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Abstract 

Ground-motion prediction equations (GMPEs) which quantify the attenuation of key earthquake strong-motion 
parameters with distance, have a major impact on seismic hazard analysis. In GMPEs, the random variability of amplitudes 
about a median prediction equation is considered as aleatory uncertainty whereas the uncertainty concerning the correct 
value of the median is epistemic. Epistemic uncertainties which arise from lack of knowledge about models and data should 
be considered in seismic hazard assessment to reach a reliable result for the region under study. Data-driven model selection 
would decrease epistemic uncertainties by reducing subjectivity and by guiding the selection process in a quantitative way. 
In this study, we review the likelihood-based (LH and LLH) and the Euclidean distance-based ranking (EDR) methods, then 
we introduce a new procedure on the basis of deviance information criterion (DIC), for selecting the proper GMPEs. To 
showcase the method, eight candidate GMPE models are ranked by LLH, EDR and DIC. The method is not only shown to 
optimize the selection of GMPEs for the given region in an unbiased way through the Bayesian statistics, but also solves the 
problem associated with the previous data-driven methods. 

Keywords: GMPEs, Aleatory and epistemic uncertainties, deviance information criterion, Bayesian statistics  

1. Introduction 

Seismic hazard analysis is one of the effective ways to reduce the impact of destructive earthquakes, and 
requires an appropriate estimate of the expected ground-motion at the site of interest. The estimation of ground-
motion can be done by a mathematical expression called ground-motion prediction equation (GMPE) which 
quantifies the ground motion parameter of interest by given parameters describing source, path and site effects. 
Seismic hazard practitioners distinguish uncertainties of different natures in a convenient way, adopting the term 
“aleatory” as the irreducible variability and “epistemic” to characterize all reducible uncertainties [1]. In GMPE, 
the random variability of amplitudes about a median prediction equation is considered as aleatory uncertainty 
whereas the uncertainty concerning the correct value of the median is epistemic. The epistemic uncertainty 
which is related to lack of the knowledge, would be expected to decrease by increasing earthquake data in 
quality and quantity. However, Douglas [2] by analyzing more than 250 GMPEs over the past four decades in 
different part of the world, pointed out that epistemic uncertainty in ground-motion prediction has not been 
reduced and is still large. Therefore, it is important to consider epistemic uncertainty in seismic hazard studies 
which can be handled by either considering multiple GMPEs in a logic tree format [3] or the representative suite 
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approach that defines a lower, central, and upper GMPE [4,5]. However, the selection of appropriate GMPE is 
still needed for both the logic tree and representative suite methods, all of which makes the selection of suitable 
GMPEs challenging particularly for regions where indigenous GMPEs do not exist [6]. Data-driven methods are 
acceptable approaches which overcome this problem by reducing subjectivity and also guiding the selection 
process in a quantitative way [7]. The LH (likelihood) method is the exceedance probability-based approach 
proposed by Scherbaum et al. [8] that calculates the normalized residuals for a set of observed and estimated 
ground-motion data. In LLH (log-likelihood), Scherbaum et al. [7] suggested an information theoretic approach 
that overcomes several shortcomings of LH method. LLH is not sample size dependent anymore, and also it does 
not require any ad hoc assumptions regarding classification boundaries [9]. These likelihood-based approaches 
inspired Kale and Akkar [10] to propose the Euclidean distance-based ranking (EDR) method which uses the 
Euclidean distance to account for both aleatory variability in ground motions and the trend between the observed 
and estimated data. However, these currently used data driven methods, have revealed some shortcoming in their 
performance for some cases. The LLH method prefers the predictive model with larger sigma, when the 
observed data are accumulated away from the median estimations of the two GMPEs [10]. On the other hand, 
the EDR method favors a smaller sigma when two predictions give the same mean, regardless of what the true 
uncertainty is [11]. 

