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Abstract

A procedure for nonlinear structural system identification for base isolated buildings is proposed herein. The study looks for
an identification a gorithm capable of addressing the nonlinear behavior of thistype of systems to strong motion, thus helping
to improve the accuracy on the response and dynamic properties estimation when undergoing different amplitude excitations.

A variety of relevant techniques developed in the literature are reviewed, including Power Spectral Density (PSD),
Multivariate Output Space State Error with moving window (MOESP-MW), Recursive Prediction Error Method (RPEM),
Bayesian processors (UKF) and Particle Filter methods (PF).

The effectiveness of each method is evaluated and compared through simulated data from a set of MIMO models, including
Bouc-Wen and Bilinear hysteresis accounting for the nonlinear behavior of base isolation. Also time history acceleration
recordings of more than 90 seismic events recorded on an instrumented isolated confined masonry four-story building,
between 1993 and 2014, are used to perform identification.

Limitations of the algorithms and models, associated to an increasing complexity on the identification problem are discussed
throughout the paper. Results indicate that Particle Filter provides a more complete and appropriate tool to deal with the
identification process for a base isolated building, given their good performance on non-stationary state and parameter
estimation.

Keywords: Nonlinear System Identification, Base | solated Structure, Real Time Health Monitoring, Particle Filter, Bayesian
estimation.
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1. Introduction
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System identification for base isolated buildings deals with the problem of determining the dynamic properties of
structures showing localized nonlinear response under strong earthquake motions due to their isolators’ behavior.
A base isolated building consists on a system that can be separated in two parts: the superstructure, that is usually
a conventiona building with relative higher stiffness, supported on the substructure or isolation system which
provides flexibility to the globa structure, partially decoupling the superstructure response from the ground
motion. Thisfeature produces a predominant response on the first horizontal modal frequency and generates |ower
relative displacements between superstructure floors compared to a fixed base building.

For design purposes the isolation nonlinear behavior is typically represented by means of hysteretic models, like
Bouc-Wen [1 - 3] and the Multi-linear hysteretic model, both considered on this research.

Many attempts have been performed using non-parametric frequency-domain identification techniques with
nonlinear responses from systems as base isolated buildings, bridges and buckling restrained brace structures [4,
5]. Also, parametric subspace redlization and least squares estimation algorithms have been applied in buildings
with stiffness degradation, non-linear behavior and soil structure interaction [6, 7]. Estimations on mostly
analytical hysteretic structural models using Bayesian filters methods have been performed [8 - 10]. An overview
on other popular methods applied to this type of systems can be found in[11].

Chile provides a natural laboratory for studying the structural response due to its high seismic activity, including
one of the recent strongest earthquakes on history, the February 27, 2010 in Maule with magnitude Mw 8.8. To
take advantage of this characteristic, some structures have been instrumented to record their response and study
their dynamic behavior, including an experimental base isolated 4 story low cost housing project and its
conventional twin constructed in 1992, both located in Santiago.

This paper proposes procedures for base isolated building identification, reviewing a group of relevant techniques
including non-parametric methods based on Fast Fourier Transform (FFT), Power Spectra Density (PSD),
Multivariate Output Space State Error (MOESP), Recursive Prediction Error Method (RPEM), Bayesian
processors (UKF) and Sequentia Monte Carlo/Particle Filter methods (SMC/PF). The study focuses on the
performance of each method. First, we present an analytical study in which all the techniques are applied using
simulated data, obtained by numerical models developed in a structural analysis software. Base isolated 4-story
tridimensional models with different seismic excitation levels are used for this purpose. Subsequently, a large
number of time history acceleration data, corresponding to an existing base isolated structure, is used to test the
identification procedures.

2. ldentification Algorithms
A brief description on each identification technique studied is presented herein.
2.1 Fast Fourier Transform (FFT) — Power Spectral Density (PSD)

These two non-parametric identification algorithms [12, 13] are based on the analysis of the signal frequency
content. We use peak peaking in order to find a predominant frequency of the system. For the purpose of this
paper, this approach is used to obtain afirst approximation of frequencies and modal shapes of the system, with
the latter based on the estimation of the frequency response function (FRF) of each time-history acceleration
response.

