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Abstract 
In this paper, the force and displacement sensing data from full-scale experimental tests of a base-isolated structure are 
analyzed to create a model for the hysteretic behavior observed in the isolators; the intent is that this model could be used 
for future nonlinear finite element studies and simulations.  Displacement data is available in both of the horizontal planar 
directions of the motion, meaning that the hysteric force will be bi-axial and, thus, modeled by coupled nonlinear 
differential equations.  A Bouc-Wen model was assumed for parameter fitting.  Identification was first performed using the 
random base motions; however, it was revealed that the amplitudes of motion were small enough that the isolators exhibited 
generally linear behavior.  A series of tests were also conducted in which the input intensity of both historical and synthetic 
earthquakes was gradually increased.  Due to the well-documented amplitude dependence of nonlinear phenomena, the tests 
with the largest input amplitudes were using for identification; the resulting parameters were applied to the lower intensity 
tests to evaluate the model’s ability to predict responses of different levels of excitation. 

Keywords: large-scale experimental testing; nonlinear identification; hysteresis 
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1. Introduction 
Seismic protective systems, such as base-isolation and passive damping devices, perform a vital function, 
mitigating a building’s response to seismic input, thereby ensuring the safety of the building’s occupants.  These 
systems have been the focus of benchmark studies [1] and scaled experiments [2,3], but full-scale testing of 
buildings and structures incorporating these systems is much less common.  The paucity of full-scale tests can be 
largely attributed to the immense costs associated with those experiments, but conducting tests in which large 
building specimens are subjected to earthquake excitations offers researchers a trove of valuable information 
about the building’s dynamics.  These tests become all the more necessary when innovative seismic protection 
systems are included in the building’s design.  The fact that the governing dynamics of these systems are often 
highly nonlinear creates a notable challenge when attempting to predict the building’s response, particularly for 
excitations not included in the experimental testing regime, such as other hazardous natural excitations [4]; 
properly designing and calibrating models of base isolators that accurately capture the nonlinear behavior often 
proves extremely difficult.  Further, different isolators and devices require their own unique models based on 
their governing physics and behavior.  Additionally, bi-axial structural interaction has been shown to contribute 
significantly to the nonlinear response for structures under earthquake excitation [5]. 

The researchers at E-Defense (a part of the Japan’s National Research Institute for Earth Science and 
Disaster Resilience, NIED), a unique facility capable of testing full-scale structures, designed and constructed a 
four-story base-isolated building to test and study, in part, the performance of the isolation layer when subjected 
to strong impulsive and long-period excitations [6].  This base-isolated building is particularly compelling 
because its isolation layer is non-homogeneous, as it is composed of several disparate devices: rubber bearings, 
elastic sliding bearings, passive metallic yielding dampers, and controllable oil dampers with solenoids. The 
structure was constructed in late 2012 and early 2013, and underwent initial testing in March 2013.  A variety of 
sensors, including displacement and force transducers, were mounted within the isolation layer to measure its 
response to the shake table excitations.  Subsequent August 2013 tests, on which this study is based, included 
both random base motions and historical and synthetic ground motions.  The purpose of this study was to learn 
how the various devices performed under different excitations and to explore whether it is possible to build 
predictive models that accurately capture the devices’ behaviors. 

Modeling the behavior of passive base-isolation systems has been the subject of many recent studies [7], 
including those more specifically focused on lead-rubber bearings [8], sliding bearings [9], friction pendulum 
systems [10,11], rolling isolation [12], and metallic dampers [13,14].  Identification of nonlinear hysteretic 
systems may be tackled using either nonparametric [15] or parametric [16,17,18] techniques.  This study seeks to 
create bi-axial models for the hysteresis observed in the sliding bearings and steel dampers during one of the 
simulated earthquake tests based on the nonlinear dynamic formulation originally presented in Nagarajaiah et al. 
[2].  These models are then applied to measurements from other tests, as well as the other devices, to determine 
their ability to serve as generalized models.  The experimental set-up and identification methodology are 
presented first, followed by a discussion of the identification results.  Conclusions and proposed avenues for 
future research are presented at the end. 

