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Abstract 

The theory of micromechanical homogenization is used for the prediction of effective material properties for the use in 

macroscopic nonlinear simulations of masonry structures subjected to lateral loads, e.g. due to seismic loads, using a well-

established model such as the total strain rotating crack (TSRC) model. The mechanical and geometrical properties of the 

constituents (mortar joints and brick units) are explicitly considered in a detailed microscopic three-dimensional (3D) finite 

element (FE) model of a typical masonry unit cell subjected to a monotonically increasing state of macro strain. The macro 

stress history is obtained so that a macroscopic stress-strain relationship is established for a particular orientation of 

principal strains. The effective parameters for nonlinear analysis are selected based on the obtained stress-strain curve. This 

set of effective parameters is used in a macroscale model to test their ability in replicating full micro analytical modeling as 

well as experimental results of full-scale specimens. The proposed homogenized model is suitable for an efficient 

computation of the nonlinear behavior of masonry structures where experimental results are unavailable. On the other hand, 

it is also suitable for parameters determination for masonry structures subjected to complex state of stresses as the case of a 

masonry wall containing openings and/or complicated geometric/loading conditions. Such a parametric model can also 

serve as a key component for the analytical estimation of the seismic vulnerability of systems containing masonry 

components, e.g. masonry structures and infilled frames, for subsequent reliability-based performance-based earthquake 

engineering applications. 
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1. Introduction 

Masonry is a construction material used in most of old buildings around the world as well as in many of the 

modern buildings especially in developing countries. It typically consists of a manual arrangement of individual 

units, e.g. bricks or stones, bonded together by mortar joints. This arrangement can be random, as observed in 

most heritage buildings. On the other hand, the arrangement can be organized in a periodic fashion as observed 

in most modern buildings. In both cases, the response of such structures depends on the properties of the two 

constituting phases and their spatial distribution (as characterized by their arrangement and the size of each of 

them). Masonry is thus a heterogeneous material but, in most structural analysis and design, masonry is 

considered as a homogeneous material with effective parameters in terms of stiffness and strength. The analysis 

and design of new masonry structures as well as the vulnerability analysis and retrofit of existing ones require an 

appropriate selection of the effective parameters. 

In the current state of structural and earthquake engineering, it is obvious that physical simulations 

provide the most suitable venue to gain a better understanding of the behavior of structural components and 

systems. The effective parameters needed for a large-scale numerical simulation of masonry structures can be 

inferred from the observed behavior obtained by physical experimentation.  However, physical, economical and 

time constraints restrict the versatile employment of the experimental simulations. In contrast, analytical 

simulations possess significantly smaller amount of physical and economical constraints and they provide 

increased accuracy with the increased model size and sophistication and corresponding simulation duration.  

Many studies are found in the literature for the determination of the effective elastic constants for masonry 

structures. Most of these studies rely on the theory of micromechanical homogenization. The reader is referred to 

[1], [9], [10], [19], [21], [23], [24], etc. However, limited work is available in the literature for the analytical 

prediction of the strength and full nonlinear behavior of masonry structures subjected to complex states of stress 

or deformation. Based on experimental observations on masonry walls subjected to loads in different 

orientations, Lourenço (1996) [15] developed a plasticity model for masonry in which Hill criterion was adopted 

for compressive strength while Rankine criterion was adopted for tensile strength. Berto et al. (2002) [8] 

developed an orthotropic damage model for masonry accounting for the stiffness recovery of masonry upon 

crack closure. Their model was tested against experiments and good analytical versus experiment agreement was 

observed. Kawa et al. (2008) [12] used lower bound theory of plastic analysis for the determination of limit 

stress of a masonry unit cell. They assumed Mohr-Coulomb failure criterion for both mortar joint and brick 

units. This process involves a constrained optimization problem over all possible admissible stress fields for the 

determination of strength in a particular orientation. Luciano and Sacco ([14] and [15]) developed a 

micromechanical damage model for masonry structures by homogenizing the undamaged and damaged state of 

masonry. They assumed that damage concentrates on mortar joints and that bricks remain elastic. Zucchini and 

Lourenço (2009) [25] combined a damage model in tension with a plasticity model in compression. The classical 

computational homogenization was used, and Drucker-Prager plasticity was assumed for each phase with the 

return mapping algorithm for the computation of plastic strains. They show the capability of the computational 

homogenization in replicating results from a meso-scale modeling of masonry. 