2.2 Multivariate Output Error State Space a gorithm with moving window (M OESP-MW)

It consists on a parametric subspace identification method [ 14], which assumes a deterministic discrete linear state
space representation for the system (Eg. 1 - 2), by means of Hankel matrices, aiming to find the eigenvalues and
eigenvectors of A and the C matrix, which are related to the modal properties of the structure (frequencies,
damping and mode shapes) of an assumed equivalent linear structure.
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A model order determination and separation between structural and non-structural identified properties needs to
be performed on each moving overlapped time window, by the application of stabilization diagrams, modal
assurance criterion (MAC) and prior limit values accounting for admissible physical dynamic properties, estimated
from stable poles [15]. In order to capture nonlinearities the response is split in consecutive time windows.

2.3 Recursive Prediction Error Method (RPEM)

Thisagorithm [16] estimate the parameter 0 based on its previous value and the difference between the predicted
output value $(t), given by a polynomial model representing the system, and the measured observation y(t),
subtraction that is weighted by a Kalman gain factor K(t). It follows the general expression given by (Eg. 3)

6@) =0t -1D+KOW® — y(@)) ©)

The form of the gain factor depends on the chosen model and the estimation algorithm, which in this case consist
intheforgetting factor A agorithm, similar to the one studied by Safak [17]. This approach diminish theimportance
of old measurements exponentially such that an observation that is T samples old carries aweight that is equa to
A* times the weight of the most recent observation. For tracking a time variant parameter (LTV) a value A < 1 must
be specified (typically values between 0.9 — 0.995 are suggested, depending on the sampling frequency), while a
value of A = 1 allowsto track time invariant parameters (LTI).

Prediction error methods seek to minimize the total estimation error, which can be scalar or multivariate, using
nonlinear iterative procedures like the Gauss-Newton a gorithm.

Models differ depending on the polynomials included on the representation. The general form for the scalar case
is the showed by Eq. (4). The autoregressive (AR) polynomia A (q), is related to the system dynamic behavior
and modal properties (frequencies f; and damping f;) by means of itsroots, paj, asit is showed by Eq. (5), while
the rationa polynomial C(q)/D(q) includes the part that cannot be explained by past input-output data, coming
from the noise model (y(t) | e (t)).

A@Y(®) = FBult = k) + 5B e(®) ()
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fi= (lijl)/Zn'ﬁst (5)

The objective is to estimate the polynomial coefficients from the chosen model, to get the discrete system
properties from linear system theory expressions Eq. (5). The selection of a given model structure (i.e. selecting
polynomial orders), is based on well-known and standard criteria (typically AIC, FPE and BIC), while model
validation is performed by means of comparing the measured and predicted model response as well as applying
some statistical tests.
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2.4 Bayesian Filters (UKF) and Sequential Monte Carlo Methods (PF)

These group of recursive algorithms [18] consider a stochastic discrete state space representation for the system,
including a perturbation term modelled as a stochastic process in both transition and observation equations. It
assumes a random variable state X with a sought probability density function (pdf), p(X), based on the observed
system response data Y.
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Fig. 1 — PDF Bayesian Filtering Estimation

Thejoint estimation (i.e. state and parameter) is made in two steps: 1) the prediction of the observation based on
the internal states of the model, using the prior knowledge about them, p(X), and 2) an update of the sought
state/parameter taking into account the measurement, filtering the prior and getting a posterior distribution p(X|Y)
that accounts for the observed data (Fig.1). Depending on the model complexity is necessary to consider some
constraints in the system to make the estimation problem numerically feasible, arising algorithms as the Kalman
filter and approximate methods as the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF),
with the latter having the capability to deal with nonlinear non-differential process and observation expressions
using sigma points, which are defined by [19], to represent a Gaussian distribution.

On the other hand, Particle Filters — or SMC — algorithms aims to estimate an arbitrary form for the sought pdf,
considering particles (i.e. state’s values) with assigned weights, by Importance Sampling Techniques, assuming a
known transition distribution p(x«+1|Xx). Thisapproach ismore convenient whilethe problem nonlinearity increases
in a way that the Gaussian distribution it’s not sufficient to represent an arbitrary distribution, but it requires larger
computational cost than the previous methods.

