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Abstract 
The present study is intended to improve the physical understanding of tsunami propagation in semi-confined water bodies 
where the interaction with tides plays a significant role. A case study in Canal Chacao, a highly energetic channel located at 
the norther extreme of Chilean Patagonia, is studied. The fundamental question addressed here is to understand the 
interactions when tides and tsunamis are linearly superposed and when they interact nonlinearly, thus enhancing or reducing 
the surface elevation and associated currents. To answer this question, we implemented a series of models based on the two-
dimensional nonlinear shallow water equations to simulate the propagation of i) a tsunami with a constant tide 
corresponding to the mean sea level, ii) a tide and tsunami under the assumption that both can be linearly superimposed and 
iii) a tide and tsunami nonlinear interaction model. Results are analyzed in the narrowest section of Canal Chacao, where 
tidal currents may reach up to 6 m/s during spring tides. For this site, the maximum surface elevation during the simulation 
is larger in the nonlinear model, while the maximum current speeds (and derived quantities such as the drag forces or 
sediment transport potential) are obtained with the linear model. The nonlinear model is also better in computing the time of 
arrival of the first wave. These outcomes provide guidelines for the improvement of tsunami hazard assessments for the 
coastal communities located in fjords, channels and estuaries with similar characteristics. 
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1. Introduction 
Tide-tsunami interaction can be assessed using different approaches with increasing levels of complexity 
depending on the scope of the study and local conditions of the site. The simplest is to compute the tsunami 
evolution with constant tide based on the assumption that the tidal currents are weak and the tide period is much 
longer that the tsunami. A more refined analysis can be achieved by a linear superposition of the tide and the 
tsunami, under the assumption that both oscillations are considered independent [1]. This approach is referred to 
as composite model hereafter. Recent studies, however, have found that composite models provide inaccurate 
results in shallow waters [2,3,4,5,6,7]. The most complete approach can be achieved by numerically computing 
the tsunami and the tide together. This approach -referred to as full model- is appropriate for regions where 
nonlinear effects may be important due to very strong tides or relatively shallow bathymetries. Based on 
numerical experiments, [3,5] found that i) tidal elevations influence the speed and magnitude of tsunami waves 
in shallow regions, ii) elevations from full and composite models differ significantly and iii) tsunami-tide 
interaction depends on tidal amplitude and phase. The major cause of this interaction is tidally induced changes 
in the ocean depth and currents altering the conditions of tsunami propagation, amplification and dissipation.  
 
The present work is intended to improve the physical understanding of tide-tsunami interaction in Canal Chacao, 
a highly energetic channel which connects the Pacific Ocean with the Chilean Inland Sea, CIS (Figure 1a). This 
channel is dominated by tidal currents caused by differences in tidal range and phase between its extremes. 
Canal Chacao is approximately 26 km long and connects Coronados Gulf in the open ocean with the Ancud Gulf 
in the CIS. Its narrowest section, the 2.2 km wide channel exhibits an isolated pinnacle, Roca Remolinos, which 
separates the stream in two smaller waterways [8]. Maximum speeds may reach peaks of about 6 m/s during 
spring tide in Roca Remolinos (Figure 1b). The channel is sited in a region prone to large earthquakes and 
tsunamis [9]. To understand the consequences of the modeling approach, we implemented a two-dimensional 
shallow water model to solve the propagation of i) a tsunami with a constant tide corresponding to the mean sea 
level, ii) a composite tide-tsunami model under the assumption that both can be linearly superimposed and iii) a 
full tide-tsunami nonlinear interaction model. A tide model covering a lunar cycle of 28 days was also 
implemented to cover extreme events during spring and neap tides. Results are analyzed in Roca Remolinos. 
Eleven tidal constituents are used for the tide model, while no meteorological forcings are considered.  
 

2. Tide model  
Tidal effects were implemented using the concept of the equilibrium tide via additional terms in the momentum 
equations and boundary conditions [10]. The tide model was developed using a two-dimensional model on a 
flexible finite volume mesh [11]. The model resolves the nonlinear shallow-water equations (NSWE) resulting 
from depth averaging the three-dimensional incompressible Reynolds averaged Navier-Stokes equations, under 
the assumption of hydrostatic pressure. The bottom stress was modeled with a quadratic friction law with a 
constant Manning’s value of  0.034 s/m1/3 due to lack of site specific data for bottom roughness. In the 
offshore boundaries, a value of  0.2 s/m1/3 was used to damp instabilities. An eddy viscosity of  0.06 m2/s 
in the domain and  0.2 m2/s at the offshore boundaries to control spurious instabilities during the warming up 
phase of the tidal simulation was used. It should be noted that the tidal currents were found to be insensitive to a 
wide range of values of the Manning coefficient and eddy viscosity. A flooding and drying scheme was used 
even though the analysis of run-ups was not part of the scope of the study.  
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Figure 1: a) The Chilean Inland Sea and Canal Chacao in a box. b) Aerial view of the narrowest section of Canal 
Chacao during ebb tide. The Pacific Ocean is observed in the background while Roca Remolinos, characterized 

by a turbulent wake, is at the center of the image (courtesy of Horacio Parragué). 

