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Abstract 
The work proposes a procedure for the damage assessment of a building under a strong earthquake. The Cauchy wavelet 
transform is applied to the measured acceleration responses of a building and a time-varying autoregressive with exogenous 
input (TVARX) model with time-variant coefficients expanded as piecewise polynomial functions. The time-variant modal 
parameters of the building are directly identified from the coefficients of the appropriately established TVARX model. A 
Bayesian approach for dynamical model updating is employed to identify the variations of stiffness components with time 
using those identified time-varying modal parameters. Consequently, the damaged stories of the building are located and the 
severity of the damage can be determined. The proposed approach is validated through processing the numerically 
simulated acceleration responses of a six-story shear building with time varying stiffness and damping under base excitation 
with considering the effects of noise and incomplete measurement. Finally, the proposed approach is applied to handle the 
acceleration responses of a five-story steel frame in a shaking table test with a strong earthquake input. The frame is 3 m 
long, 2 m wide and 6.5 m high, and its columns of the first story yield during the test. 
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1. Introduction 
A structure may sustain damage either when subjected to severe loading, such as a strong earthquake, or when its 
material is degraded. The serviceability and safety of structures depend on the detection and location of 
structural damage. Early detection of structural degradation or danage is essential for preventing catastrophic 
failure. Research on structural health monitoring has been received more and more attention in civil engineering.  

Vibration-based damage detection methods, which utilize the dynamic characteristics (modal frequencies, 
damping ratios, and mode shapes) of a structure, are simple and widely adopted [1-4]. The main idea behind 
these methods is that damage in a structure typically changes the stiffness and damping of the structure and 
results in changes in its dynamic characteristics. Friswell et al. [5], Messina et al. [6] and Zapico and González 
[7] presented various approaches employing the modal frequencies of full structures to detect damage. However, 
these methods are not very effective because modal frequencies mainly depend on the global behaviors of the 
structure, whereas damage is a rather local phenomenon. Some indexes based on mode shapes have been 
proposed; for instance, MAC (Modal Assurance Criterion) [8], COMAC (Coordinate Modal Assurance 
Criterion) [9], MSE (Modal Strain Energy) [10], EEQ (Elemental Energy Quotient) [11], and EMSEC 
(Elemental Modal Strain Energy Change) [12]. MAC and COMAC are easy to apply, but they are not very 
sensitive to the existence of damage. To estimate the MSE, EEQ and EMSEC for a damaged structure, the 
stiffness matrix of the structure in undamaged state, which is difficult to accurately determine, is needed. Pandey 
et al. [13] applied curvature mode shapes to locate damage in a beam, and Sampaio et al. [14] further proposed 
frequency response function curvature method and evaluated the efficiency of this method using numerically 
simulated data and experimental data for a real bridge. Using modal frequencies and mode shapes, Lin [15] and 
Pandey and Biswas [16] established flexibility matrices of a structure in undamaged and damaged states, and 
located damage by considering changes in the components of the flexibility matrices. To take account of only a 
very limited number of sensors in a structural health monitoring system, sub-structural identification techniques 
have also been proposed. Koh et al. [17] employed the extended Kalman filter along with a weighted global 
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iteration algorithm to determine the stiffness matrix and the damping matrix of a sub-structure, while Zhao et al. 
[18] estimated the stiffness matrix and the damping matrix of a sub-structure in the frequency domain using an 
iteration algorithm. Su et al. [19] developed a simple and efficient sub-structural approach to locate the stories 
whose properties (stiffness and mass) change in the life cycle of a shear building by using ARX model.  

To assess damage in a structure, the aforementioned approaches deal with (equivalent) linear time 
invariant structures and require both the reference data (the data of structure without damage) and the data after 
damage. In practice, however, the reference data may not be available or difficult to establish because they are 
affected by environmental conditions such as temperature [20] and humidity [21], and after a severe event, such 
as a strong earthquake, it may not be feasible to conduct vibration tests to obtain meaningful data for damage 
identification. It would be desirable for a data analysis method to be capable of detecting the structural damage 
based solely on the vibration data measured during a severe event, such as a strong earthquake, without a prior 
knowledge of the undamaged structure.  

