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Abstract 
The Building Research Institute (BRI) of Japan is a national institute engaged in research and development in the fields of 
architecture, building engineering, and urban planning. The BRI operates the strong motion network that covers buildings in 
major cities across Japan, as part of its research activities. Eighty-five strong motion stations are currently in operation. 

The dynamic soil-structure interaction (SSI) is one of key issues, which remain to be fully discussed, on the seismic safety 
of building structures. The complicated SSI phenomena are likely to be affected by the factors such as building structures, 
foundation types and soil conditions. Therefore, an observation of the actual SSI phenomena is useful in investigating their 
effects on the seismic safety. From a view of contribution to the SSI study, sensors have been installed in one third of the 
buildings in the BRI strong motion network both in doors and on the ground. 

In order to investigate actual SSI effects, twelve buildings having sensors both in doors and on the ground were selected 
from among those in the BRI strong motion network. The buildings vary in the number of stories, foundation type and 
ground condition. Furthermore, five earthquakes including the 2011 Tohoku Earthquake were chosen for obtaining strong 
motion data to be analyzed. 

First, peak accelerations were examined in order to discuss the amplification level of the earthquake motions across the area 
from the ground to the building top. The peak accelerations at the building foundation were generally reduced compared 
with those on the ground, and then were amplified by the building structures. The peak accelerations at the building top 
were 2 to 5 times higher than that at the building foundation. 

Second, the dynamic characteristics of the swaying-building and building systems were minutely investigated. The natural 
period of the swaying-building system was longer than that of the building system in every case. A difference in natural 
period between the swaying-building and building systems was significant in the low-rise buildings. A difference in 
damping ratio between the swaying-building and building systems was also large in the low-rise buildings. An increase in 
natural period caused by the Tohoku Earthquake was observed in many of the middle-rise buildings. 

Finally, the seismic input loss was discussed using the Fourier spectrum ratios between acceleration data on the ground and 
at the building foundation. Although the spectrum ratios of all the cases decreased in the short period range, their shapes 
were different depending on the building. 

The paper tried to clarify variation in SSI effect considering their relevance to various parameters, such as the building 
properties, foundation type and ground condition. We need a further investigation in order to discuss the contribution of 
those parameters to the seismic response of buildings. 

Keywords: Soil-structure interaction, 2011 Tohoku Earthquake, Strong motion data 
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1. Introduction 
The Building Research Institute (BRI) of Japan is a national institute engaged in research and development in the 
fields of architecture, building engineering, and urban planning. The BRI operates the strong motion network 
that covers buildings in major cities across Japan, as part of its research activities. 

The dynamic soil-structure interaction (SSI) is one of key issues, which remain to be fully discussed, on 
the seismic safety of building structures. The complicated SSI phenomena are likely to be affected by the factors 
such as the building structure, foundation type and soil condition. Therefore, an observation of the actual 
phenomena is useful in investigating the SSI effects. From a view of contribution to the SSI study, sensors have 
been installed in one third of the buildings in the BRI strong motion network both in doors and on the ground. 

On 11 March, 2011, an enormous earthquake with a moment magnitude (Mw) of 9.0 occurred off the 
Pacific coast of northeast Japan. The earthquake, known as the Great East Japan Earthquake (hereafter, simply 
referred to as the Tohoku Earthquake), caused a monstrous tsunami and massive damage to eastern Japan. 
Seventy-nine stations in the BRI strong motion network were running at the time of the earthquake. Among 
them, 61 stations were triggered [1]. 

We select buildings having a sensor on the ground in the high seismic intensity area at the time of the 
2011 Tohoku Earthquake to discuss the SSI effects under the severe shaking condition. Then a change in the 
dynamic characteristics of the buildings is examined considering the SSI effects. Moreover, the seismic input 
loss from the buildings is investigated through the Fourier spectrum analysis. 

2. Target Buildings and Earthquakes 
Twelve low- and middle-rise buildings are selected for the study as listed in Table 1. The locations of the 
buildings are plotted in Fig. 1. The buildings are located in and around Tokyo, the capital of Japan. They have 
the reinforced concrete (RC) or steel framed reinforced concrete (SRC) structures with three to nine stories. The 
buildings B, D, F, G and I to L have a basement floor(s). The buildings from B to F, H and J have pile 
foundations. The ground conditions of the sites of buildings C, E and F are soft according to the Building 
Standard Law of Japan. In this paper, the long and short side directions of each building are referred to as X- and 
Y-directions, respectively. 