2. Experimental Set-up 
The test structure rests upon E-Defense’s shake table, which has a six degree-of-freedom controller and is 
capable of three-dimensional seismic simulations [6].  The structure consists of a four story, asymmetric, 
moment frame with a setback and coupled transverse-torsional motion (Fig. 1). The 690-ton superstructure has 
dimensions of approximately 14m by 10m by 15m and was built to satisfy Japanese design code. As previously 
detailed, the building sits on an extensive passive base-isolation layer composed of rubber bearings, sliding 
bearings, passive steel dampers and oil dampers with solenoids. Tests conducted during a three-week span in 
August 2013, on which this study is based, included both random base motions and historical and synthetic 
ground motions; all but the very last day of testing featured the controllable dampers acting in a purely passive 
mode. 
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Fig. 1 – Elevation view (left) of E-Defense building used for testing and isolation-layer plan view (right)  

The isolation layer was extensively instrumented, with sensors measuring differential displacements at 
eight locations (4 in each of the X and Y directions, respectively) and force transducers measuring the X, Y and Z 
directional components of the forces in each of the different isolation-layer devices.  All sensors featured a 
sampling rate of 1 kHz; the signals were passed through a low-pass filter with a cutoff frequency of 35 Hz. 

Numerous tests were conducted over that three-week span, but this study focuses on the first day of testing 
(8/8/2013).  During these tests, the base-isolation layer was configured such that each type of device is used 
twice, for a total of six isolation-layer devices, i.e., two rubber bearings (RB1 and RB2), two sliding bearings 
(SB1 and SB2), and two passive yielding steel damper pairs (SDP1 and SDP2), as shown in Fig. 1.  The oil 
dampers were excluded from these initial tests.  The first several tests (Tests 001 – 012) subjected the building to 
random excitation along different table axes, i.e., X, Y and Z directions, and linear combinations thereof.  Brief 
descriptions of the random excitation tests relevant to this study are given in Table 1.  

Table 1 – Random excitation tests included in this study 

Test No. Brief Description 
003 Random excitation along the X axis of shake table 
004 Random excitation along the Y axis of shake table 
010 Random excitation across all shake table DOFs 

 
The next four tests (Tests 013 – 016) subjected the building to scaled versions of the March 2011 Mw9.0 

Tohoku-Oki earthquake (K-NET Furukawa record), each with a duration of 315 seconds.  As a means of 
comparing the relative intensity of the earthquake excitations from Tests 013 – 016, Table 2 presents the root-
mean-square (RMS) of the accelerations measured on the shake table in its X and Y directions.  The progression 
in RMS, and thus intensity, is obvious.  The largest jump was observed from Test 013 to 014; Test 016 has the 
largest RMS values in both directions. 

Table 2 – Comparison of RMS values measured on shake table for Tests 013 – 016 

Sensor Dir. Test 013 Test 014 Test 015 Test 016 
X 25.87 cm/s2 40.59 cm/s2 39.15 cm/s2 41.19 cm/s2 
Y 26.17 cm/s2 41.26 cm/s2 41.57 cm/s2 43.25 cm/s2 

3. Identification Methodology 
The displacement data includes both horizontal planar directions of table motion, i.e., the X–Y plane; given an 
assumption of rigidity for the table, the displacement sensors can be used to find the generalized displacements, 
x, y and θ, across the isolation layer.  Thus, the displacements for a given isolation-layer device at any location 
can then be computed, allowing for the restoring force–displacement behavior to be established in the x and y 
directions for each isolation-layer device, where “restoring force” is used herein to refer to the total measured 
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force for a given isolation-layer device in a chosen direction.  As the devices are governed by different physics, 
different models are needed for capturing and predicting the restoring force behaviors. These models are created 
using the force and displacement measurement data.   

The behavior of the sliding bearing is governed by friction; one of the simplest friction-based models for a 
sliding bearing [19] is shown in Eq. (1) 

	 q = µsWSB# sgn( !u) 	 (1) 

where q
 
is the restoring force, µs  is the coefficient of sliding friction, WSB#  is the bearing pressure (weight) on 

the sliding bearing (SB1 or SB2), !u  is the velocity, and sgn(⋅)  is the sign (or signum) function.  The expression 
in Eq. (1) is for uni-axial motion and would therefore be applied to either the motion in the x or y direction.   