In a recent publication, [20], the authors developed a two-dimensional (2D) computational 

micromechanical model, based on the finite element method (FEM), for masonry structures. Effective elastic 

constants were obtained using the classical computational homogenization technique [13] and the asymptotic 

homogenization [22], Both methods led to the same results. The homogenized elastic parameters were used on 

macroscale simulation of specimens for which experimental results were available and they were observed to be 

in an acceptable agreement. A similar model is presented herein but in three-dimensions (3D). Furthermore, 

nonlinear properties are considered for each phase as well as for their interface. This model is expected to 

account for the different modes of failure of masonry including vertical splitting cracks in brick units as a result 

of the tensile force exerted by mortar joints in the out of plane direction of the splitting plane. 

The study of the strength properties of masonry structures is undoubtedly important not only for the 

analysis and design of new masonry structures but also for evaluating and accordingly retrofitting existing and 

heritage masonry structures. Drawbacks of the physical experimentations of masonry walls are not only limited 

to resources limitations but also to the fact that structural response of such structures is highly dependent of the 

characteristics of the state of stress (i.e. direction of principal stresses) and also the characteristics of the 
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primitive cell, including but not limited to the topology (which typically varies significantly especially from 

heritage buildings to modern ones), thickness of joints, phase material type and quality, etc. This makes specific 

experimental results applicable to very limited cases and extrapolation to different scenarios might not be 

straightforward. Thus, having a robust way of characterizing the macroscopic properties of masonry is essential. 

In this paper, we start by presenting some experimental results on masonry walls. Then, we describe the 

homogenization approach and finally, we discuss the comparison of results between the proposed analytical 

model and the experiments. 

2. Experiments on masonry walls  

Masonry is a complex composite of bricks and mortar joints. The behavior of a masonry wall depends on the 

properties of the brick units, the mortar joints, and the mortar-brick interfaces. Several tests, discussed in this 

section, of materials used in the construction of panels were conducted to understand the wall panel behavior. 

 

2.1 Brick units 
 

Clay bricks have dimensions 3-5/8 × 2-1/4 × 7-5/8 in. The bricks compressive strength was determined by 

testing five bricks in accordance with ASTM C 67 [1]. The bricks were saw cut in half, capped and loaded 

perpendicular to the bed joint. Unlike the ASTM standard, the bricks were not dried so that the strength value 

was representative of conditions in the wall panels. Moreover, the bricks were not shellacked, but were capped 

with hydrostone. Compressive strength was determined as  

 𝐶 = 𝑊 𝐴⁄  (1) 
where 𝑊 is the maximum load and 𝐴 is the gross cross-sectional area perpendicular on the loading direction. For 

tensile strength, each brick is loaded perpendicular to the bed joint via a long metal rod that lies across the brick 

in accordance with ASTM C 1006 [3]. The splitting tensile strength, 𝑇, was determined using  

 𝑇 = 2𝑃 𝜋𝐿𝐻⁄  (2) 
where 𝑃 is the maximum applied load, 𝐿 is the net split length, and 𝐻 is the brick height. The test creates a 

nearly constant tensile stress that results in strength values that are slightly higher than the direct tension tests 

[11] . 

The bricks modulus of rupture is related to the bricks tensile strength. This test was conducted in 

accordance with ASTM C 67 [1], except that the five brick units were not dried so that the strength value was 

representative of conditions in the wall panels. ASTM calculates the modulus of rupture, S, as 