Table 1 – Target buildings for analysis 

Code Location Structure Floors Basement 
Floors Foundation Soil type 

A Kodaira City RC 3  Mat Medium 
B Shibuya Ward RC 4 1 Pile Medium 
C Miyashiro Town RC 6  Pile Soft 
D Yachiyo City RC 6 1 Pile Medium 
E Minato Ward SRC 7  Pile Soft 
F Misato City SRC 7 1 Pile Soft 
G Tsukuba City SRC 7 1 Mat Medium 
H Funabashi City RC 8  Pile Medium 
I Tsukuba City SRC 8 1 Mat Medium 
J Toda City SRC 8 1 Pile Medium 
K Chiba City SRC 8 1 Mat Medium 
L Bunkyo Ward SRC 9 2 Mat Medium 
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Fig. 1 – Locations of target buildings 

 

In order to discuss a change in dynamic characteristics including the soil-structure interaction effects, five 
earthquakes are chosen as shown in Table 2. The earthquake EQ3 is the mainshock of the Tohoku Earthquake of 
March 11, 2011. The earthquakes EQ1 and EQ2 are selected to obtain data on strong motion with moderate 
seismic intensity before the Tohoku Earthquake. The earthquakes EQ4 and EQ5 are large aftershocks of the 
Tohoku Earthquake. PGA in Table 2 indicates peak ground accelerations at the site of the building L, which is 
close to the centre of Tokyo. The peak ground accelerations of EQ1, EQ2, EQ4 and EQ5 are 1/20 to 1/5 of that 
of the Tohoku Earthquake. 

The locations of the epicentres of the target earthquakes are plotted in Fig 2. The target buildings are 
enclosed in the green box in Fig. 2. The closest earthquake to the sites of these buildings is EQ5 that is 105 km 
away from the buildings G and I. The buildings are at distances of more than 300 km from the epicentres of 
other earthquakes. 

Table 2 – Target earthquakes for analysis 

No. Date time M* Depth 
(km) Location PGA** 

(cm/s2) 
EQ1 2008/07/24 00:26 6.8 108 N Coast, Iwate Pref. 10 
EQ2 2009/08/09 19:55 6.8 333 S Off Tokaido 46 
EQ3 2011/03/11 14:46 9.0 24 Off Sanriku 218 
EQ4 2011/04/07 23:32 7.2 66 Off Miyagi Pref. 23 
EQ5 2011/04/11 17:16 7.0 6 Hama-dori, Fukushima Pref. 32 

*: Moment magnitude for EQ3, Japan Meteorological Agency (JMA) magnitude for others. 
**: Peak ground acceleration at the site of the building L. 
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Fig. 2 – Locations of epicentres (buildings are situated in the green rectangle) 

 

3. Analytical Method 
The soil-structure interaction is often discussed using a simple model having springs and dampers of swaying 
and rocking as shown on the left side of Fig. 3. In this model, five measuring points are necessary to separate 
each movement from the strong motion data. Each strong motion station listed in Table 1 has an acceleration 
sensor on the ground, with no sensors that make it possible to estimate rocking movement. Therefore, we adopt a 
swaying model that has a horizontal spring and a damper between the foundation and ground as indicated on the 
right side of Fig. 3. The bottommost and topmost sensors are adopted as the sensors at the building foundation 
and top of each building. 
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Fig. 3 – SSI models 
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Using the swaying model, two input-output systems are assumed as described in Table 3 [2]. With the 
assumption that movements on the ground (xG) and at the building top (xT) are the input and output, respectively, 
the system indicates characteristics including the effect of the swaying in addition to the building deformation. 
The system from the building foundation (xF) to the building top (xT) reflects dynamic characteristics of the 
building. The two systems (xG to xT and xF to xT) are hereafter referred to as the swaying-building (SB) and 
building (B) systems, respectively. 

Table 3 – Input-output systems to be identified [2] 

System Input Output Parameter 
Swaying-building (SB) uG (xG) uG + uS + uB (xT) TSB, hSB 

Building (B) uG + uS (xF) uG + uS + uB (xT) TB, hB 
 

The natural period and damping ratio are estimated with a single-degree-of-freedom (SDOF) system 
assumed for each of the input-output systems. The system identification is made by the parameter optimization 
technique. Since only two parameters, the natural period and damping ratio, are used to express the dynamic 
characteristics of the SDOF system, the grid search method is adopted as an identification algorithm. The fitness 
of a search point is evaluated by means of the integral square difference between the observed and simulated 
response accelerations [3, 4]. 

4. Peak Accelerations 
The amplification level of earthquake motions is frequently discussed through the comparison between peak 
acceleration values at measuring points. This chapter investigates peak accelerations and a difference among 
them from this point of view. 

Fig. 4 (a) plots peak accelerations on the ground (G), at the building foundation (F) and at the building top 
(T) in the X-direction of each building. Square, triangle, circle, inverted triangle and diamond symbols represent 
the values of EQ1, EQ2, EQ3, EQ4 and EQ5, respectively. Red, blue and green symbols correspond to the 
values on the ground, at the building foundation and at the building top, respectively. Letter codes of the 
buildings having a basement floor(s), pile foundation and soft ground condition are overprinted by squares ( ), 
diamonds ( ) and underscores ( ), respectively. The peak accelerations on the ground during the Tohoku 
Earthquake (EQ3) exceeded 100 cm/s2 at every strong motion station. The peak accelerations at the building top 
during the Tohoku Earthquake widely varied between 129 cm/s2 and 585 cm/s2. 