To fulfil such need, the present work assumes that the mass matrix of a building is known and adapts a 
Bayesian probabilistic method [22], which is a model updating approach, to estimate instantaneous stiffness 
matrices of a building using the instantaneous natural frequencies and mode shapes of the structure. The damage 
in the building is further assessed from the changes in the instantaneous stiffness matrices at different time. The 
instantaneous natural frequencies and mode shapes are identified using the method recently developed by the 
authors [23], in which a time varying autoregressive with exogenous input (TVARX) model along with the 
Cauchy wavelet transform is used to establish an input-output relationship of the structure from its dynamic 
responses and input forces. The presented approach is validated using the numerically simulated earthquake 
acceleration responses of a six-story shear building, which has time dependent stiffness and damping in the first 
story. The incompletely measured noisy responses and input with 10% variances of the noise-to-signal ratio 
(NSR) are processed. For practical concerns, the bandwidth of the stiffness matrix to be identified is not assumed 
to be one, which is the bandwidth of the stiffness matrix for a shear building. Then, this procedure is further 
applied to the measured acceleration responses of a five-story steel frame in a shaking table test, to demonstrate 
the feasibility of applying the proposed procedure to real data. The columns in the first story of the steel frame 
were found to yield from the measured strains.   

2. Methodology 
A structure under damage typically shows nonlinear dynamical behaviors in which structural stiffness and 
damping are implicitly dependent on time. The time dependence of structural stiffness and damping in a 
damaged structure leads to the instantaneous modal parameters of the structure varying with time. Consequently, 
the procedure of the proposed approach is to identify instantaneous frequencies and mode shapes from an 
appropriate TVARX model, which is established from the measured acceleration responses of a building under 
an earthquake. The significant time dependence of instantaneous modal parameters of a building indicates that 
the building can be damaged during an earthquake. The stiffness matrices at different time are estimated from 
the identified instantaneous frequencies and mode shapes via a model updating technique. Comparisons of 
stiffness components at different time reveal the locations of damage and the severity of damage. Herein, the 
method of Huang et al. [23] is adapted to identify instantaneous frequencies and mode shapes of a building 
under an earthquake, and the approach of Yuen [22] is applied to construct the stiffness matrices of a building at 
different time from the identified instantaneous frequencies and mode shapes. Both methods are briefly 
introduced below.  

2.1 Identification of instantaneous modal parameters 

The mathematic expression for a TVARX model is 
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where ( ) ( ( ),  ( ))T T Tt t t=z y y , ( ) ( ( ),  )T T Tt j t j− = −f f 0 , y(t-i) and f(t-i) are the vectors of measured responses 
and input forces at time t-i t∆ , respectively; 1/ t∆  is the sampling rate of the measurement, ( )i tΦ  and ( )j tΘ  are 

matrices of coefficient functions to be determined in the model, and ( )ta  is a vector representing the residual 
error accommodating the effects of measurement noise, modeling errors and unmeasured disturbances. It is well-
known that Eq.(1) is equaivalent to a discrete form of eqations of motion when ( )ta is absent. Huang et al. [24] 
showed that the measured displacement responses used for y(t-i) ensure that the instantaneous modal parameters 
are directly identifiable from ( )i tΦ  without systematic errors.  

Piecewise second-order polynomials are applied to expand the time-varying coefficient functions in a time 
window with width T∆ . Hence,  
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[ ]0 1 2i i i i=B B B B . Substituting Eq. (2) into Eq. (1) and applying the continuous Cauchy wavelet transform 
(CCWT) to the resulting equation yield  
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the Cauchy continuous wavelet transform of a function of time, f(t), is defined as [25] 
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the superscript∗ denotes the complex conjugate; a is a dilation or scale parameter; b is a translation parameter, 
and ( )n tψ is the Cauchy wavelet function and defined as [26] 

( )
1i

i
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n t
t

ψ
+

 =  + 
; (5) 

i 1= − . Notably, relations between the CCWTs of a function and its derivatives, relations between the CCWTs 
of f(t) and tnf(t) and the translation-invariance property are used in developing Eq. (3).  

The continuous wavelet transform in Eq. (4) shows its excellent ability of filtering f(t) in frequency 
domain. The frequency range is determined by the mother wavelet function and the chosen scale parameter. If 
only one value of a is used to establish Eq.(3), the responses ( )tz  and input f(t) within a certain frequency range 
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are used to find the time varying coefficients in the TVARX model. For considering a wide frequency range of 
responses ( )tz  and input f(t), several values of a can be entered in Eq.(3).  