3. Part 1. Analytical Study
3.1 Numeric Models

A 10x8m in plan base isolated 3D 4-story model constructed by a numerical software is used to get simulated
accel eration responses to external seismic excitation, including some filtered white noise. Link elements with non-
degrading hysteretic Bouc-Wen and multi linear plastic properties are used to represent theisolation characteristics
(Fig.2). A total weight of 160 [Tonf] equally divided on each floor deck is assigned in the model. The isolation,
material and geometric properties were chosen to match avalue of 2.48 Hz and 2.78 Hz for the 1 mode frequency
inY and X directions respectively, as well as a damping of 5% for each mode. A post yield stiffness of 5% of the
initial link stiffness was assigned, and seven different values for the yield force Fy, between 0.04 and 10 [Tonf]
were tested, in order to generate different hysteretic behaviors along with an increasing excitation amplitude.
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Fig. 2— Numerical structure model and hysteretic cases for the analytical study

3.2 Results

3.2.1- FFT - PSD: The model was subjected to increasing levels of white noiseinput. Nonlinearity increases with
input excitation amplitude. The obtained Fourier spectrum does not indicate a clear consistent change in
predominant frequency behavior asthe hysteresisincreases (Fig.3a). This procedure shows an identified frequency
associated to a predominant stiffness in the hysteretic curve during the motion, which in this case doesn’t present
a smooth transition presumably because of the assumed non-degrading hysteretic models. This implies that even
if the system exhibits a pronounced hysteretic behavior, the identified frequency could correspond to the one
associated with the initial stiffness. A noticeable change occurs only for an extreme case with maximum
displacements at the interface isolation level, higher than about 100 times the yield displacement uy. These results
were pointed out by Martinez et al. [5].
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Fig. 3— a) Changein FFT spectrum with hysteresis b) Change in FRF with hysteresis and 1% modal shapes



q"a’?ﬁ 16" World Conference on Earthquake, 16WCEE 2017
o / <

a‘& Santiago Chile, January 9th to 13th 2017

Besidesthe FRF shows avariable and irregul ar spectrum as the nonlinearity increases. The predominant frequency
changes abruptly from the initial stiffness to the post yield stiffness. Modal shapes by this crude method are
difficult to determine for higher modes (Fig.3b).

&7

3.2.2 - MOESP-MV: Fig. 4 presents the variation of modal properties for a running window of length 1.5 - 3 sec.
The 1% mode frequency values varies between 0.82 — 2.74 Hz for the X and 0.69 - 2.48 Hz for the Y direction,
showing the dependence on excitation’s strength for different events. A histogram of the identified modal
properties of each window is showed on the |eft of each pair of pictures corresponding to a specific excitation
amplitude. It is seen that the stronger the motion is, the larger is the dispersion on the identified properties
compared to the initial state in which the system behaves linearly elastic. Modal shapes are only coherent in the
vertical direction, where the model’s behavior remains linear. Window time length selection must be made such it
can identify transitions on the properties behavior, where a good value seems to be about 1.5 to 2 times the
estimated longest period. Longer time windowstend to distort the identified values, reducing the ability of tracking
the time-changing behavior of the parameters. Moreover, the number of records considered aswell astheir location
have a strong effect on the identification accuracy, wherethe use of only afew of them resultsin astrong dispersion
for al the identified modal properties.

Weak Hysteresis Medium Hysteresis Strong Hysteresis
Identified Frequency Histogram  Identified Frequency Identified Frequency Histogram  Identified Frequency Identified Frequency Histogram  Identified Frequency
20 SR 2 ; ) : 20§ g : = 20— S W — — 7 20 = =
= 18] | 18] ‘ 18] | 18[E SR 185 | B} = =€ "=
=16} | 16— i N 16— | 16} = 16/ = | 16 g -~ Fug=—F
T4 | 14t =14 1 141 T Mi=s— | U[E B e
gl | 12 g 12| 12| > RF 12 :
2 10 | 10 5108 10 53 & 10iF 0} ===F ===
"% e { 81 =8 { g 2= Bl 255 v
=6 | 6} { :(7! 1 6t § 6;4‘ h— | (,H,':ﬁo-.-—"—ff-
4| { 4} ! 4 L g : ey 4|
2 | {21 | L o | iy ee———] 2 12
[ T e —— 0 " " o 0‘. A " aed 6 Al . = o o 1 —— o
0 200400600800 1000 "0 20 40 60 0 200 400 600 o 20 40 60 0 10 20 30 40 50 0 10 20 30
Number of windows Time [sec] Number of windows Time [sec] Number of windows Time [sec]
ltlcmiﬁcd Damping Histogram  Identified Damping Identified Damping Histogram  [dentified Damping Identified Damping Histogram | dentified Damping
20 et 20 = - e W——— 20T - -— MNE — 20 - . —
H | 18] i 18} 18 i I8 F I8!
= 16| | 16} 1 161 16 1 <= 16§
S 1 | 1 | Tl 14 2k
= 12| 1 12} = 2k 1 12 = =1 2 |2 k=
£ 10] { 10 2 10f 110 { £ 10/E
%2' | 81 S 8 =1 £ 3|5
R ] M o gl B i
e 4 4| - 2 3 = g
2| 2 | i 21 & 2 | 21 2t = =S X
Ot 0 -~ X (e : gl=m"_ | 0 E==== =]
0 200400600800 0 20 40 60 0 50 100 150 "0 20 40 60 0 10 20 30 0 10 20 30
Number of windows Time [sec] Number of windows Time [sec] Number of windows Time [sec]