Fig. 4 (b) plots ratios of peak accelerations between the ground and building foundation (F/G), between 
the ground and building top (T/G), and between the building foundation and building top (T/F). Red, blue and 
green symbols indicate the ratios of F/G, T/G and T/F, respectively. The ratio F/G, which is a difference in peak 
acceleration between the ground and foundation, has values between 0.3 and 1.0. The ratio of F/G widely varies 
among the buildings, but the possible causes of the differences are not clear. The peak acceleration ratios T/G, 
which represent the amplification level across the area from the ground to building top, are varied between 1.0 
and 4.0. Although the ratios of low-rise buildings (A to E) show small values (< 1.5), the ratios of middle-rise 
buildings are larger than 2.0. The peak acceleration ratio T/F, which characterises the amplification level 
according to the building structure, is dispersed between 2.0 and 5.0 except the buildings A, B and E. 
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Fig. 4 – Peak accelerations and peak acceleration ratios in X-direction of each building 

 

Fig. 5 (a) and Fig. 5 (b) plot the peak accelerations and peak acceleration ratios in the Y-direction of each 
building, respectively. The symbols have the same meanings as those in Fig. 4. The general tendency of the peak 
accelerations is similar to that in the X-direction shown in Fig. 4. Some differences appear in the peak 
acceleration ratios of the low-rise buildings. The ratios T/G and T/F of the buildings A and B are about 2.0, 
larger than those in the X-directions. The differences among the buildings are generally small compared with 
those in the X-direction. This is affected by a difference in vibration mode depending on the direction. 
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Fig. 5 – Peak accelerations and peak acceleration ratios in Y-direction of each building 
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5. Change in Dynamic Characteristics 
When the physical properties of the ground and/or building change due to severe earthquake motions, the 
dynamic characteristics of the systems is supposed to be influenced. Therefore, the change in natural periods and 
damping ratios is discussed in this chapter. 

Fig. 6 (a) and Fig. 6 (b) plot identified natural periods (TSB, TB) and damping ratios (hSB, hB) based on the 
strong motion data on five earthquakes in the X-direction of each building, respectively. Square, triangle, circle, 
inverted triangle and diamond symbols represent EQ1, EQ2, EQ3, EQ4 and EQ5, respectively. Red and blue 
symbols correspond to the values of the swaying-building system and building system, respectively. Fig. 6 (c) 
indicates the ratios of the natural periods of EQ2 to EQ5 to those of EQ1. Fig. 6 (d) shows the ratios of the 
natural periods of the swaying-building system (TSB) to that of the building system (TB). 

Looking at Fig. 6 (a), apparent differences between TSB and TB are found in buildings A, B and E. As 
known from Fig. 6 (d), the TSB values of those buildings are two to four times larger than the TB values. TSB of 
other buildings are not so different from TB. Comparing the natural periods identified from different 
earthquakes, a clear change is observed in the buildings G through K. The natural periods of those buildings 
increased 20% to 40%, which was caused by the Tohoku Earthquake (EQ3). The natural periods of these 
building by EQ4 and EQ5 were similar to or longer than that of EQ3. The effect of swaying on those buildings is 
small because the natural period ratios are nearly 1.0 as shown in Fig. 6 (d). Therefore, any change in natural 
period was caused due to structural and/or non-structural damage to the buildings by the Tohoku Earthquake. 

Looking at the damping ratios in Fig. 6 (b), large values of hSB are found for the buildings A and B. There 
is a possibility that the identification was failed due to noisy data on the strong motion. Generally, large 
differences between hSB and hB are observed in low-rise buildings. 
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Fig. 6 – Natural periods, damping ratios and natural period ratios in X-direction of each building 
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Fig. 7 (a) and Fig. 7 (b) plot identified natural periods (TSB, TB) and damping ratios (hSB, hB) in the Y-
direction of each building, respectively. The meanings of the symbols are the same as those in Fig. 6. 
Differences between TSB and TB in the Y-directions of the buildings A, B and F are small in comparison with 
those in the X-direction. It suggests that the swaying effect may be significantly affected by the plane shape of 
the building. The trend toward an increase in natural period caused by the Tohoku Earthquake is also observed in 
the X-direction. 
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Fig. 7 – Natural periods, damping ratios and natural period ratios in Y-direction of each building 

6. Input Loss of Seismic Motions 
The difference between the earthquake motions on the ground and at the building foundation is known as the 
kinematic soil-structure interaction. It is also discussed in terms of the input loss of the seismic motions. The 
input loss must be a function of the period (or frequency) affected by various parameters, such as the building 
properties, foundation type, embedment, ground condition, and so on. 