A more complex model for sliding bearings has been developed that takes into account both biaxial 
motion and hysteretic behavior [3].  Since the x and y components of both restoring forces and displacements are 
available, modeling the biaxial interaction is possible in this case and may be accomplished using coupled 
nonlinear differential equations.  This modified model for biaxial interaction in the sliding bearings is shown in 
Eq. (2). 
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where qx  and qy  are the restoring forces in the x and y directions, respectively, and Zx  and Zy  are the 
corresponding non-dimensional hysteretic variables.  These hysteretic components are described by a Bouc-Wen 
model [20], which is subject to the following coupled first-order differential equations  

	 Dy !Zx = A !ux −β !uxZx Zx −γ !uxZx
2 −β !uyZy Zx −γ !uyZxZy 	 (3)	

	 Dy !Zy = A !uy −β !uyZy Zy −γ !uyZy
2 −β !uxZx Zy −γ !uxZxZy 	 (4)	

where A, β and γ represent design parameters within the equations that control the shape of the hysteresis, Dy  
represents the yield displacement, and ux  and uy  are the responses in the x and y directions, respectively. 

In contrast to the sliding bearing, elastic models better describe the observed behavior in the rubber 
bearings and steel dampers.  As with the sliding bearing, the restoring forces will be modeled in a manner that 
captures the biaxial interaction and hysteretic behavior.  Following the example in Park et al. [5], the restoring 
forces in either the rubber bearing or steel damper may be modeled using a system of equations 
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	 (5)	

in which ux and uy  are the displacements, α  represents the post-yielding stiffness ratio, K is the initial stiffness 
matrix (of dimension 2 ×  2) and Zx  and Zy  are the familiar hysteretic components of the response.  As before, 
these hysteretic components are governed by the Bouc-Wen model. 

The restoring forces and displacements are known for all devices; the velocities are estimated using a 
central finite difference of the displacements.  The remaining coefficients and response quantities for the 
respective models were assumed unknown.  The unknown model parameters (which differed between models) 
are identified using a nonlinear optimization scheme.  The cost function for the optimization is shown in Eq. (6), 
where q̂x  and q̂y  represent the model-based estimates of the restoring forces and θ  is the vector of unknown 
coefficients and parameters. 

	 J = q̂x k,θ( )− qx k( )⎡
⎣

⎤
⎦

 2
+ q̂y k,θ( )− qy k( )⎡
⎣

⎤
⎦

 2

k
∑ 	 (6)	
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4. Results and Discussion 
4.1 Random excitation tests 
As shown in Table 1, Test 003 subjected the base-isolated structure to random excitation along the X axis; thus, 
data recorded during this test can be used to establish preliminary estimates of the linear stiffness in the 
x direction for each of the isolation devices. Fig. 2 displays the restoring force-displacement relationships for one 
of each of the devices. 

Stiffness estimates are included in Fig. 2 to better elucidate the differences between the devices, e.g., the 
steel damper is clearly the stiffest device.  Additional restoring force components, such as damping, are certainly 
present, especially for the steel dampers; however, only focusing on the stiffness component allows for that 
parameter to simply be tuned, instead of fully estimated, for the more complex hysteretic models. Following a 
similar procedure for Test 004 reveals very similar y–directional stiffness estimates, giving credence to the 
applicability of bi-directional models for these devices. 

The adequacy of the initial linear stiffness values was evaluated using Test 010, as the multi-directional 
random excitation still resulted in primarily linear responses in all of the devices.  Fig. 3 demonstrates that the 
linear stiffness estimates for Steel Damper Pair 1 from Tests 003 and 004 (shown as black lines) fit the restoring 
forces from Test 010 quite well.  Similar figures could also be made for the sliding bearing and rubber bearing, 
demonstrating that those devices also evinced a good match between their estimates from Tests 003 and 004 and 
the measurements from Test 010.  The plots in Fig. 3 also exhibit the strong similarity between the restoring 
forces, further emphasizing the biaxial nature of the responses.  Additionally, the preliminary linear fits 
demonstrate that further parameters are needed to capture the dissipative components of the restoring forces. 