 S = 3𝑊(𝐿 2⁄ − 𝑥) 𝑏𝑑2⁄  (3) 

where 𝑊 is the maximum applied load, 𝐿 is the span length, 𝑏 is the net width, 𝑑 is the brick height, and 𝑥 is the 

average distance from the mid-span of the specimen to the plane of failure measured in the direction of the span 

along the centerline of the bed surface subjected to tension. Tensile strength value (516 psi) was determined 

from the split tension test. The arching action and the fact that a smaller fraction of the section is being highly 

stressed, explain why the average modulus of rupture value (794 psi) is significantly greater than the average 

tensile strength value (516 psi) determined from the split tension test. The average distance, 𝑥, from the mid-

span of the specimen to the plane of failure was as large as 1-1/16 in. This large value demonstrates that small 

flaws can greatly influence the brick strength were failure does not always occur at the cross-section with the 

largest bending moment. This is supported by the large COV (25%) where bricks generally failed in a brittle 

manner with a single visible crack near the center. However, one brick lost its load carrying capacity in a rather 

ductile manner with no visible cracks. According to the modulus of rupture tests, the brick net tensile strength 

was about 18% of the net compressive strength. 
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2.2 Mortar joints 

Mortar cylinders were cast for compression and split tension tests. The cylinders were 3 in. diameter and 6 in. 

long. They were compacted with a rod after each third of the cylinder was placed and were further consolidated 

with a vibration table. The cylinders were tested according to ASTM C 496 [4] after 7 days of curing in a fog 

room. A set of split-tension tests were performed in which the cylinders were subjected to a compressive load 

parallel to the longitudinal axis of the cylinder. The compressive strength of the mortar was determined 

according to ASTM C 39 [5] in which the cylinders were loaded axially.  

2.3 Masonry Direct shear tests 

Direct shear tests were performed with the same bricks and mortar using four brick assemblies. A load, 𝑃, was 

applied to the center bricks in parallel to bed joints and the gross shear stress was calculated as  

 τ = 0.5𝑃/𝐴𝑔 (4) 

where 𝐴𝑔 was 12.7 in2. 

2.4 Masonry prism test 

Five prisms where each prism consisted of three units stacked on top of each other, and bonded together by 

mortar joints were tested in compression according to ASTM E 447 [6]. The prisms were cured 21 days in the 

fog room followed by 7 to 8 days at room temperature before testing. The specimens were loaded at a rate of 

about 55 kips per minute. The average compressive strength was 2.906 ksi with a COV of 4%. 

2.5 Masonry constituents test results 

Table 1 summarizes the results of the previously discussed experiments. 

Table 1 – Masonry component test results 

Test Curing (days) # of Specimens Average Strength (ksi) COV 

Brick Compression - 5 4.341 24% 
Modulus of Rupture - 5 0.794 25% 
Brick Split Tension - 4 0.516 18% 

Mortar Compression 
7 3 0.736 2% 
28 3 1.179 2% 

Mortar Split Tension 
7 3 0.113 9% 
28 3 0.186 3% 

Comp. Masonry Prism 28 5 2.906 4% 

Masonry Shear - 2 0.106 5% 

 
2.6 Diagonal tension test of a masonry wall 

The diagonal tension test of masonry walls is performed to study the behavior of the walls when subjected to a 

state of stress dominated by shearing. Fig. 1 shows the applicability of such test. 
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(f) 

Fig. 1 – (a) Unreinforced masonry (URM) wall; (b) Concrete frame with URM infill; (c) Free body diagram of a 

panel; (d) Schematic representation of diagonal tension test setup; (e) State of stress inducing diagonal tension at 

the center of the wall; (f) Picture of diagonal tension test [17] 

2.6.1 Test setup 
 

30 in.×30 in. square panels were constructed in the pattern shown in Fig. 1(d) with half blocks at every other 

row end. Vertical and horizontal joints were approximately 9/32 in. The test was performed according to ASTM 

E 519 [7]. To create the loading condition shown in Fig. 1 (d), the panel corners were capped with hydrostone 

and placed into steel loading shoes. The placement was checked carefully to ensure that the wall was vertically 

plumb and loading shoes were placed evenly. The panel was subjected to monotonic quasi-static loading at an 

average rate of 6.6 kips per minute. The loading rate was calculated by dividing the load at yield by the time to 

yield. After placing the panels in the test machine, small holes were drilled into the brick on each side of the 

panel near the corners where tension and shear stresses would be small. Threaded rods were inserted into the 

holes and embedded with hydrstone. Displacement transducers were placed on the rods to measure horizontal 

and vertical displacements on each side of the specimen. Inserting the rods into the brick had minimal effect 

since cracks never initiated in the vicinity of the rods. Another displacement transducer measured the 

displacement of the loading head and a load cell measured the applied force. 