Constructung Eq. (3) with different b and a (if necessary), whose corresponding time windows of Cauchy 
wavelets should be inside the time window of expanding time dependent coefficients under consideration by 
piecewise second-order polynomials, yields an over-determined system of linear algebraic equations. Applying 
the conventional least-squares approach to those linear algebraic equations and treating ( ){ }, ( )

n
W a b tψ a as error 

terms give the solutions for Ai
 and Bi

 . Then, the time dependent coefficient matrices ( )i tΦ  are obtained from 
Eq.(2). Similar to the procedure of obtaining modal parameters from an ARX model [27], a matrix [ ]G  is 
constructed from ( )i tΦ  as follows: 

[ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]
I I-1 I-2 I-3 1

 
 
 
 =
 
 
  

0 I 0 0 0
0 0 I 0 0

G
0 0 0 0 I
Φ Φ Φ Φ Φ





     





, (6)   

where [I] is an 2l × 2l unit matrix; 2l is the number of dimensions of z(t) in Eq. (1). Instantaneous modal 
parameters (natural frequencies, damping ratios and mode shapes) of the structure can then be estimated from 
the time dependent eigenvalues and eigenvectors of [ ]G . 

2.2 Estimation of instantaneous stiffness matrices 

Assuming that the mass matrix of a building, M, is known and using a Bayesian methodology, Yuen [22] 
developed an objective function, ˆ ˆ ˆ( , , )J Ω Ψ ∆ , to estimate the stiffness matrix of the structure using some of the 
identified natural frequencies and mode shapes of the building. The objective function is defined as 
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ˆ ˆ ˆ=Ψ ψ ψ ψ ; iλ and iλ̂ are the identified and true angular frequencies of ith mode, respectively; 

iψ and iψ̂ are the identified and true ith mode shapes, respectively; Δ̂ is a vector including the unknown 
components to be determined in the stiffness matrix K; ˆ

ηΔ is a vector of the nominal values of Δ̂ ; 2
eqσ  is a 

prescribed equation-error variance; 
∆̂

Σ is the prior covariance matrix for Δ̂ ; εΣ is the covariance matrix for 

( ) ( )( )0  ( )
T

T T T Tˆ ˆ, ,−Ω Ψ Ω L Ψ , and 0L is an observation matrix that picks the components of Ψ̂ corresponding to 

the measured degrees of freedom. In the following analyses, 2
eqσ  is set to 0.1%; 

∆̂
Σ  is a diagonal matrix with 

components equal to 10-4; εΣ is also a diagonal matrix with the component correspondng to ith mode equal to 
2

i eqλ σ .  
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To determine Ψ̂ , Ω̂  and Δ̂ , one carries out a sequence of iterations for the following optimization 
problems: 

( )
ˆ

 ˆ, ,arg min J∗ ∗ ∗=
Ψ

Ψ Ω Ψ Δ , (8a) 

( )*

ˆ
 ˆ , ,arg min J∗ ∗=

Ω

Ω Ω Ψ Δ , (8b) 

( )* *

ˆ
 ˆ, ,arg min J∗ =

Δ

Δ Ω Ψ Δ . (8c) 

The iteration starts from setting * ˆ
η=Δ Δ  and * =Ω Ω  to solve Eq. (8a), and sequentially Eqs. (8b) and (8c). The 

iteration process stops when *Δ converges.  

3. Numerical simulation 
Numerical simulation responses for a six-story shear building with time dependent material properties at the first 
story were first processed to confirm the accuracy and effectiveness of the proposed approach in determining 
instantaneous stiffness matrices of the building. The material properties of the six-story shear building are 
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 (9c) 

where mi, ci and k i  denote the mass, damping coefiicient and stiffness of the ith floor or story, respectively.  

The Runge-Kutta method was applied to solve the equations of motion for the shear building with a time 
increament ( t∆ ) of 0.004 s. Figure 1 shows the time histories of base excitation and acceleration responses at the 
first, second and sixth floors. These responses and input adding white noise with NSR=10% for 5 s ≤ t ≤ 35 s 
are processed. 

Figure 2 displays the variations of instantaneous natural frequencies of the six modes with time. Those 
instantaneous frequencies are identified following the procedure given in section 2.1 with T∆ =2 s and using 
Cauchy wavelets with n=10. Scale factors a=2, 0.75, 0.46, 0.35, 0.3 and 0.27 are used to identify modal 
parameters of modes 1~6, respectively. The figure demonstartes that the identfied natural frequencies agree 
excellently with the true values with the differences less than 1.5%. The identified mode shapes, which are not 
shown here, are also consistent with the true ones with MAC larger than 0.98.  

