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Abstract 
This paper summarizes a study aimed at evaluating damping ratios in buildings inferred from acceleration records obtained 
in instrumented buildings in California. The data was obtained by examining 119 seismic responses, coming from 24 
buildings, collected over the past 25 years by the California Strong Motion Instrumentation Program. All the records were 
analyzed using a least-squares system identification technique in the time domain. Using only reliable data, the variation of 
damping with modal frequencies is examined for all buildings. It is found that in 96% of the cases, the modal damping 
ratios increase approximately linearly with frequency, showing that damping in buildings is best represented by using a 
stiffness proportional damping. No evidence was found to suggest that a mass-proportional model could be appropriate. The 
distribution of the linear functions’ parameters are then studied and compared to other published damping 
recommendations. The results of this investigation are of paramount importance as they could lead to a drastic departure in 
how damping has been modeled in buildings to date. 
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1. Introduction 
The estimation of the response of buildings to seismic motion requires knowledge of the damping ratio of the 
different modes of vibration that contribute to it. Certain response quantities, like peak floor accelerations (PFA), 
peak floor velocities (PFV), and peak interstory drift ratios (PIDR) typically have a very significant contribution 
of higher modes. These response quantities are usually used as demand parameters for structural and non-
structural components. For example, PFA, are an important demand parameter for acceleration-sensitive 
components, such as elevators, air-conditioning systems, emergency power generator systems, etc.; PFV is 
commonly used to compute the response of components that are not rigidly attached to the floor, and whose 
response is dominated by sliding; and it has been shown that PRDR is the demand parameter that is best 
correlated with damage in buildings [1 - 4]. Consequently, an accurate estimation of these important engineering 
demand parameters requires an appropriate modeling of damping in higher modes.  

Originally proposed by John W. Strutt (aka Lord Rayleigh) in 1877, the so-called Rayleigh damping is the 
most common model used to incorporate damping in structures for assessing their seismic response. Lord 
Rayleigh [5] found that the system of equations could be uncoupled if what he referred to as “dissipative forces” 
F were assumed to be proportional to either the kinetic energy of the system T, or to the potential energy of the 
system V. He also noted that “the same exceptional reduction is possible when F is a linear function of T and V, 
or when T is itself of the same form as V”. When using this damping model in a matrix formulation, the 
damping matrix is assumed to be a linear combination of the mass and stiffness matrices with coefficients 
selected to obtain a desirable damping ratio at two modal periods/frequencies. Although this damping model 
leads to a convenient simplification that allows the uncoupling of modal equations in the case of linear response, 
the validity of the model has received limited attention. Far more discussion has been devoted to the use of the 
model in nonlinear structures, and in the case of the stiffness-proportional portion of the damping matrix, 
whether it should be proportional to the initial, secant or to the tangent stiffness; but little attention has been 
devoted to its validity even for the case of structures responding elastically. This lack of attention is, in part, due 
to the scarcity of high quality damping data for higher modes.  

There is only a handful of studies that investigate damping in higher modes. In 1972, Yokoo and Akiyama 
[6] collected damping data from the vibration tests of 17 steel buildings. They showed that the damping of 
higher modes increased with frequency, but that this relationship did not correspond to a stiffness proportional 
model. Three years later, Hart and Vasudevan [7] studied the records of 12 buildings subjected to the San 
Fernando Earthquake of 1971. They estimated the damping ratios of the first three modes using a simplified 
identification technique. They did not find a significant difference between the damping ratio of the fundamental 
mode and that of higher modes. Therefore, for earthquake-resistant design, they recommended using a constant 
damping value for all modes. In 1976, O’Rourke [8] analyzed the damping data available in the literature for 
buildings under wind motions. He showed that in 61% of the cases, the damping of the second mode was higher 
than in the first mode.  The same occurred between the third and second modes in 53% of the cases. Based on 
this study, Kareem [9] proposed a formula for modal damping based on the frequency ratio with respect to the 
fundamental mode. This equation followed a stiffness proportional model. Kareem and Gurley [10] examined 
the applicability of the latter predictor by testing it against new data from Tamura et al. [11] and other sources, 
concluding that it was a satisfactory representation of the observed trend. Satake and other investigators [12] 
studied the damping ratios of 205 buildings subjected mostly to low-amplitude motions such as ambient 
vibrations or forced vibration tests. They examined the first three translational modes, finding that damping 
increases with frequency at a rate lower than with stiffness proportional damping. 
 
