high speeds, big Teflon flakes are taken 

off the surface and grinded in the sliding interphase without being transferred to the steel, which derives in more 

friction. The increase of the friction coefficient with speed tends to stabilize at speeds around 10 cm/s. 

On the other hand, the friction coefficient is reduced with the contact pressure increase on the slider, up to 

a limit value beyond which it stays constant. The effect of the friction coefficient with pressure is less intuitive. 

As the pressure between the material sheets increase, the contact area increase is lower than the normal load 

increase, and therefore, the friction force increase is lower than the vertical load increase, and as the friction 

coefficient is the quotient between friction force and vertical load, its value decreases. 

2.6 Parametric analysis 

In steps 2.1 to 2.4, the method used to solve the problem is explained. Said steps have been programmed in the 

MATLAB software so as to enable a fast method application when the data of a problem is modified. In this article, 

a parametric analysis is performed, using the maximum values obtained from the analysis of the response history,  

so as to determine the influence of the isolation period, the friction coefficient of the FPS isolators and the 

slenderness ratio (H/R) of the tank in the seismic response of the latter when it has its base isolated. The 
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effectiveness of the isolation system is also analyzed by comparing the base fixed tank response. Different values 

are adopted for the abovementioned parameters. For the isolation period, 3.0s, 3.5s, 4.0s and 4.5s are taken. For 

the friction coefficient, 0.05, 0.10, 0.15 and 0.20 are taken. For the slenderness ratio, 0.5, 1.0, 1.5 and 2.0 are taken. 

Four seismic registries are used as an input for the system, so as to perform an analysis of the response history. 

Three of them has subduction origin (Algarrobo, Maule, Tōhoku) and one of them corresponds to a transcurrent 

near fault with impulsive characteristics (Landers). 

Table 1 – Seismic registries used in the analysis 

Earthquake place Date Momentum 

magnitude 

(Mw) 

Registry 

station 

Registry 

component 

PGA 

registry 

[g] 

Registry 

duration 

[s] 

Registry 

time 

step [s] 

Algarrobo, Chile 03-03-1985 8.0 Llolleo E-W 0.71 116.38 0.005 

Landers, United 

States 

28-06-1992 7.3 SCE24 N-S 0.78 48.09 0.01 

Maule, Chile 27-02-2010 8.8 Constitución E-W 0.54 143.27 0.005 

Tōhoku, Japan 11-03-2011 9.0 FKS016 N-S 1.22 299.99 0.01 

  The response is quantified by taking as an output the relative displacement of the convective mass (xc), the 

relative displacement of the isolation system (xb) that, due to the considerations performed in the model (rigid 

connection of the tank base to the also rigid walls) is equal to the displacement of the impulsive mass (xi), and the 

normalized base shear (that may be interpreted as the seismic coefficient or the effective acceleration of the system 

in the base that is expressed as a fraction of gravity acceleration). This last parameter is obtained in the case of the 

isolated base from Eq. (58) and for the fixed base case from the Housner proposed equation: 

𝐹𝑏 = √(𝑆𝑎𝑖 . 𝑚𝑖)
2 + (𝑆𝑎𝑐 . 𝑚𝑐)2 (59) 

     Where Sai and Sac are the spectral ordinates corresponding to the period of impulsive and convective masses, 

respectively. As the impulsive mass is rigidly connected to the floor (tank walls with no flexibility), Sai = PGA. 

Equation for Fb is conservative, since the maximum response of each vibration mode (impulsive and convective) 

is not produced at the same moment.   

3. Results  

3.1 Incidence of the isolation period in the tank response 

                                Broad tank (H/R=0.50)                                          Slender tank (H/R=2.00)      
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Fig. 2 – Variation of the xc convective displacement, the xb isolator displacement and the Fb/W normalized base 

shear with the change of Tb isolation period, for a broad tank (left) and for another slender tank (right) with a µ 

friction coefficient that is constant and equal to 0.05 

It is observed that, in most seismic registries used, the increase in the isolation period does not generate a noticeable 

reduction in the displacement of the tank convective mass, in charge of the swell in the free surface. It is clearly 

exposed that the increase of the isolation period leads to a significant reduction of the normalized base shear. 

Finally, it is noticed that, in all cases, the responses are lower for the slender tank than for the broad one.  

3.2 Incidence of the friction coefficient in the tank response 

                               Broad tank (H/R=0.50)                                              Slender tank (H/R=2.00)      

 

 

 

Fig. 3 – Variation of the xc convective displacement, the xb isolator displacement and the Fb/W normalized base 

shear with the change of the µ friction coefficient, for a broad tank (left) and for another slender tank (right) with 

an Tb isolation period that is constant and equal to 3.00s 
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It is observed that the increase of the friction coefficient has different effects according to the tank slenderness, 

causing a decrease of the convective displacement for broad tanks and its increase for the slender tanks. On the 

other hand, a higher friction coefficient decreases the isolator displacement and considerably increases the 

normalized base shear.   

3.3 Incidence of the slenderness ratio in the tank response 

                                             Tb=3.00s                                                                 Tb=4.50s                                                    

 

Fig. 4 – Variation of the xc convective displacement and the xb isolator displacement, for an isolation period that 

is Tb=3.00s (left) and another Tb=4.50s period (right) with a µ friction coefficient that is constant and equal to 

0.05s 

It is observed that the slender tanks show low responses. 

3.4 Effectiveness of the isolation system 

 

Fig. 5 – Variation of the Fb/W normalized base shear with the change of the slenderness ratio for a non-isolated 

tank and for an isolated tank with an isolation period that is Tb=3.00s and a friction coefficient that is µ=0.05 

The isolation system has proved to be effective with all the registries, increasing the reduction of the base shear 

with the increase of the slenderness ratio.  
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4. Conclusions  

As from the result analysis, it is concluded that: a) the technique of seismic isolation is effective to reduce the tank 

response; b) the response reduction increases with the slenderness ratio, and this is because, in slender tanks, the 

impulsive component of low period is the one controlling the response, and therefore, it is affected when the 

system period increases. In broad tanks, on the other hand, the convective component is of most importance, and 

since it has a superior period compared to the isolation system, no big reductions in the response are appreciated; 

c) the increase of the isolation period significantly reduces the response in terms of accelerations, but its incidence 

over the convective displacement, in charge of the swell in the free surface, is not determinant; d) the increase of 

the friction coefficient reduces the effectiveness of the isolation system in terms of accelerations, by increasing 

the normalized base shear, but it causes a reduction of the convective displacement in broad tanks, due to its 

dampening effect over the system; e) the friction coefficient turns to be a key parameter to balance the response 

of broad tanks, between a reduction of baseline acceleration and an increase of convective displacement. The 

optimum value of said coefficient must be analyzed for each particular seismic registry. 
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