Iceland is known as the most seismically active country in Northern Europe where strong earthquakes 
occur on the average every ten years [12]. The South Iceland Seismic Zone (SISZ) is one of the most active 
seismic regions of Iceland where the time interval between large earthquake sequences ranges between 45 and 
112 years based on the historical catalogue [13]. This zone is located between the Eastern and Western volcanic 
zones and is 20–30 km wide and 70-80 km long [14], in which the distribution of faults and damage zones of 
historical earthquakes suggests a width larger than 20 km [15]. A surprising feature of the SISZ is the 
distribution of the active strike–slip deformation, which involves few left-lateral faults in accordance with the 
tectonic spreading, which instead is manifested as numerous parallell N–S-trending right-lateral faults, a 
relatively unique feature known as “bookshelf tectonics” [13,16]. More than 30 destructive earthquakes in SISZ 
have been documented since AD 1164, either as single events like the earthquakes in 1726, 1829, and 1912 that 
occurred in the eastern part of the SISZ, or sequences of two or more large events over a period of days to a few 
years like the five MS=6.0–6.9 earthquakes sequences in 1896, which struck the area in only 2 weeks [13,17]. 
The largest historical earthquake, with estimated MS=7.1, occurred on August 14, 1784, and was followed two 
days later by a second event of MS=6.7, approximately 30 km to the west [18] and also the MS=7 in 1912 was the 
first instrumentally recorded earthquake which was occurred at the eastern border of the SISZ [19]. All indicates 
the high seismicity of this region and evitable need to seismic hazard analysis where the selection of appropriate 
GMPEs is the most important element to reach a consistent hazard estimates. In the present study, we use LLH 
and EDR methods to rank eight candidate GMPEs in SISZ. Table 1 shows the candidate GMPEs consist of 
Rupakhety and Sigbjornsson [20], RS09; Akkar and Bommer [21], AB10; Ambraseys et al. [22], Am05; Danciu 
and Tselentis [23], DT07; Gülkan and Kalkan [24], GK02; Cauzzi and Faccioli [25], CF08; Zhao et al. [26], 
Zh06 and Lin and Lee [27], LL08 which all of them satisfy the minimum requirements proposed by Cotton et al. 
[28] and Bommer et al. [29]. Furthermore, the models are selected according to the study of Delavaud et al. [30] 
which had proposed them as the suitable GMPEs for seismic hazard in Iceland. Moreover, we propose a robust 
method to rank GMPEs using the theory of deviance information criterion (DIC) which solves the problem 
associated with the previous data-driven methods.  
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Table 1. Description of the selected ground-motion prediction equations 

Main Region(s) 
Site 

Class 
Horizontal 
Component

R 
Range 

Mw 
Range 

GMPE 

Iceland, Greece, Turkey 2 classes LARGE 1-97 5.0-7.7 RS09 [20] 
Europe and Middle East 3 classes GMEAN 0-100 5.0-7.6 AB10 [21] 
Europe and Middle East 3 classes LARGE 0-100 5.0-7.6 Am05 [22] 

Greece 3 classes AAVRG 0-136 4.5-6.9 DT07 [23] 
Turkey 3 classes LARGE 0-150 5.0-7.5 GK02 [24] 

Worldwide 4 classes GMEAN 15-150 5.0-7.2 CF08 [25] 
Japan 5 classes GMEAN 0-300 5.0-8.3 Zh06 [26] 

Northern Taiwan 2 classes GMEAN 15-630 4.1-8.1 LL08 [27] 
Horizontal component: GMEAN geometric mean, LARGE larger value, AAVRG arithmetic average 