 The Center for Engineering Strong Motion Data (CESMD) is a cooperative center that integrates the 
earthquake strong-motion data collected by the US Geological Survey (USGS) and the California Geological 
Survey (CGS). Their database of monitored structures includes buildings that have been subjected to multiple 
ground motions. This provides an opportunity to make numerous observations of the damping ratios in these 
buildings when subjected to earthquakes. The purpose of this work is to determine whether the Rayleigh model – 
widespread as it is – has empirical validity. To accomplish this, the relationship between modal damping ratios 
and their corresponding frequencies is examined for 24 buildings subjected to earthquake motions. All the 
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damping ratios were estimated using a parametric system identification technique based on the minimization of 
the error between the recorded and predicted responses in the time domain [13]. Each data point was carefully 
examined, passing a series of reliability tests to ensure that only high quality damping ratios were considered. 
The obtained results suggest that a new approach for modeling damping is necessary if we want to correctly 
capture the observed data. 

2. Rayleigh Damping 
Viscous damping is a simple mathematical representation of the energy dissipation in a structure. The 

damping matrix groups the contribution of all the sources of energy dissipation while the structure remains in its 
linear-elastic range. Given the wide variety of energy-dissipating mechanisms, the damping matrix cannot be 
assembled from the properties of the individual components of the structure, like the mass or stiffness matrices. 
Instead, the damping matrix is assembled from specifying the individual modal damping ratios. The Rayleigh 
damping model considers the damping matrix [C] to be proportional to the stiffness and mass matrices, [K] and 
[M] respectively. That is: 

 
][][][ 10 KaMaC +=  (1) 

where 0a and 1a are the proportionality constants, with units of s-1 and s, respectively. The damping ratio of the k-
th mode is then given by: 
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where kω corresponds to the circular frequency of the k-th mode. The constants 0a and 1a are obtained by 
specifying the damping ratios of two different modes and using Eq. (2). Fig. 1 shows the variation of damping 
with frequency. A stiffness-proportional model is defined by the second term of Eq. (2), obtaining a linear 
variation with frequency. Stiffness proportional damping can be interpreted as a model of the structure having 
dashpots between consecutive stories (Fig. 2, right). In this model, energy dissipation can be thought of as being 
the result of interstory motion, and the distribution of damping forces will be proportional to the relative 
velocities between floors. In a mass-proportional model, damping is defined by the first term of Eq. (2), 
obtaining a hyperbolic decrease of damping with frequency. This is equivalent to connecting a dashpot from 
each story to a fixed base (Fig. 2, left). In this case, the damping forces are proportional to each story’s relative 
velocity to the ground, causing a load profile that increases along the height of the building. Such a load profile 
is not feasible for an actual building because it would require the structure to be immersed in some sort of 

viscous fluid.
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Fig. 1 – Variation with frequency of the mass-proportional, stiffness proportional, and Rayleigh damping models 

 
Fig. 2 – Mass-proportional (left), and stiffness-proportional (right) damping models 

3. System Identification 
In a linear, modal superposition model, the response of each mode is governed by the following equation 

of motion: 
)()()(2)( 2 tutDtDtD gnnnnnn  −=++ ωξω  (3) 

where nD , nD , and nD  correspond to the relative acceleration, velocity, and displacement of a single degree of 
freedom system with unit mass, natural circular frequency nω , and critical damping ratio nξ ; gu  is the ground 

acceleration, and the sub index n denotes the mode number. The modal displacements nju  at the j-th degree of 
freedom of the structure can then be computed as: 