When applying the procedure shown in section 2.2 to determine the stiffness matrix of a building using the 
identified modal parameters, one has to know the structure of the stiffness matrix. That is, the bandwidth of the 
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stiffness matrix (Bw) must be first determined for the problem under consideration herein. The bandwidth of K 
for a shear building is one. However, different bandwidths of K are chosen to approximate the stiffness matrix at 
t=17.5 s, and the results are listed in Table1. As Bw increases, more stiffness components are to be identified. For 
example, when Bw is set to three, there are 18 components in K to be determined with the assumption of a 
symmetric K. 

  

  

Fig.1 Time histories of input and acceleration responses 

   

   

Fig. 2 Identified instantaneous natural frequencies 

The results in Table 1 are obtained using the identified modal parameters of the first three modes. The 
other identified modal parameters are employed to verify the correctness of the chosen bandwidths of matrix. 
The nominal values for the stiffness components, which are needed in ˆ

ηΔ , are set as follows: , ,1.3 ij ij truek kη =  
for j=i and i+1, ( 2), 10i ik η+ = kN/m and ( 3), 1i ik η+ =  kN/m, where subscript ‘true’ indicates the true values. The 
nominal values for the stiffness components can be estimated from the design data of the building under 
consideration. It is reasonable to assume that the differences between the nominal values and true values are less 
than 30%. The values of ijk with 2j i≥ +  or 2j i≤ −  theoretically equal zero, and it is also reasonable to set 
small nominal values for those components. The parenthesized values in Table 1 indicate the relative errors of 
the identified results, and clearly show that if the assumed Bw is more different from the true one, the worse 
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results are identified. The relative errors of the stiffness components identified by assuming Bw=3 can reach 
more than 70%, while the relative errors for Bw=2 are less than 30%. When Bw=1 (the true value), the identified 
results are very accurate with the relative errors less than 1%. 

Table 1 Identified stiffness matrices at t=17.5 s by assuming different bandwidths of matrix 
Bandwidth 

(Bw) 
 Identified K (kN/m) 

3 

93.48 (16.9%) 105.12 (31.4%) 13.74 0.01 0 0
105.12 201.73 (26.1%) 119.00 (48.7%) 19.01 0.03 0
13.74 119.00 203.09 (26.9%) 112.11 (40.1%) 14.75 0.00
0.01 19.01 112.11 198.07 (23.8%) 111.63 (39.5%) 20.29

0 0.03 14.75 111.

−
− −

− −
− −

− 63 206.80 (29.3%) 110.19 (37.7%)
0 0 0.00 20.29 110.19 200.40 (19.3%)

 
 
 
 
 
 
 −
 

−  

 

2 

89.29 (11.6%) 94.44 (18.1%) 8.14 0 0 0
94.44 187.54 (17.2%) 101.42 (26.8%) 5.60 0 0
8.14 101.42 182.25 (13.9%) 96.20 (20.3%) 4.43 0

0 5.60 96.20 177.38 (10.9%) 86.08 (7.60%) 0.21
0 0 4.43 86.08 163.71 (2.32%) 79.51 (0.61

−
− −

− −
− −

− − %)
0 0 0 0.21 79.51 167.81 (0.11%)

 
 
 
 
 
 
 
 

−  

 

1 

80.54 (0.68%) 80.21 (0.26%) 0 0 0 0
80.21 160.02 (0.01%) 80.36 (0.45%) 0 0 0

0 80.36 160.49 (0.31%) 80.23 (0.29%) 0 0
0 0 80.23 159.90 (0.06%) 79.72 (0.35%) 0
0 0 0 79.72 160.33 (0.20%) 79.90 (0.12%)
0 0 0 0 79.90 168.27 (0.1

−
− −

− −
− −

− −
− 6%)

 
 
 
 
 
 
 
 
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A question arises how to determine a right Bw. Table 2 shows the comparisons between modal parameters 
obtained from TVARX models and those determined from the stiffness matrices in Table 1. The index proposed 
by Trifunac [28] is adopted to indicate the correlation between two mode shapes and is defined as 

( ) ( )
( ) ( )

1/2T
iT iI iT iI

T
iT iT

e
α α − −

 =
 
 

ψ ψ ψ ψ
ψ ψ

, (10) 

where iIψ  and iTψ  represent mode shapes obtained from a TVARX model and a stiffness matrix, respectively, 

and α is determined by minimizing ( ) ( )T
iT iI iT iIα α− −ψ ψ ψ ψ . When e is close to zero, the two mode shapes 

are highly correlated. Table 2 reveals that the natural frequencies and mode shapes of the first three modes 
determined from the identified stiffness matrices with Bw=1 and 2 are consistent with those identified from 
TVARX models. The modal parameters of the 4th to 6th modes determined from the stiffness matrices with 
wrong Bw are significantly different from those of TVARX models. Consequently, the identified modal 
parmeters that are not applied to establish a stiffness matrix are useful to determine the right bandwith of the 
wanted stiffness matrix. 