 

2.6.2 Results 

Fig. 2 depicts the shear force versus drift relationship, where the shear force is normalized by the wall original 

thickness as follows: 

 𝑉 𝑡⁄ = 𝑃 𝑡√2⁄  (4) 

where 𝑡 is the thickness of the wall and 𝑃 is the applied load. From Fig. 1(c), it is clear that the bricks near the 

center of the panel experience compressive and shearing action. In an URM wall, axial load would develop due 
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to gravity, overturning moment, and/or vertical ground acceleration, whereas the shear load would be transferred 

to the wall from the inertia effects of floor or roof diaphragms, Fig. 1(a). The wall drift, δ, is based on 

δ = (𝐿 − √(√2𝐿 − Δu)
2

− 𝐿2) 𝐿⁄  (5) 

where 𝐿 is the average gage length of the two vertical displacement transducers and Δu is the average of the 

magnitude change in length of each vertical gage. The drift equation is only an approximation of the actual panel 

deformation. The equation assumes that the length of each panel edge remains constant and that the wall 

shortens vertically the same amount that the wall expands horizontally. The latter assumption is not entirely 

accurate since displacement transducers indicate that the vertical and horizontal displacements are not of the 

same magnitude especially at large displacements, but on average the above equation gives a reasonable estimate 

of the performance of a brick panel. 

 

Fig. 2 – Masonry wall diagonal tension test results 

3. Computational homogenization 

3.1 Masonry unit cell 
Although the concept of unit cell is often confused with that of a representative volume element in statistically 

homogeneous solids, for periodic microstructure we use the unit cell to refer to the primitive cell that contains all 

geometric and mechanical features of the microstructure. In principle, one should be able to generate a full micro 

structural model of a large scale system by replicating the unit cell. Thus, the size of the unit cell is related to the 

periodicity of the micro structure. Fig. 3 shows the FE mesh of a masonry unit cell. 

 
Fig. 3 – Finite element mesh of masonry unit cell 

Micromechanical homogenization aims to find overall behavior of large-scale heterogeneous solids by relating it 

to the behavior of the unit cell. We perform analysis on this masonry unit cell to obtain the overall effective 

material properties to be used in large scale simulations. Each phase (mortar and brick) is given its 

corresponding material and geometrical properties. We assume the following mechanical properties (modulus of 

elasticity, Ec, Poisson’s ratio, v, compressive strength, fc, tensile strength, ft, compressive fracture energy, Gc, 
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and tensile fracture energy, Gt) for brick and mortar joints. Note that fracture energy is energy dissipated during 

formation of a unit area of damage in compressive crushing or tensile fracture. It is the area under the stress-

strain relationship multiplied by an intrinsic length scale and is treated as a material property (Mosalam and 

Paulino, 1997) [18] 

Table 2 – Material properties for the FE simulation 

 𝐄𝐜 (ksi) v 𝐟𝐜 (ksi) 𝐟𝐭 (ksi) 𝐆𝐜 (kips.in) 𝐆𝐭 (kips.in) 

Brick Units 1595.0 0.15 4.34 0.60 0.003 0.000088 

Mortar Joints 320.0 0.25 1.18 0.19 0.001 0.000050 

 

3.2 Homogenization approach 

If we impose constant unit increments of strain, d𝚬kl, in each direction, the stress increments, d𝚺ij, correspond to 

the effective coefficients of the tangent material moduli at a particular state of strain, ℂijkl
eff , i.e. 

 ℂijkl
eff ≔ d𝚺ij   due to unit constant   d𝚬kl (7) 

In 3D general problems, for each unit component of strain increments, we obtain 9 stress components. Since we 

repeat this process for the 9 strain components, we obtain 81 components to fill the 9×9 matrix of material 

moduli. In most applications, symmetry of such matrix reduces the number of independent material moduli. 