 
 
The digital elevation model (DEM) was build using a cell-centered finite volume method in an unstructured grid 
of 57.741 triangular elements, with relatively large elements in the deep ocean and smaller ones in the CIS 
(Figure 2). The DEM penetrates roughly 1300 km in the Pacific Ocean and extends 1300 km in the North-South 
direction. The DEM was built from the Etopo 1 arc-minute global relief in the open ocean [12], 14 nautical 
charts [13] in coastal areas within the CIS and a 0.5 m resolution bathymetry in the vicinity of Roca Remolinos, 
where the analysis is focused. The resolution varied from of ~1.600 km2 in the deep ocean, successively 
increasing to ~2.500 m2 in the narrowest section of the channel. The grid size was refined locally in the rupture 
zone of the 1960 Chile earthquake to guarantee that the initial tsunami wavelength was resolved by at least 20 
grid points. A time step of 0.5 s was chosen to ensure numerical stability of the model. The extent and resolution 
of the DEM is a significant improvement compared to earlier studies [14,15,16,17,18].  
 
 

Figure 2: Left panel shows the numerical grid used in the DEM and right panel depicts the water depth. 

 
 
Tides were ramped for 2 days until dynamic equilibrium was reached (i.e. when the tide signal becomes 
independent of the initial condition). The model was calibrated with a field survey covering between August 6th 
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and September 5th 2000. Calibration consisted in i) defining the minimum amount of tidal constituents to 
adequately reproduce the records in tidal gauges and ADCP´s within Canal Chacao, ii) evaluating the frictional 
effects for a range of values of the Manning coefficient and iii) tuning the eddy viscosity to account for 
momentum diffusion. The sensitivity of results under a wide range of values for the Manning and eddy viscosity 
coefficients was low while the number of tidal constituents was determinant in achieving good results. Eleven 
major diurnal constituents (K1, O1, P1 and Q1), semidiurnal tidal constituents (M2, S2, N2 and K2) and other 
constituents (Mf, Mm, Ssa) varying in space and time were specified within the domain using a Global Ocean 
Tides Model [19]. Surface elevations from the model were compared with tide gauges within Canal Chacao 
showing correlations of R2 = 90-94%. As an example, Figure 3 shows the model-to-data comparisons of surface 
elevation in Eje 1. Depth-averaged velocities showed correlations between R2 = 57-72%  
 
 
Figure 3: Calibration of surface elevation in Eje 1. Left: time series of the model in continuous line and record in 

circles. Right: correlation between measured (zRECORD) and modelled values (zMODEL).  

 

 

3. Rupture model  
The vertical component of the seafloor deformation was computed herein using the standard dislocation theory 
[20] and the slip distribution proposed in [21]. The model runs in an elastic half-space medium limited by the 
inclined submarine continental talus. We corrected for the slope of the oceanic talus following the methodology 
proposed by [22], so the seafloor coincides with the free surface of the semi-infinite half-space used to estimate 
earthquake-induced deformation in the elastic medium. Along the rupture length, the trench (intersection 
between the two tectonic plates) lies at approximately 3 km depth and the talus has a slope of about 2º down to 
the trench. The coordinate system was translated and rotated so the trench constitutes a new -axis of the rotated 

system. Accounting for a more realistic geometry of the fault and medium, this correction permits precise 
estimations of the vertical displacements of the sea bottom. For all the computations, an elasticity modulus of E 
= 80 GPa, a shear modulus of G = 32 GPa and Poisson’s ratio of ν = 0.25 were used as average crustal values in 
the rupture area [23]. Figure 4b shows a positive coseismic uplift of the sea bottom, in a pseudo-ellipsoidal 
pattern, and a smaller subsidence inland from the coastline. The seafloor subsidence is of approximately -1.7 m 
in Canal Chacao.  
 
For tsunami modelling, the initial surface elevation is assumed to be equivalent to the seafloor vertical 
deformation. This assumption is based on the fact that the time scale of the rupture is significantly larger than the 
time scale of the evolution of the tsunami. The vertical deformation was also included as a change of bathymetry 
(subsidence and/or uplift) at the moment of the earthquake. 
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Figure 4: a) Slip distributions proposed by Fujii & Satake (2013). b) Vertical displacement of the seafloor, 
obtained using Okada (1992) model. 