Fig. 4 — Identified frequencies and damping by MOESP-MW in X direction

3.2.3 - RPEM: For the application of this technique, an ARMAX (F (g) = D (g) = 1) model was selected by the
minimum AIC, FPE and BIC value and then validated mainly by the comparison of the model predicted response
and the actual measured output, following the guidelines in [20, 17]. Several values for the forgetting factor A
between 0.99 — 0.998 were tested, where the selection of an adequate factor is based on the sampling time, which
in this case was Ts = 0.005 s. Fig. 5 presents the evol ution of modal parametersfor two levels of yielding strength.
The results show that the identified properties depends strongly on the location of selected single channel
measurement, with some of them being able to capture the variations for the horizontal 1% predominant frequency
in the X direction, between 0.65 Hz and 2.78 Hz. For this mode, damping reaches values close to 100 %. For
higher modes, identified modal frequency values remain similar compared to the elastic properties identified for
smaller displacements, but with damping values bounded between 5 - 20%. Selection of proper initia values for
the coefficients and covariance, seems to be very important to guarantee the convergence to the analytical
properties. The selection of initial properties is done by an estimation considering a LTI model. The obtained
results give that most of the tested models perform an adequate response estimation.
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Fig. 5 — Identified frequencies and damping in X direction by RPEM for different hysteresislevel

3.2.4 - UKF - PF: Severd simplified state space representations addressing bilinear hysteretic models excited by
white noiseinput, were tested using simul ated responses generated by 4™-order Runge-K uttaintegration. Selection
of appropriateinitial values and covariance are crucial for convergence to the right properties especially for UKF,
given the system nonlinearity which generates multimodality on the sought parameter distributions. These are
effectively estimated by Particle Filter. For testing these procedures, the next values for parametersto be estimated
were assumed for asimple hysteretic model: k ;5o = 150 [Kgf/m], a = 0.05, n = 0.8 and F,, = 50 [Kgf]. Initia
interval defined for tracking these parameterswerek ;s € (1 — 500) [Kgf/m],a € (0.01 — 0.9),n € (0.1 — 20)
and F,, € (1 —300) [Kdf]. A total number of 400 particles was use in order to estimate the posterior distribution
of each sought parameter, assuming a Gaussian likelihood function for the innovation (Yobs - Ypredgic). Identified
properties (Fig.6a) and predicted responses (Fig.6¢) show good match with the ones corresponding to the
numerical models when an adequate number of observations are available. Accurate estimates for hysteretic
dynamic behavior, (Fig.6b), are achieved using acceleration response. However, incorporation of relative
displacement as a measurement provides better convergence to the parameters characterizing the nonlinear
response (stiffness ratio a and yield force Fy). This was pointed out by Chatzy, Xieand Li et al. [8- 10].
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4. Part 2: ldentification with existing base isolated building
4.1 Outline of Building

The based isolated building used for this study consist in a 4-story low cost housing project, supported on eight
high damping rubber isolators, constructed in Santiago, Chile in 1992 [22]. 1t’s been instrumented with a local
network of digital accel erometersthat has recorded more than 90 seismic events between 1993 and 2014, including
amajor earthquake taking place on February 27, 2010 with magnitude Mw 8.8. The first floor is composed of
reinforced concrete and the upper three of confined masonry. All floors have a 10 cm thick reinforced concrete
dab, with the wooden roof. The bearings, 31.5 cmin diameter and 32 cm high, were composed of 34 layers of 6.7
mm thick high damping rubber and 33.2 mm steel shims. The building is instrumented with 2 triaxia
accelerometers, in thefirst (L) and fourth floor (C). The seismic excitation is measured by another accelerometer
located in the foundation level (F), recording acceleration in E-W, N-Sand Vertical directions (Fig.7). The records
were preprocessed by bandpass filtering with cutoff frequencies of 0.25 Hz and 30 Hz.
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Fig. 7 — Accelerometer location and plan view of Comunidad Andalucia building 2!
4.2 Results