2. Methods 

The Likelihood-based methods  

GMPEs relate a predicted variable (Yprd) characterizing the logarithm of an intensity measure to a set of 
explanatory variables which describe the earthquake source, wave propagation path, and site conditions. The 
residual or the difference between the observed value (Yobs) and the predicted value is generally assumed to be 
normal with a mean of zero and a standard deviation σ: 

   prdprdobs YYY   (1) 

where ε is the normalized residual which represents a measure of the goodness-of-fit of the equation at the 
particular data point [31]. Scherbaum et al. [8] showed that some statistical methods such as variance reduction, 
chi-square test, Pearson correlation and Kolmogorov–Smirnov statistic are not reliable measures to select the 
most appropriate model for a given ground-motion dataset. Also, the Nash-Sutcliffe model efficiency coefficient 
[32] which was used by Kaklamanos and Baise [33] just quantifies the accuracy of the median relationships and 
does not address the standard deviation relationships. Therefore, after trying aforementioned statistical methods, 
Scherbaum et al. [8] pointed out that a good measure for the goodness-of-fit of a ground-motion model is the 
probability for the absolute value of a random sample from the normalized distribution to fall into the interval 
between the modulus of a particular observation |ε0| (expressed as normalized variable) and for a positive ε0, 
that is: 

 

























 
 



2
)(

2

1

2
exp

2

1
)( 0

2

0

0







ErfErfdu                                           (2) 

where Erf (ε) is the error function with the generalized form of: 
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Therefore, the likelihood of the normalized residual can be expressed as: 
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Consequently, they categorized different ground-motion into four classes based on the obtained LH value and 
the median, mean and standard deviation of normalized residuals which is shown in Table 2. 
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Table 2. The criteria proposed by Scherbaum et al. [8] to classification of different GMPEs 

Class Description 

A 

As a highest capability class requires a median LH value of at least 0.4, the 
absolute value of both measures of the central tendency of the normalized 
residual distribution, and their standard deviations not deviate by more than 
0.25 from zero. In addition, their normalized sample standard deviation must 
be smaller than 1.125. 

B 

As an intermediate capability class requires a median LH value of at least 0.3, 
an absolute value of the mean and the median of the normalized residuals, and 
their standard deviations must be less than 0.5. In addition, their normalized 
sample standard deviation less than 1.25. 

C 

As the lowest accepted capability class, requires a median LH value of at least 
0.2, an absolute value for the mean and the median of the normalized residuals, 
and their standard deviations must be less than 0.75. In addition, the 
normalized sample standard deviation is required to be less than 1.5. 

D 
Includes models that do not meet the criteria for any of the A, B and C 
categories. 

 
Although the LH method was proven to be an acceptable approach for ranking the GMPEs, its dependence on 
data size and subjectivity in choosing the threshold LH value which is shown in Table 2, led Scherbaum et al. [7] 
to propose the LLH method that overcomes these weaknesses. This approach within an information theory 
framework, measures a Kullback–Leibler distance between two models f and g: 

 )]([log)]([log),( 22 gEfEgfD ff    (5) 

where Ef is the expected value taken with respect to f. This distance describes the amount of information loss if 
model f is replaced by model g and for model comparison, their relative Kullback–Leibler distance is only 
interested where the expectation of the unknown model f drops out as a constant [9]. Therefore, the second 
expectation (−Ef[log2(g)]) can be estimated by the average sample log likelihood (LLH) as a ranking criterion for 
the N number of observations: 
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The Euclidean distance-based method 

Based on the Euclidean distance (i.e., the square root of a sum of squares of the differences between N 
data pairs) between the observed and estimated ground-motion data, Kale and Akkar [10] proposed a ranking 
criterion called as EDR: 
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where MDE is the modified Euclidean distance and κ parameter is the ratio of original and corrected Euclidean 
distances which can be obtained by: 
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where ai and Yi are the natural logarithms of the ith observed and estimated data, respectively. The parameter Yc,i 
stands for the corrected estimation of the ith data after modifying Yi with the straight line fitted on the logarithms 
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of the estimated and observed data [10]. The MDE considers the discrete occurrence probabilities of absolute 
differences between the logarithms of observed data (ai) and a range of ground-motion estimates (yj, j=1,…,N) 
computed from a GMPE [34] and can be obtained by: 
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where μD and σD are the residual and standard deviation of GMPE. The )3max(
max DDd   which the 

multiplier of 3 lead to cover approximately 99.7% of the differences between the observation and estimations of 
a candidate GMPE [10]. 