       
Fig. 2 – Measured restoring forces in the x direction for Rubber Bearing 1 (left), Sliding Bearing 1 (center), and 

Steel Damper Pair 1 (right) during Test 003 (random excitation along the X axis) 

    
Fig. 3 – Measured restoring forces in the x direction (left) and y direction (right) for Steel Damper Pair 1 during 

Test 010 (random excitation across all DOFs) with preliminary linear fits (shown in black and white dashes) 
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Fig. 4 – Comparison of measured and estimated restoring forces in the x direction (left) and y direction (right) for 

Sliding Bearing 2 during Test 016 (Tohoku earthquake) with estimates based on Eq. (1) 

4.2 Seismic tests 
The seismic tests elicited nonlinear, hysteretic responses from both the sliding bearings and the steel dampers.  
The behavior from the rubber bearing remained predominantly linear during these tests.  The following 
subsections will detail identifying parameters for the sliding bearings and steel dampers; given that the focus of 
this study is on nonlinear models, the rubber bearings will not be further considered.  The preliminary 
identification of the response from the seismic tests will be performed using measurements from Test 016, the 
most intense version of the scaled Tohoku earthquake tests. 

4.2.1 Sliding bearings 

Both models for the sliding bearings require knowledge of the sliding coefficient of friction and the bearing 
weight.  For this structure, the nominal bearing weight — i.e., the bearing weight due to the dead load of the 
building — was calculated based on drawings, plans, and geometry.  The sliding coefficient of friction was more 
difficult to determine as this constant is more commonly found during targeted experimental testing [19].  As 
such tests were not available in this case, the coefficient of sliding friction was guessed to be µs = 0.055  based 
on available measurement data and past studies [3,19].    

The simple model shown in Eq. (1) was utilized in the first attempt at modeling the sliding bearing 
response.  Based on the nominal bearing weight and assumed coefficient of sliding friction, a preliminary 
estimate of the restoring force was computed.  However, Fig. 4 demonstrates that this model is highly 
insufficient.  Most importantly, this simple model does not properly account for the stiffness, which can be 
clearly observed in the plots for both the x- and y-directional responses; therefore, modifications to the 
coefficient of sliding friction would not materially improve the estimate. 

Based on this result, the hysteretic model was adopted and its parameters were fit using constrained 
nonlinear optimization.  The unknown parameters for this model that would be subject to optimization were the 
design parameters for the hysteretic variables, A, β and γ, and the yield displacement Dy .  Eqs. (3) and (4) may 
be reorganized to reduce the number of unknown parameters from four to three by defining new constants A , β  
and γ  using the relations shown in Eq. (7). 

	 A = A
Dy

      β = β
Dy

      γ = γ
Dy

	 (7)	

Previous studies [2,3,19] have suggested the constraint A = B+γ , as well as A =1  (and therefore β +γ =1), 
based on viscoplasticity theory.  This can be adapted such that A = β +γ  with the added constraints that A =1  
and, thus, A > 0 , which is based on the assumption that the yield displacement Dy  must be positive as well.  
Initial guesses for the unknown parameter vector were aided by the stiffness values found from the random 
excitation tests, as those stiffness values are directly related to the quantity µsWSB# A .  Once a preliminary guess 
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for A  was quickly found, initial guesses for β  and γ  were chosen to be β = γ = A / 2 .  Utilizing the nonlinear 
optimization method while applying these constraints yielded the optimal predicted responses in Fig. 5.  These 
estimates produced using Eq. (2) show noticeable improvements, especially with regards to the stiffness, relative 
to estimates using Eq. (1).  The slope of the estimates aligns much more closely with the measurements using 
this equation and formulation. 

    
Fig. 5 – Comparison of measured and the optimally estimated restoring forces in the x direction (left) and y 
direction (right) for Sliding Bearing 2 during Test 016 (Tohoku earthquake) with estimates based on Eq. (2) 

    
Fig. 6 – Comparison of measured and optimally estimated restoring forces in the x direction (left) and y direction 

(right) for Sliding Bearing 2 during Test 016 (Tohoku earthquake) using Eq. (2) with a time-varying weight 

A major discrepancy remains between the measured responses and the estimates in that the measurements 
show fluctuations with time, oscillations not captured by the estimated model.  One possible reason for this is 
that Eq. (2) assumes constant bearing weight.  Given that this structure is asymmetric and that the isolation layer 
has devices of varying stiffness, as demonstrated in Fig. 1, an assumption of constant weight or pressure on the 
sliding bearings seems naïve; further, this ground motion has a vertical component that makes the normal force 
fluctuate from WSB# .  The fluctuations in bearing weight with time may be estimated by considering the changes 
in normal force experienced by the sliding bearing during a test.  This normal force will be equal to the weight of 
the structure originally apportioned to the device (the nominal bearing pressure) plus the inertial term resulting 
from the acceleration of the structure and the table.  As the accelerations were recorded on both the table and the 
structure, the total acceleration experienced by the sliding bearing may be computed by finding the generalized 
accelerations for the base mass and then calculating the local acceleration at the sliding bearing’s location. 