4.2.1 - FFT-PSD: Frequency spectrum shows two types of behavior depending on the relative displacement in
the isolation. Identified predominant frequency values vary from 0.75 Hz to 5.59 Hz in the N-S direction, and
0.64 Hz to 6.07 Hz for the E-W direction for seismic eventswith a PGA ranging from 0.001 to 0.33[g] and relative
displacements 0.01 to 10.6 cm (Fig. 8a). The higher frequency values obtained for events with lower PGA agrees
very well with some environmental vibration test performed previously on the building [22]. Unlike the analytical
case, identified frequencies display a smoother transition with respect to displacement at the isolation interface
level, because of the degrading and coupling behavior of the isolators, a characteristic that was not addressed on
the analytica study. Vertical mode frequencies about 15-16 Hz for aimost every seismic event are identified,
showing that in this direction, the isolated structure remains amost linear. Identified modes (Fig.8b) are coupled,
presenting amore significant contribution to the dynamic response of the structure on the indicated directions (**).
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Fig. 8 — Identified properties by FFT in Comunidad Andalucia base isolated building: @) Normalized frequency
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4.2.2 - MOESP-MV: Vauesfor 1% predominant frequencies ranges between 0.65 — 0.71 Hz for strong motion and
6.2 — 5.9 Hz for weaker excitation levels, using windows time length between 1.5 to 3 s (Fig.9). While vertical
mode frequencies remain about 15 Hz for almost every excitation level, detecting mainly alinear behavior on this
direction. Asin the analytic study, damping presents great dispersion between consecutive identification intervals
being just bounded for seismic events with lower excitation levels, showing a tendency to increase on the strong
phase for these type of excitations, reaching values greater than 20 %, while in a weaker seismic excitation the
dampingisabout 1 - 8 %. A consistent estimation on modal shapes was performed on the identification windows
corresponding to the weak and strong phase of the earthquake motion for the 1% mode.
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Fig. 9 — Identified frequencies by MOESP-MW in two events for Comunidad Andalucia building

4.2.3 — RPEM: Considering a forgetting factor A = 0.998 (Ty = 2.5 ), horizontal modal frequencies varying
between 1.04 Hz and about 6.1 Hz for E-W direction and between 1.18 Hz and 5.8 Hz for N-S directions were
identified. Lower identified frequencies seem to be a bit higher than expected compared to the design value of the
isolators. The agorithm shows a very stable response estimation, while the damping show an irregular behavior
for the 1% horizonta predominant frequency, reaching values over 90 %. Damping for higher modes displays stable
values between 10-20% (Fig.10b). Transfer functions (in this case represented by its FRF) generated by ARMAX
model show variations of the 1% mode for 3 record time intervals, indicating that higher modes doesn’t seems to
be affected for the nonlinearity produced by the change of stiffness on the isolation system (Fig.10c). Tracking
ability seems to be very good capturing the change in modal properties when strong phase of the motion takes

place (Fig.10a). Most of the events characterize the structure as a model with polynomial order between n, = 16 —
24.
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Fig. 10— Identified properties for lower (up) and higher (down) PGA, by scalar approach of RPEM E-W
direction: a) frequencies, b) damping and c) transfer function
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4.2.4 — UKF — PF: Both methods were applied using simplified 1D models (M1, M2) in order to avoid non-
observability problems due to the low number of sensors on the structure, depending on the number of available
records for agiven seismic event, showed in Fig.11a. Theinitia guessesfor parameters of the superstructure (Ksr,
Csr) were adjusted based on a value between 9 Hz for E-W and 7.7 Hz for N-S direction, being an approximation
to the first frequency mode observed from non-parametric techniques applied to data obtained by microtremors
tests, and a damping value of 2%. While the admissible ranges for the isolation parameters were chosen as h €
(0.1, 10), o € (0.01, 0.9) and Fy, kisat > 0 following Eq. (6-7) for the restoring force.

&7
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F(t) = a - kisor 'u(t) + (1 - a) ' Fy ' Z(t) a = kyield/kisol (6)
(t) = "%;lu(txl — |z()|™) 7

Theinitial values were chosen based on the values estimated from experimental data[22]. As the uncertainty on
theinitial valuesislarge, greater initial covariance (UKF)/particlesspread (PF) aregivento track thereal properties
(o = 10° — 10* [Kgf], 0, = 0.01 — 0.05, 0, = 10 — 10%[Kgf], 0, = 0.5 — 1).
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Fig. 11 — a) Simplified models of the structure b) Measured vs. Estimated 4" floor E-W accelerations by M1
and M2 for seismic events on Table 1.