3. The Deviance information criterion 

The deviance has an important role in statistical model comparison because of its connection to the 
Kullback-Leibler information measure and is defined as: 

 )(log2),(  ypyD    (10) 

where, θ is the unknown parameter and y is the observed data. In the limit of large sample sizes, the model with 
the lowest expected deviance, will have the highest posterior probability, thus, it seems reasonable to estimate 
expected deviance as a measure of overall model fit [35]. A summary based on D(y,θ) that does not depend on θ 
is given by: 

  )(ˆ,)(ˆ yyDyD     (11) 

where ̂ is a point estimate for θ such as the mean of the posterior simulations. Another summary is the posterior 
mean of D(y,θ), which can be estimated with: 
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where l is the l-th draw from posterior distribution. The estimated average discrepancy (eq. 12) is a better 
summary of model error than the discrepancy of the point estimate since it averages over the range of possible 
parameter values [35]. Therefore, the expected deviance can be approximately estimated with a summary 
statistic called the DIC: 
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The DIC which is developed by Spiegelhalter et al. [36] is a Bayesian version or generalization of the 
well-known Akaike Information Criterion (AIC) [37], related also to the Bayesian (or Schwarz) Information 
Criterion (BIC) [38] and has been suggested as a criterion of model fit when the goal is to find a model that will 
be best for prediction when taking into account uncertainty due to sampling. 

4. Application to GMPEs 

The key element for model comparison is the posterior distribution. In this study, the unknown 

parameters, θ, are the GMPE’s parameters (i.e., regression coefficients, β, and the variance, 2 ). Assuming that 
the ground motion data follow a normal distribution: 
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where, N is the number of observations, y is the observed ground motions, μ(β) is the mean value predicted by 
GMPE and is the standard deviation of GMPE. We do believe that the sigma from the region of origin should 
not be a determinative measure in selection of GMPE for another region. Therefore, we assume that sigma is 
unknown and follows a scaled inverse chi-squared distribution because for the normal model, the conjugate prior 
distribution for σ2 is scaled inverse-χ2: 
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where, υ is the number of chi-squared degrees of freedom and s2 is the scaling parameter. Therefore, the joint 

posterior distribution of β and 2 is given by: 
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Therefore, the posterior distribution of variance ( 2 ) is again a scaled inverse chi-squared distribution with the 
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model comparison can be done by the deviance of the normal model: 
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Therefore,  
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where, 2̂ are drawn samples from the posterior distribution and 2 is the posterior mean value. To exhibit the 
performance of the proposed method, eight candidate GMPEs are chosen to be ranked regarding to ground 
motion data in SISZ. The data used in this study include 105 records with the magnitude range of 5.1-6.5 
covering time period 1987-2016. The PGA and spectral acceleration (PSA) at periods 0.2s, 1s, 1.5s and 2s have 
been chosen as the intensity measures which are shown in Figure 1. To account for the uncertainties due to 
different orientations of the sensors, a rotation-invariant measure is used [39,40].  
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Fig. 1. Distribution of the data used in terms of distance and magnitude versus rotation-invariant PGA and PSA 
at different periods for rock (circles) and stiff soil (diamonds) sites. 

5. Results and Discussions  

In this study, we proposed a new method to rank the GMPEs using deviance information criterion in order 
to apply in seismic hazard studies. The method optimizes the selection of GMPEs for a given region in an 
unbiased way through the Bayesian statistics, and also leads to more consistent hazard estimates with the proper 
handling of the uncertainty of strong-motion parameters. The latter has important implications for the efforts of 
improving estimates of earthquake hazard. Moreover, it overcomes the problems associated with the currently 
used ranking methods, LLH and EDR. In our proposed method, we assumed that the sigma is unknown and 
should be determined by the data in the region of interest whereas the LLH and EDR use the sigma from the 
origin region. For this reason, we used the Bayesian statistic to obtain the posterior estimation of sigma by 
combining the normal distributed ground motions with the prior distribution of sigma. Suppose that the prior 
distribution of sigma follows a scaled inverse chi-squared distribution which is conjugated to the normal models. 
To show the perfomance of the proposed method, eight GMPEs were ranked for South Iceland. The scores of 
EDR, LLH and DIC of the candidate GMPEs in different periods are shown in Figure 2. A smaller EDR, LLH 
and DIC value indicates better performance of the predictive model. Also, we have shown the prior and posterior 
sigma in Table 3.  
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Fig. 2– The scores of the EDR, LLH and DIC in different periods for the candidate GMPEs in SISZ. 