Using this formulation changes Eq. (2) slightly such that WSB#  becomes a function of time, WSB# (t)  
WSB#(t).  Incorporating this modification into Eq. (2) and then using the bearing weight time-history during 
optimization results in the optimal fit shown in Fig. 6.  The fluctuations in the estimate do not perfectly match 
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those observed in the measurements, but the modification to Eq. (2) clearly improves the qualitative match 
between optimal estimate and measurement without compromising the features that made the original model 
with Eq. (2) such an improvement over the model using Eq. (1).  Including these perturbations in the bearing 
weight is important as their incorporation moves the model closer to replicating the real-world physical system.  
It is also important to note that the optimal estimates for both versions of Eq. (2) track the outer excursions of the 
sliding bearing quite well and generally approximate the extreme values of the restoring forces. 

4.2.2 Steel dampers  

The hysteretic nonlinear model for the steel dampers, originally shown in Eq. (5), includes several more 
unknown parameters than the model for the sliding bearing.  However, the number of unknowns may be reduced 
using some simplifications and observations.  First, as with the sliding bearing model, it will be assumed that 
A =1 , which means that, when the hysteretic components are very small (i.e., near zero), the restoring force 
components will be directly proportional to the initial stiffness matrix and displacements.  This assumption also 
follows the work in Park et al. [5], from where this model was originally taken.   

Initial guesses for the elements of K can be made based on observed behavior during the random 
excitation tests, as shown in Figs. 1 and 2.  Those plots exhibit the pre-yielding stiffness values in both the x- and 
y-directions.  It was further assumed that K was symmetric and of the following form:  

	 K =
kxx −kxy
−kxy kyy

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
	 (8)	

The values of kxx  and kyy  can be generally approximated from the experimental data.  In works such as 
Narasimhan et al. [1], the cross terms kxy were not included when computing the restoring forces; for this study, 
the cross terms are included as small but non-negligible quantities by assuming a proportional relationship with 
kxx  (as kxx  and kyy  are approximately equal), approximated as kxy = kxx /10 .  Finally, the post-yielding stiffness 
can also be estimated from the measurement data, allowing for an informed initial guess for α.  These 
assumptions and inferences mean that, in total, only four parameters are subject to optimization: α, kxx , β and γ. 

The optimal parameters to fit the restoring forces measured on Steel Damper Pair 1 are then found.  Fig. 7 
shows that the initial parameters estimated well the pre- and post-yielding stiffness values, as was expected, but 
failed to capture the yielding behavior.  Fig. 7 also demonstrates that the optimization algorithm was able to find 
parameters that provided reasonable estimates of the restoring force behavior.  The fit from the optimal 
parameters exhibits good agreement with the measurements in both the x and y directions, proving that the bi-
axial interaction was properly captured in the model.  Also, as with the sliding bearings, the outer loop 
excursions and the extreme restoring force values are accurately estimated, which is an important consideration 
as these are often considered to be damage sensitive features. 

    
Fig. 7 – Comparison of measured, initial, and optimally estimated restoring forces in the x direction (left) and y 

direction (right) for Steel Damper Pair 1 during Test 016 (Tohoku earthquake) 
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Fig. 8 – Measured restoring forces in the x direction (left) and y direction (right) from Test 013 with 

corresponding model estimates (using optimal params. from Test 016) for Sliding Bearing 2 

    
Fig. 9 – Measured restoring forces in the x direction (left) and y direction (right) from Test 013 with 

corresponding model estimates (using optimal params. from Test 016) for Steel Damper Pair 1 

4.3 Assessing model generalizability 
To determine whether the optimal models could serve as generalized models for their respective devices, the 
model parameters were applied to measurement data from a different seismic test to evaluate their predictive 
abilities.  Restoring force and displacement measurements were taken from Test 013 as this was the least intense 
version of the Tohoku earthquake, and Table 2 showed that there was the greatest difference in RMS 
measurements between Test 016 and Test 013. 

Fig. 8 shows that the sliding bearing model using the modified version of Eq. (2) provides a reasonable 
prediction of the restoring force in both the x and y directions.  This demonstrates that the sliding bearing model 
is capable of capturing and predicting fully biaxial hysteretic responses.  As with the fitted model, the slopes, 
outer loops, and extreme values also match well between the measurements and predictions. 