)()( tDtu nnjnnj φΓ=  (4) 

where nΓ  is the modal participation factor, and njφ  is the mode shape for mode n evaluated at the j-th degree of 

freedom. Multiplying Eq. (3) by njnφΓ  yields: 

)()()(2)( 2 tutututu gnjnnjnnjnnnj  φωξω Γ−=++  (5) 

where nju , nju , and nju correspond to the acceleration, velocity, and displacement of the j-th degree of freedom 
for mode n relative to the ground, respectively.  
 

If only N modes are considered to have a significant influence in the seismic response of the building, then 
the response of the structure can be calculated as: 

∑
=

Γ+≈
N

n
nnjng

t
j tDtutu

1
)()()(ˆ  φ  (6) 

where t
ju̂ is the predicted total (absolute) acceleration at the j-th degree of freedom. 
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The objective function J considered in this study is defined as the difference squared between the 
predicted relative acceleration u̂  and the one measured by the sensors in the building u . This difference is then 
normalized by the measured relative acceleration summed over all times and sensors: 
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Where Nsen is the number of sensors above ground level; t∆  and τ  are the time step and the number of points in 
the signal, respectively. The purpose of the normalization is to provide an equal weight to each sensor location. 
Please note that if this normalization is not done, the identification would converge towards parameters that 
produce a better fit in floors experiencing larger accelerations. 

The optimal set of parameters will be the one that minimizes the objective function: 

)(min ΘJ  (8) 

where, if the structure is assumed to be at rest at t = 0: 
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Details on the optimization problem, such as boundary and initial conditions, mode inclusion criteria, and 
reliability tests for the identified damping ratios can be found in reference [14]. 

4. Buildings Analyzed 
A total of 119 seismic responses, coming from 24 buildings in California, were analyzed. Table 1 shows a 

summary of the studied buildings, including their location, number of stories, height, lateral force resisting 
system, material, and number of analyzed records. All the data was obtained from the database of the California 
Strong Motion Instrumentation Program (CSMIP). For each recorded earthquake, the buildings in the data set 
were analyzed in two perpendicular directions: north-south (NS) and east-west (EW). Schematics of the 
buildings’ plans, elevations, and distribution of sensors can be obtained through the CSMIP website [15]. 

5. Identified Damping Ratios 
Fig. 3 and Fig. 4 show the relation between the identified damping ratios and natural frequencies for the 

48 cases analyzed.  Each plot also shows a linear regression of the data with its respective R2 value. An overall 
increase in damping with frequency is observed in 46 of the 48 cases (96%). It can be seen that this increment is 
roughly linear, suggesting that damping might be best represented by a stiffness-proportional model. The linear 
trend is better appreciated in tall, flexible buildings with identified values up to the 5th mode, like LA-52, LA-
54, and LA-32; but can also be clearly appreciated in lower, more rigid buildings like LA-09, or buildings with 
concrete shear walls like LA-14. A pure stiffness-proportional model, however, would require the intercept of 
the linear trend to be zero. This is not observed in any of the buildings. None of the buildings show evidence to 
suggest that a mass-proportional model could be appropriate either. The linear trends suggest that a better 
approach is to model damping ratio as consisting of two parts: a frequency independent term 0ξ  and a frequency 
proportional term: 
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ff ⋅+= βξξ 0)(  (10) 

For each building, 0ξ  and β  can be obtained from the intercepts and slopes of the linear regressions, 
respectively. Assuming a lognormal distribution for both parameters, estimates of the logarithmic mean ξµln and 

standard deviation ξσ ln  were calculated from the sample mean and the unbiased estimate of the log of the 
positive data. Fig. 5 shows the empirical cumulative distribution functions (CDF) of the slopes and intercepts 
obtained from the regression data of all buildings, as well as their corresponding fitted lognormal distributions.  
 