The results indicate when the predictions are close to observed ground motions (i.e. small mean residual), 
LLH in some case selects the model with smaller sigma and when they are accumulated away from observations, 
LLH favors the models with larger sigma which such a case can be seen in T=1.5s and T=0.2s, respectively. In 
T=1.5s, RS09 is selected as the best model for its smaller sigma than Zh06 and in T=0.2s, CF08 is preferred than 
LL08 due to its larger sigma while DIC behaves in opposite because both the updated sigma and residuals are 
considered. As we mentioned before, when the mean residual of two models are approximately same, EDR 
favors models with smaller sigma which has been proved in PGA and T=0.2s where it has selected AB10 better 
than Zh06. Also in T=1.5s, EDR prefers RS09 rather than Zh06 just for its smaller sigma regardless what the 
residual and true uncertainty are. As can be seen, sigma as a crucial parameter plays an important role in 
previous studies which should not be based on the prior information. We believe our proposed method works 
well for all cases because it considers both mean residual and true sigma simultaneously.   

Table 3. The prior and posterior standard deviations (in natural logarithm) of the candidate GMPE for SISZ. 

Models Sigma (PGA)  Sigma (T=0.2s) Sigma (T=1.0s) Sigma (T=1.5s) Sigma (T=2.0s) 
Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior 

Am05 0.665 0.758 0.726 0.844 0.755 0.638 0.719 0.567 0.719 0.492 
AB10 0.642 0.748 0.696 0.831 0.749 0.648 0.736 0.603 0.756 0.557 
RS09  0.660 0.558 0.718 0.645 0.659 0.545 0.612 0.486 0.691 0.650 
Zh06  0.723 0.740 0.811 0.784 0.775 0.566 0.779 0.472 0.787 0.500 
DT07  0.667 0.851 0.700 0.965 0.808 0.830 0.753 0.705 0.732 0.606 
GK02  0.561 1.218 0.611 1.266 0.756 1.296 0.788 1.072 0.895 0.952 
LL08  0.526 0.875 0.606 0.879 0.798 1.024 0.841 1.154 0.877 1.267 
CF08  0.792 1.182 0.866 1.005 0.817 0.763 0.804 0.696 0.758 0.825 
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Sigma plays an important role in the data-driven methods but it might be contaminated by uncertainties 

associated with the region of origin. The main advantage of the proposed procedure is to introduce the posterior 
sigma as a determinative measure to rank the models. Using Bayesian analysis, the posterior distribution of 
sigma is obtained based on the observed ground motions. In other words, posterior sigma shows the deviance of 
predicted values from observed ground motions which can solve the problem associated with the LLH and EDR 
methods. Moreover, in some cases, much dependence of the previous studies on sigma even ignores the residuals 
as one of the main measures in model selection issues. DIC represents a good interaction between mean residuals 
and posterior sigma by selecting models with smaller residual and posterior sigma which is quite reasonable. 
However, the main point that should not be forgotten, is the proposed method like the other data-driven methods 
works correctly just inside the available data range. We emphasize that the use of scores must be accompanied 
by the expert judgments in evaluating the performance of a GMPE or in hazard assessment. In this study, a good 
example is shown for South Iceland where the methods prefer CF08 than some models at some periods despite 
the fact that this model is linear and does not have a saturation term, leads to the prediction of unrealistically 
large ground motions in the near-fault region which effectively renders it unsuitable for hazard studies near 
active faults.  
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