The predictions for the steel damper pair are shown in Fig. 9, demonstrating that this model also provides 
accurate and reliable predictions of biaxial interactions.  However, comparing Figs. 8 and 9 reinforces how the 
model of the steel damper better captures the real behavior than does the sliding bearing model. 

Another important indicator of generalizability is whether the model parameters identified from one 
device may be applied to a similar device.  The measurement data from Test 016 of the complementary devices 
(Sliding Bearing 1 and Steel Damper Pair 2) are compared to the predictions of the models (which were 
calibrated from Test 016 data of Sliding Bearing 2 and Steel Damper Pair 1).  It was assumed that using data 
from the same test but the opposite device would provide a fair comparison.  Fig. 10 shows that the model for 
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Sliding Bearing 2 provides an extremely poor prediction of the restoring force of Sliding Bearing 1, 
demonstrating that Sliding Bearing 1 did not behave in a manner similar to Sliding Bearing 2.  These two 
devices were clearly governed by different physical interactions during this test, as evidenced by the sharp 
transitions in the restoring force of Sliding Bearing 1 that are more indicative of “sticking/releasing” cycles 
rather than “slipping” behavior.  These stark differences in physical behavior mean that the model was probably 
an inadequate choice from the start. 

The steel dampers behaved in a much more congruous manner, as the restoring force evinced by Steel 
Damper Pair 2, shown in Fig. 11, is very similar to Steel Damper Pair 1 in Fig. 7.  This similarity greatly 
contributed to the model’s ability to provide accurate predictions of the restoring forces for the other steel 
damper.  The predictions for Steel Damper Pair 2, despite not being used for fitting, are nearly as accurate as 
those for Steel Damper Pair 1.  Also, the damage sensitive features, e.g., outer loops and restoring force extrema, 
are also captured, which is a consistent trend for the steel damper model across different tests and devices. 

    
Fig. 10 – Measured restoring forces in the x direction (left) and y direction (right) with corresponding model 

estimates for Sliding Bearing 1 (using optimal params. from Sliding Bearing 2) from Test 016 

    
Fig. 11 – Measured restoring forces in the x direction (left) and y direction (right) with corresponding model 

estimates for Steel Damper Pair 2 (using optimal params. from Steel Damper 1) from Test 016 

5. Conclusions 
Biaxial hysteretic models were able to capture and reproduce the nonlinear behavior observed in the restoring 
forces of elastic sliding bearings and steel yielding dampers during large-scale testing of a base-isolated building 
subjected to earthquake excitation.  For each device, the unknown coefficients in its model were determined via 
nonlinear optimization.  The optimal parameters for each model produced a good fit of the observed restoring 
force behavior.  It was also revealed that the model of the steel damper could serve as a generalized model, 
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predicting the responses to other seismic tests and for the other steel damper, but the model of one sliding 
bearing could predict responses for other tests for the same bearing but not for the other bearing.  This was due 
to the fact that the both steel dampers behaved in a similar manner during testing, whereas the sliding bearings 
exhibited disparate response behaviors.  Most importantly, the steel dampers behaved in a manner that generally 
conformed to the assumed model, whereas the sliding bearing required a modified model that likely still failed to 
properly capture the complex physics and interactions present in the devices. 

With this in mind, future studies should continue to investigate the limits of both models.  For the steel 
dampers, this means determining if the model may be generalized to include seismic excitations beyond scaled 
versions of the same earthquake, such as those with similar spectral characteristics but different time histories, as 
well as those with widely different characteristics.  For the sliding bearings, further exploration and development 
of a model that can properly capture the variations in bearing pressure is necessary, as these fluctuations may be 
the result of design considerations that are regularly encountered in real world structures, e.g., asymmetric 
loading, non-homogeneity in the base-isolation layer, multi-directional and multi-component seismic inputs, etc.  
Additionally, the sticking behavior observed in the other sliding bearing should be investigated in terms of 
whether the current models, if tuned correctly, can capture that behavior and make reliable predictions.  Creating 
reliable and accurate generalized models of seismic protective systems is of high value to the structural and 
earthquake engineering communities, and, thus, all avenues of inquiry must be pursued as each new results 
enable smarter and safer designs against the challenges and risks posed by natural hazards. 
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