Table 1 – List of analyzed buildings 

# ID CSMIP ID Location Stories Height (m) Str. Sys* Material** # Records 
1 RE-07 23481 Redlands , CA 7 28.8 MF S 5 
2 RI-07 13702 Riverside , CA 7 49.1 BF S 5 
3 IR-08 13329 Irvine , CA 8 35.7 SW+MF S+RC 3 
4 CO-09 58638 Concord , CA 9 38.9 MF+BF S 4 
5 LA-09 24248 Los Angeles , CA 9 44.8 BF S 11 
6 PA-09 24571 Pasadena , CA 9 41.5 MF RC 6 
7 RI-10 13415 Riverside , CA 10 42.7 MF S 2 
8 WC-10 58364 Walnut Creek , CA 10 39.2 SW RC 8 
9 OA-11 58337 Oakland , CA 11 43.6 SW RC 7 
10 PA-12 24566 Pasadena , CA 12 51.2 MF S 6 
11 SO-13 24322 Sherman Oaks , CA 13 50.0 MF RC 3 
12 ES-14 14654 El Segundo , CA 14 61.9 MF+BF S 6 
13 LA-14 24236 Los Angeles , CA 14 45.3 SW RC 9 
14 LB-15 14533 Long Beach , CA 15 80.8 MF S 3 
15 RC-16 58615 Redwood City , CA 16 67.8 MF+BF S 3 
16 LA-19 24643 Los Angeles , CA 19 86.3 BF S 1 
17 SD-19 3603 San Diego , CA 19 80.8 BF S+RC 4 
18 LA-20 24464 North Hollywood , CA 20 51.5 MF RC 4 
19 OA-22 58312 Oakland , CA 22 100.0 MF S 2 
20 SD-21 3300 San Diego , CA 21 92.2 MF S 4 
21 LA-32 24288 Los Angeles , CA 32 102.7 MF S 8 
22 SF-47 58532 San Francisco , CA 47 171.9 MF S 1 
23 LA-52 24602 Los Angeles , CA 52 218.2 BF+OR S 7 
24 LA-54 24629 Los Angeles , CA 54 218.1 MF S 7 

(*) MF: Moment frames, BF: Braced frames, SW: Shear walls, OR: Outriggers   
(**) RC: Reinforced concrete, S: Steel 
 

 
 In stiffness-proportional damping, energy dissipation can be thought of as being proportional to the 
interstory motions. The mode shapes of higher modes induce larger interstory deformations in the building, so 
damping is expected to increase with the mode number, hence, with frequency. For the same reason, the rate of 
damping increment is expected to be higher in flexible buildings than in rigid buildings. Fig. 6 shows the 
empirical CDF of the slopes and intercepts, respectively, of all the steel buildings in the dataset, separated by a 
lateral resistant system. It can be seen that the moment frame buildings have, on average, a higher slope and 
intercept than braced frame buildings. This can be explained by the increased flexibility of one structural system 
over the other. The frequency independent term 0ξ varies largely from building to building because, as shown in 
Cruz and Miranda [14], the damping ratio of the fundamental period depends on the height of the building. 
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Fig. 3 – Identified damping ratios versus frequency 
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Fig. 4 – Identified damping ratios versus frequency 
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Fig. 5 – Cumulative distribution of the frequency proportional term β (left) and frequency independent term 0ξ  
(right), and corresponding fitted lognormal distributions 
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Fig. 6 – Cumulative distribution of β (left) and 0ξ  (right), for steel moment frames, and steel braced frames and 

mixed structural systems data; and their corresponding lognormal distribution fitted curves 

6. Comparison with Other Damping Recommendations 
This section compares the observed data, and corresponding regressions, with other damping models 

available in the literature. First, the evolution of damping with frequency is analyzed and compared to the model 
proposed by Kareem and Gurley [10]. Then, the evolution of damping with mode number is studied and 
compared to the results obtained by Satake et al. [12]. 