However, it is important to observe that heterogeneous material does not necessarily preserve the same material 

symmetry of their phase components. The components of dΣij are obtained by averaging the stresses in the unit 

cell subjected to the following boundary (∂V) conditions: 

 ui(𝑥) = 𝚬ij ∙ 𝑥j , ∀ 𝑥j  ∈ ∂V (8) 

where 𝚬ij is a constant strain. In 2D problems, we impose the following constant strain conditions: 

Case a:   unit 𝚬𝑥𝑥 =  [
1 0
0 0

]       Case b:   unit 𝚬𝑦𝑦 =  [
0 0
0 1

]       Case c:  unit 𝚬𝑥𝑦 =  [
0 1
1 0

] (9) 

 

3.3 Homogenization for elastic parameters 

The unit cell is subjected to the three cases in Eqs. (9). The solution is shown in Figs. 4 to 7. 

   

Case a. Constant Strain Εxx Case b. Constant Strain Εyy Case c. Constant Strain Εxy 

Fig. 4 – Displacement field of the masonry cell (inches, % elements within the specified displacement range) 
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Case a Case b Case c 

Fig. 5 – σ𝑥𝑥 distribution (ksi, % of elements within the specified stress range) 

 

 

   

Case a Case b Case c 

Fig. 6 – σ𝑦𝑦 distribution (ksi, % of elements within the specified stress range) 

 

 

   

Case a Case b Case c 

Fig. 7 – σ𝑥𝑦 distribution (ksi, % of elements within the specified stress range) 

 

 

Each finite element in the mesh depicted in Fig. 3 belongs to either a brick or mortar phase. Stresses are 

computed for each element using the appropriate constitutive relationship for each phase. We obtain three stress 

fields (σxx, σyy, and σxy) for each of the applied macro strain cases shown in Eqs. (9). The resulting nine stress 

distributions are shown in Figs. 5-7. By definition, the weighted average of each of the obtained stress 

distributions, for each element gives the following material moduli: 

 

[CMasonry] =  [ 
ℂ1111 ℂ1122 ℂ1112

ℂ2211 ℂ2222 ℂ2212

ℂ1211 ℂ1222 ℂ1212

] =  
1

𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
(∑(σij due to unit ϵkl) ∙ 𝑉𝑛

𝑛𝑒𝑙

𝑛=1

)  

=  [ 
1067 200 −1.015
200 975 −0.580

−1.015 −0.580 381
]  ksi 

(10) 
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where nel is the number of elements, 𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 is the volume of the unit cell and 𝑉𝑛 is the volume of the nth finite 

element. According to the above results, masonry can be idealized as an orthotropic material (material directions 

1 and 2) with the effective properties listed in Table 3, where G is the shear modulus. 

Table 3 – Effective material properties 

Parameter 𝐄𝟏𝟏 (ksi) 𝐄𝟐𝟐 (ksi) 𝒗𝟏𝟐 𝐆 (ksi) 

Value 1026.0 946.9 0.21 381.0 

 

4. Nonlinear FE model of masonry cell 

We analyze the unit cell subjected to monotonically increasing strains and the following boundary conditions: 

 

ui(𝑥, ϵ𝑦𝑦) = [𝚬𝑦𝑦(ϵ)]
ij

∙ 𝑥j, ui(𝑥, ϵ𝑥𝑥) = [𝚬𝑥𝑥(ϵ)]ij ∙ 𝑥j           ∀ 𝑥 ∈ ∂V (11) 

where  

𝚬𝑦𝑦(ϵ) = [
0 0
0 ϵ

]     and    𝚬𝑥𝑥(ϵ) = [
ϵ 0
0 0

] (12) 

 

The stress vs strain relationship for each case is shown in Fig. 8 

 
Fig. 8 –Stress vs strain for masonry unit cell 

  

4.1 Analysis of rotated unit cell 
The unit cell is subjected to state of strain in arbitrary direction via macro strain transformation. We subject the 

unit cell to the following boundary condition: 

 

ui(𝑥, ϵ, θ) = [𝚬𝑥′𝑥′(ϵ, θ)]ij ∙ 𝑥j, ∀ 𝑥 ∈ ∂V (13) 

where  

𝚬𝑥′𝑥′(ϵ, θ) = [𝐐(θ)][𝚬𝑥𝑥(ϵ)][𝐐(θ)]T (14) 

and Q(θ) is a rotation operator given by 

𝐐(θ) = [
cosθ sinθ

−sinθ cosθ
] (15) 