 

4. Tide-tsunami models  
Three types of models were implemented to solve the propagation of i) a 1960-type tsunami with a constant tide 
equivalent to the mean sea level (tsunami model), ii) the tide and a 1960-type tsunami under the assumption that 
both can be linearly superimposed (composite model) and iii) a 1960-type tsunami under the assumption that it 
interact nonlinearly with the tide (full model). The tsunami model does not include tidal variations in space and 
time. In the composite and full models, however, the hydrodynamic patters depend on the tidal phase occurring 
between the earthquake until the tsunami arrival to Roca Remolinos, and its spatial variation within the domain. 
The impact in the tidal phase is studied by means of 6 cases where the earthquake was triggered every 2 hours 
along the tidal cycle of 12.42 hours, so as to cover all the possible combinations (Figure 5). The tidal cycle 
corresponds to a spring tide of high amplitude, where the nonlinear interactions are expected to be enhanced due 
to the high tidal velocities. Results are analyzed in Roca Remolinos, at the narrowest section of the channel, 
where nonlinear interactions are also presumed to be relevant. To assure that the model is simulating the 
maximum tsunami heights and currents, 20 hours were simulated. Results, however, are shown during the first 
3.5 hours of simulation since the tsunami signal is significantly attenuated afterwards. 
 

Figure 5: Nomenclature used for the composite and full tide-tsunami models. 
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Time series of elevation, current speed and direction in Roca Remolinos are shown in Figure 6 for the tide, 
tsunami, composite and full models in two cases (F1921, F2003). For a better comparison among cases, we 
establish  0 s as the time were the earthquake is triggered. In our reference system, a flood tide corresponds 
to a flow running towards the ESE ( 110°-130°) whereas an ebb tide flows to the WNW (  300°-320°). 
Figure 7 and Figure 8 depict the results for amplitude and current speed for all the cases included in Figure 5. 
Note that the tsunami model initiates with negative amplitude as a consequence of a 1.7 m subsidence of the sea 
bottom caused by the earthquake. For the composite and full models, the initial amplitude considers both the 
coseismic deformation and the tide level. The resulting hydrodynamic patterns differ significantly, being the 
composite and full models strongly dependent on the tide signal. Depending on the relative magnitudes and 
phases astronomical tides, the tsunami may experience a significantly different background current. Naturally, 
the shape of the time series of surface amplitude for the composite model resembles the tsunami model as it 
stems from the sum of the latter with the tide, which is a smooth signal. In the full model, in contrast, complex 
small-scale fluctuations ride on top of the larger scales.  
 

Figure 6: Surface elevation (upper panels), current speed (center panels) and directions (lower panels) for tide 
(red), tsunami (green), composite (black) and full (blue) models F1921 (a) and F2003 (b). 

a) 

 

b) 

 

 
The maximum amplitude and velocity during the tsunami attack are valuable parameters for the design of 
maritime and coastal works. Figure 7 summarizes the results of the amplitude  throughout the 
computation obtained for all the models. For comparison, the following parameter is introduced: 

        (1) 

where  corresponds to the maximum amplitude throughout the computation for the composite and full 
models and  is the maximum amplitude obtained with the tsunami model, considered as reference since it 
represents the customary approach for engineering purposes. As expected, relatively high amplitudes occur 
during high tides (cases F2001, F2003 and F2005) while low values are observed in low tides (cases F1921, 
F1923 and F2007). Maximum amplitudes obtained among models differ significantly, being the full model the 
one providing higher (F2003) and lower vales (F1921). The differences with respect to the tsunami model are 
comparable to the typical values of the amplitude (  -2.77 m for case F2003 and  -4.30 m for case 
F1921, where  2.80 m). Note that the maximum amplitude is not always related to the leading wave (e.g. 
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cases F1921, F1923 and F2001 in the composite model and F1921 and F1923 in full mode) mainly due to higher 
tides during the attack of the second wave. Higher amplitudes occurring after the leading wave impact have been 
observed in previous events due to edge waves travelling along the continental shelf [24] or a combination of 
high tide and tsunami. 
 