Kareem and Gurley [10] proposed a stiffness-proportional formula to compute the normalized damping 
ratio of the n-th ξn  /ξ1, as a linear function of the normalized natural frequencies fn  / f1: 









−⋅+= 11

11 f
fC nn

ξ
ξ  (11) 

9 

 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

 

Using the data from Yokoo and Akiyama [6], they determined the constant C to be approximately equal to 0.38.  
In the current investigation, for each analyzed building, an estimate 1

~ξ  of the damping ratio of the first mode 
was computed by evaluating the linear regressions shown in Fig. 3 and Fig. 4 at their corresponding average 
inferred fundamental frequency 1

~f . Fig. 7 shows the variation of damping with frequency for all buildings, 

normalized by 1
~ξ  and 1

~f , respectively.  A linear regression of the data suggests that the value of C should be 
corrected to 0.12. The figure compares the obtained linear regression with the values proposed by Kareem and 
Gurley [10]. It can be seen that this recommendation significantly overestimates the inferred damping ratios. Fig. 
7 also shows the prediction of a Rayleigh damping model. This model was calculated with Eq. (2) assuming the 
same damping ratio for two specified frequencies: f1 and 5f1, a common assumption in the engineering practice. 
It can be seen that the Rayleigh damping model consistently underestimates damping at all the modal 
frequencies that contribute to the structural response. The mass and stiffness proportional damping models 
always provide lower damping values than the Rayleigh model (Fig. 1). Therefore none of these models, by 
themselves, are good approximations of the observed trend.  

 
Fig. 7 – Normalized damping and comparison of different damping models 

 
Satake et al. [12] studied the variation of damping ratios between two adjacent modes, proposing the 

following expression: 

1−= nn αξξ  (12) 

They recommended α values based on the building’s material: between 1.3 and 1.4 for steel framed buildings, 
1.4 for reinforced concrete buildings, and between 1.7 and 1.8 for combined steel and concrete buildings. These 
values, however, may only be applied to the lower modes (second and third) of high-rise buildings. Table 2 
shows the mean and standard deviation of the α values calculated in the current investigation. They consider the 
identified damping ratios of all the buildings in the dataset. For the second and third modes, the mean α values  
are 1.46 and 1.29, respectively, which is very close to the approximate values recommended by Satake et al. 
[12]. Nevertheless, this approach is not recommended because it does not take into account the frequency 
dependency of damping ratios. A better approach is to analyze the evolution of damping with the mode number 
n, as shown in Fig. 8. It can be seen that damping clearly increases with mode number; a linear regression of the 
data yields: 

77.027.0
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+= nn

ξ
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Table 2 – Statistics of the quotient between damping ratios of two consecutive modes 

Mode number n 2 3 4 5 
Mean of α µα 1.46 1.29 1.19 1.1 
Standard deviation σα 0.57 0.72 0.33 0.27 

 

 
Fig. 8 – Variation of normalized damping with mode number 

 

7. Conclusions 
The validity of the mass-proportional and stiffness-proportional assumptions in Rayleigh damping was 

examined by studying damping ratios inferred from the analysis of 119 seismic responses, coming from 24 
buildings in California. It was shown that modal damping ratios increased with frequency in 96% of the analyzed 
cases, and that the rate of increment was approximately linear. It was concluded that damping is best represented 
by the sum of a frequency independent term and stiffness-proportional term. These parameters were shown to be 
approximately distributed as lognormal random variables, with logarithmic means of 1.04 and -0.15, and 
logarithmic standard deviations of 0.56 and 0.75, respectively. No evidence was found to suggest that a mass-
proportional model should be appropriate. It was found that the Rayleigh damping model, when applied using 
typical engineering practice assumptions, leads to an underestimation of damping of higher modes that 
contribute to the seismic response therefore also leading to an overestimation of the seismic response. 
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