The estimated structural parameters are compared with the equivalent values obtained from the pullback
experimental tests performed in the building [23]. Even though these methods show fairly good response
estimations (Fig.11b), maximum displacements are underestimated. This is explained by the oversimplified 1D
model trying to address the general behavior of the existing isolated building based on the sought parameters. A
few of the identified values using the database of seismic events are presented on Table 1. Close and consistent
values are obtained for the initial stiffness of the isolation compared to the experimental one (obtained by static
and dynamic tests) as the excitation is greater. Otherwise, events with small relative displacements (where the
structure remains nearly linear) lead to varying valuesfor n and F, because of the absence of adevel oped hysteresis
(although this tendency was also observed in strong excitation cases), but keeping a consistent value for the ratio
of post-yield to pre-yield stiffness considering the observed behavior, where o ~ 0.8 — 1 is obtained. Emphasis
must be put on the selection of good initial values due to the variety of models that could approximate the
measurements because of the number of parameters the model depends on (model non-observability problem) and
also on the adequacy of the model used for the estimation. Despite of this, Particle Filter provides the different

solutions representing the probability distribution of the sought parameters, so better results are expected while
more prior information of the real structure is considered for the estimation.
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Table 1 — Estimated parameters of the isolation model from Comunidad Andalucia building data

Direction Event Mw | PGA[g] | Mode Sensor Max. rlisat;(m(;t $ K Fy n o Kex
(ddmmyyyy) Loc. | disp.fem] lomy | [Tontfm] | [Ton] [Tor‘]’fﬂ] Olexpl21]
14101997 | 68 | 0019 | M2 | L,C 0.49 0.3 2142 048 | 022 | 017
EW | 17122007 | 54 | 0004 | M2 | L,C 0.016 0.010 576.2 623 | 323 | 09 | 33-235 | 008"
27022010 | 88 | 0225 | M1 C 6.51 381 1834 083 | 018 | 023

(*) Stiffness ratio estimated from fit experimental data.

5. Conclusions

An analytical and experimental study on 4 identification techniques applied to base isolated buildings has been
presented. The results show that FFT/PSD, MOESP-MW and RPEM aim to identify nonlinear features of the
system represented as varying linear properties, presenting strong limitations. Numeric models show that these
methodstendsto identify the predominant stiffnessrelated frequency for different levels of response nonlinearities,
presumably because of the assumed non-degrading hysteretic models. Thisimpliesthat even if the system exhibits
a pronounced hysteretic behavior, the identified frequency could correspond to the one related to the initial
stiffness, limiting considerably the identification of nonlinearity (so for linear-based identification procedures
purposes, bilinear model s used here could not be sufficient to represent the real mechanismsthat arise on hysteretic
behaviors for the rea isolation system). Determination of damping and modal shapes gets more difficult as
increasing hysteretic levels are reached, being the latter consistent mainly for the first mode, and linear behavior
asinthe case of vertica direction.

The ahility to track time-varying behavior using MOESP-MW is highly dependent on the selected time window
and conditioned on the amplitude excitation due to the lack of consistency on identifying stable poles for the
different phases of the earthquake. On the other hand, RPEM uses a single output approach, which limits the
identified properties to the location of the measurement on the structure. However, these are able to detect
frequency changes to seismic excitations, allowing to separate properties corresponding to the weak and strong
phase of the building response, with values consistent with previous identified frequencies on the existing base
isolated building, presenting a practical use for real time monitoring applications on these type of systems.

M odel-based approach as UKF and Particle Filter show advantage on allowing to select asingle model for different
levels of excitations, characterizing in a more effective way the hysteretic behavior of the substructure and the
almost linear behavior of the superstructure to an earthquake excitation. This does not occur for window linear
methods. Neverthelessinitial conditions for the parameters to be identified and complexity of the model selected
are really important in order to get convergence to the right properties, being this selection more critical for the
UKF given a supposed Gaussian distribution for the sought parameters, which are likely to be multimodal for this
particular nonlinear model. Only in this case, the uniqueness of the model is still a problem that depends on the
model observability, which Particle Filtering can overcome representing the real distribution as samplesin high
probability regions, including the sought solution, and characterizing the measurement noise through an
appropriate likelihood function selection, leading to a good performance on estimation for structural properties
and non-stationary states of the model.
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