 

Figure 7: Amplitudes obtained with the a) composite and b) full models. The tsunami model is depicted in 
segmented lines. Red dots indicate the maximum values which values are included in the table, together with the 

differences with respect to the tsunami model. The table below provides relevant values. 

a) 

 

b) 

 

 
 

 
 
Figure 9 summarizes the results for the maximum velocity  obtained for all models. The parameter 

        (2) 

Is introduced, where  is the maximum current speed throughout the simulation for the composite and full 
models and  is the maximum obtained with the tsunami model. With the exception of case 2005 -which 
corresponds to an ebb tide during high tides- maximum current speeds obtained with the composite and full 
models exceed those for the tsunami model (Figure 8a). The full model, however, provides slightly larger values 

  Full Composite 

Case 
Tide  

[m] 
 

[m] 
 

[m] 
 

[m] Direction 
 

F1921 Flood -1,96 -1,50 -4,30 -0,14 -2,94 

F1923 Flood -1,72 2,37 -0,43 3,27 0,47 

F2001 Transition 1,07 4,79 1,99 4,46 1,66 

F2003 Ebb 3,03 5,57 2,77 4,62 1,82 

F2005 Ebb 1,43 3,72 0,92 2,70 -0,10 

F2007 Transition -0,27 2,05 -0,75 1,39 -1,41 

Tsunami - 0,00 2,80 - 2,80 - 
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than the latter, while the composite model gives significantly large ones, e.g.  5.13 m/s for the composite 
and  1.95 m/s for the full model during the flood phase in low tide (F1923). Differences in maximum 
velocities have profound consequences in drag velocities (proportional to the square of the velocity) which may 
in turn determine the sediment transport potential and hydrodynamic forces on structures. As an example, for 
maximum velocities of 8.53 m/s for the full and 11.71 m/s for the composite models, drag forces are 1.68 and 
3.17 times those obtained with 6.58 m/s computed with the tsunami model. 
 
 

Figure 8: Velocities obtained with the a) composite and b) full models. The tsunami model is depicted in 
segmented lines. Red dots indicate the maximum values which values are included in the table, together with the 

differences with respect to the tsunami model. The table below provides relevant values. 

a) 

 

b) 

 

 
  Full Composite 

Case 
Tide   

[m] 
 

 [m] 
  

[m] 
 

 [m] Direction 
 

F1921 Flood -1,96 7,87 1,29 11,71 5,13 

F1923 Flood -1,72 8,53 1,95 11,01 4,43 

F2001 Transition 1,07 6,59 0,01 7,73 1,15 

F2003 Ebb 3,03 6,96 0,38 8,98 2,40 

F2005 Ebb 1,43 5,82 -0,76 7,50 0,92 

F2007 Transition -0,27 7,42 0,84 10,45 3,87 

Tsunami - 0,00 6,58 - 6,58 - 
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5. Conclusion  
The hydrodynamic patterns associated to the impact of a large 1960-type tsunami on a highly energetic channel 
have been analyzed by means of three models with increasing level of complexity: a tsunami model with 
quiescent tide, a composite model based on linear superposition of tide and tsunami and a full model accounting 
for nonlinear interactions between these long waves. We find that the hydrodynamic patterns in Canal Chacao 
differ significantly among models, being the composite and full models very sensitive to the tidal phase at which 
the tsunami is triggered. Indeed, some wave features obtained at Roca Remolinos with the full and composite 
models do not emerge in the pure tsunami simulations. 
 
The characteristics of the incident tsunami are significantly modified when entering Canal Chacao as a 
consequence of the nonlinear shallow water dynamics. The amplification or reduction of the amplitude and 
phase speed is controlled by the tidal phase. The amplitudes obtained with both the composite and full models 
are mostly dependent on i) the total depth changing in time and space as the tsunami rides the tide and ii) the 
direction and magnitude of the tidal current. Maximum amplitudes throughout the simulation are larger for the 
full model and are not necessarily associated to the leading wave, due to (in some cases) the higher tide 
coinciding with secondary waves. For the maximum velocities throughout the simulation, the composite model 
provides larger values, which may in turn have consequences in derived quantities such as drag forces or 
sediment transport potential. Finally, the full model better captures the anticipation (or delay) of the leading 
wave as a consequence of the nonlinear interaction between the flood (ebb) tide and the tsunami. These results, 
however, cannot be extrapolated to other cases since the interactions between tides and tsunami depend upon the 
bathymetry and configuration of the coastline, the relative strength (i.e. amplitude and velocity) of the tide with 
respect to the tsunami and the rupture model. An ongoing step forward is to analyze simplified geometries to 
isolate the impact of each of these effects in the hydrodynamics.  
 
Currently, tsunami risk assessments seldom include nonlinear interactions between tide and tsunami. However, 
in semiconfined water bodies with high tidal ranges where large tsunamis may occur, these interactions should 
be taken into account to gain accuracy on the results. The methodology presented herein may be expanded to 
define, from a more general perspective and for other configurations, under which conditions tides and tsunamis 
can be linearly superposed and in which conditions they interact nonlinearly. The outcomes of our investigation 
are essential for improving structural designs and tsunami hazard assessments for the coastal communities 
located in the area. 
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