Fig. 8 shows Fourier amplitude spectrum ratios between data on the strong motion data on the ground and 
at the building foundation in the X-direction of each building. In the calculation of the spectrum ratio, the spectra 
are smoothed using the Parzen window with the window width of 0.1 Hz. The Fourier amplitude ratio represents 
the input loss of the seismic motion assuming that the input position is the ground surface. Red lines indicate 
Fourier amplitude spectrum ratios of the strong motion data of the Tohoku Earthquake (EQ3). Blue lines 
represent the spectrum ratios of EQ1 and EQ2, which are the earthquakes before the Tohoku Earthquake. Green 
lines correspond to the earthquakes EQ4 and EQ5, which are the aftershocks of the Tohoku Earthquake. Grey 
dashed and dotted lines indicate the natural periods of the swaying-building system ((TSB) and the building 
system (TB) in the X-direction of each building during the Tohoku Earthquake, respectively. 
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Although the shapes of the spectrum ratios vary among the buildings, the spectrum ratios generally 
decrease in the short period range and have flat shapes in the long period range. The spectrum ratios of some 
buildings have a peak around the border of the flat zone. It seems that the peaks of the buildings having 
basement floors are low. A clear correlation cannot be observed between the shape of the spectrum ratios and the 
natural periods. 

Paying attention to the differences among the earthquakes, the change in the shapes of the spectrum ratios 
between the before and after the Tohoku Earthquake can be observed in the buildings C, D, G, H and K. The 
periods, in which the spectrum ratios change from the low to flat zones, increased in those buildings after the 
Tohoku Earthquake. It is considered that some changes occurred on the ground and/or at the building foundation 
by the Tohoku Earthquake. 
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Fig. 8 – Fourier amplitude ratios of building foundation to ground surface in X-direction of each building 

 

Fig. 9 plots the Fourier amplitude spectrum ratios between data on the strong motion data on the ground 
and at the building foundation in the Y-direction of each building. The meanings of lines are the same as those in 
Fig. 8. Grey dashed and dotted lines indicate the natural periods TSB and TB in the Y-direction of each building 
for the Tohoku Earthquake, respectively. 

The shapes of the spectrum ratios are similar to those in the X-direction. However, small differences can 
be found among some buildings. For instance, the spectrum ratios of row-rise buildings, such as the buildings A 
and B, have different shapes in the short period range between the X- and Y-directions. The spectrum ratios in 
the Y-directions of the buildings B, E and K have a larger variation in the short period range than in the X-
direction. 

9 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

0.1

1

A
m

p.
 R

at
io

0.1 10
Period (s)

5

0.1

1

A
m

p.
 R

at
io

5

0.1

1

A
m

p.
 R

at
io

5

0.1

1

A
m

p.
 R

at
io

5

1 0.1 10
Period (s)

1 0.1 10
Period (s)

1

Bldg. A Bldg. B Bldg. C

Bldg. D Bldg. E Bldg. F

Bldg. G Bldg. H Bldg. I

Bldg. J Bldg. K Bldg. L

EQ1, EQ2
EQ3
EQ4, EQ5

 
Fig. 9 – Fourier amplitude ratios of building foundation to ground surface in Y-direction of each building 

7. Conclusions  
Dynamic characteristics of twelve buildings are discussed considering the swaying effect based on strong motion 
data of five earthquakes including the Tohoku Earthquake. 

The ratio of peak acceleration at the building foundation to the ground (F/G) has values between 0.3 and 
1.0 and widely varies among the buildings. The ratio of peak acceleration at the building top to the ground (T/G) 
is distributed between 1.0 and 4.0 and are small in low-rise buildings. The swaying effect is relatively large in 
the small buildings. 

Comparing the natural periods of the swaying-building and building systems, an increase in natural period 
was observed in all cases. In the long side (X) directions of low-rise buildings, such as the buildings A, B and E, 
the differences were relatively large. A difference in damping ratio between the swaying-building and building 
systems was also big in the low-rise buildings. The natural periods of the meddle-rise buildings became longer 
after the Tohoku Earthquake than before. This may cause seismic damage to the buildings. 

The Fourier spectrum ratio of the acceleration data at the building foundation to the ground decreased in 
the short period range in all the cases. As contrast with the complicated shapes in the short period range, the 
spectrum ratios in the long period range were about 1.0 and flat. In some buildings, a difference in spectrum ratio 
was observed between before and after the Tohoku Earthquake. 

The soil-structure interaction may be affected by various parameters, such as the building properties, 
foundation type, embedment, and ground condition. We need a further investigation in order to discuss the 
contribution of those parameters to the seismic response of buildings. 
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