When we average the stress field due to 𝐄x′x′(ϵ, θ), we need to rotate it back to the inclined plane, then 
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𝚺i′j′(ϵ, θ) = [𝐐(θ)]T (
1

𝑉𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
(∑(σ due to E𝑥′𝑥′(ϵ, θ) ) ∙ 𝑉𝑛

𝑛𝑒𝑙

𝑛=1

)) [𝐐(θ)] (16) 

 

As an example, we are analyzing the unit cell rotated 45o by imposing the following state of strain: 

𝚬x′x′(ϵ, 45o) = [𝐐(45o)][𝚬xx(ϵ)][𝐐(45o)]T = [
0.5 – 0.5

−0.5 0.5
] ϵ (17) 

Accordingly, the longitudinal stress at this orientation is given by the following: 

𝚺𝑥′𝑥′(𝜖, 45o) = (𝚺𝑥𝑥 + 𝚺𝑦𝑦) 2⁄ − 𝚺𝑥𝑦 (18) 

 

4.2 Unit cell subjected to fields with moderate tensile strain 

Up to this point, the strain fields we have analyzed are uniaxial producing the Mohr circle in Fig. 9a where we 

have analyzed the unit cell for a longitudinal strain in a particular orientation, zero strain in the orthogonal 

direction and zero force boundary condition in the z-z direction. Herein, we are analyzing the unit cell subjected 

to fields with moderate tensile strain in the orthogonal direction (Fig. 9b) to the applied strain to subject the unit 

cell to the expected state of strain in a diagonal tension test specimen. Elastic analysis of a masonry wall under 

diagonal tension, using the elastic parameters in Table 2 suggests that the center of the wall is subjected to 

horizontal strain of about 40% of the vertical strain. Thus, we analyze the unit cell subjected to the state of strain 

shown in Eqs. (19). The stress vs strain relationship in this case is shown in Fig. 10. 

  

a. Uniaxial strain b. Fields with moderate tensile strain 

Fig. 9 – Mohr circle representation of imposed strains 

𝐄𝒙′𝒙′(𝜖, 45o) = [𝐐(45o)] [
1 0
0 −0.4

] 𝜖[𝐐(45o)]T = [
0.3 −0.7

−0.7 0.3
] 𝜖 (19) 

 
Fig. 10 – Stress vs strain relationships in two cases of the rotated unit cell 
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5. FEA of a masonry wall 

Based on the results of the rotated unit cell with moderate orthogonal strain, the parameters of FE model are 

summarized in Table 4. A FE model of a diagonal tension test is developed and the results are shown in Fig. 11. 

Table 4 – Effective material properties for a wall subject to diagonal tension 

𝑓𝑐 (ksi) 𝐺𝑐 (kip.in) 𝐸 (ksi) 𝑣 𝑓𝑡 (ksi) 𝐺𝑡 (kip.in) 

2.30 0.002 1100.0 0.26 0.10 0.000010 

 

  

a. Horizontal displacement (in) at 0.233% drift. b. Shear stress vs drift 

Fig. 11 – Results from FE model of diagonal tension test 

 

A failure mode consisting of a vertical crack is predicted by this model. In Fig. 11b, the macroscopic response is 

observed to match experimental results within the error in material parameters in terms of strength. Note that, in 

general, a one-step homogenization by analyzing the unit cell to a reference state of strain (Eq. 19), taken from a 

linear elastic analysis of the wall will give better estimations of the elastic limits because the state of strain may 

significantly change after failure. Therefore, results can be confirmed by subsequent homogenization steps 

and/or by a full multiscale simulation. 

6. Conclusions 

A set of homogenized nonlinear material properties for masonry was developed from parameters of its 

constituents obtained from experiments. The elastic moduli suggest that masonry can be idealized as orthotropic 

material. Thus, nonlinear simulation was performed on a masonry unit cell, leading to macro stress vs macro 

strain relationship. The behavior of the unit cell, subjected to state of principal strain rotated 45 degrees, was 

investigated. Effective parameters for nonlinear analysis of masonry were inferred from the results. This model 

was shown to be accurate when tested against results of a diagonal tension (shear) test. The implementation of 

the developed model is suggested in the analysis and design of new masonry structures as well as the 

vulnerability assessment, retrofit and restoration of old masonry structures.  
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