Table 3 summarizes the identified stiffness matrices at t=7.5 s, 12.5 s and 17.5 s by setting Bw=1. The 
results are consistent with the true ones and clearly reveal that only 66k at these matrices are significantly 
different from each other, while the other components only slightly change. It indicates that the changes of story 
stiffness happen at the first story, and the amount of changes is easily found.  
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Table 2 Comparisons between modal parameters obtained from TVARX models and identified stiffness matrices 

Bandwidth 

(Bw) 

Modal 

parameters 

Mode 

1 2 3 4 5 6 

3 fn (Hz) 
e 

0.78 
0.29 

2.30 
0.18 

3.66 
0.04 

5.03 
0.04 

6.44 
0.02 

7.33 
0.04 

2 fn (Hz) 
e 

0.78 
0.00 

2.30 
0.00 

3.66 
0.01 

4.94 
0.14 

5.87 
0.10 

6.67 
0.33 

1 fn (Hz) 
e 

0.78 
0.00 

2.30 
0.00 

3.66 
0.00 

4.80 
0.00 

5.66 
0.00 

6.19 
0.01 

TVARX fn (Hz) 0.78 2.30 3.66 4.79 5.66 6.19 

 
Table 3 Identified stiffness matrices at different time by assuming Bw=1 

t (s)  Identified K (kN/m) 

7.5 

80.22 80.10 0 0 0 0
80.10 159.73 80.03 0 0 0

0 80.03 160.43 79.91 0 0
0 0 79.91 159.76 80.30 0
0 0 0 80.30 160.85 80.44
0 0 0 0 80.44 160.69

− 
 − − 
 − −
 

− − 
 − −
 

−  

 

12.5 

80.07 79.85 0 0 0 0
79.85 159.37 79.80 0 0 0

0 79.80 159.88 79.65 0 0
0 0 79.65 159.30 79.94 0
0 0 0 79.94 160.26 80.11
0 0 0 0 80.11 152.17

− 
 − − 
 − −
 

− − 
 − −
 

−  

 

17.5 

80.54 80.21 0 0 0 0
80.21 160.02 80.36 0 0 0

0 80.36 160.49 80.23 0 0
0 0 80.23 159.90 79.72 0
0 0 0 79.72 160.33 79.90
0 0 0 0 79.90 168.27

− 
 − − 
 − −
 

− − 
 − −
 

−  

 

 

 

 

 

 

Fig. 3 A photo of five-

story steel frame 

4. Application to a steel frame in shaking table tests 
Shaking table tests are often performed in a laboratory to examine the behavior of structures in earthquakes. A 
series of shaking table tests were carried out on a five-story steel frame with 3 m long, 2 m wide and 6.5 m high 
(see Fig. 3). Lead blocks were piled on each floor such that the mass of each floor was approximately 3664 kg. 
The dynamic responses of the frame under the base excitation of 60% of the strength the Kobe earthquake in the 
long span direction are considered herein. Measured strains and visual inspection revealed yielding of the steel 
columns near the first floor. Figure 4 depicts time histories of input base excitation and the acceleration 
responses of 1st, 3rd and 5th floors.  
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Fig.4 Time histories of input and acceleration responses of 1st, 3rd and 5th floors in the shaking table test 

 

  

  

 
Fig. 5 Identified instantaneous natural frequencies of a five-story steel frame 

 Using input base excitation and the responses for 3 s ≤ t ≤ 13 s of all the floors and following the 
procedure of identifying instantaneous modal parameters given in section 2, one obtains the variations of the 
instantaneous natural frequencies of five modes with time shown in Fig. 5. The details for determining these 
results are given in [23]. Figure 5 reveals that the variations of the identified natural frequencies over time are 
less than 2% at  t ≤ 4.5 s, and a significant decrease of the natural frequencies begins around t=5 s. The 
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considerable decrease of the natural frequencies strongly indicates that some of the steel columns of the frame 
started to yield around that moment. 

To investigate the decrease of stiffness caused by yielding, the stiffness matrices of the frame at t=4 s and 
5.76 s are estimated using the idetified modal parameters of the first four modes at these two particular time by 
following the same procedure described above. The floors are assumed rigid, which is a typical assumption used 
in a design process. Because the frame is symmetric, the frame can be treated as a five degrees of freedom 
system when it is subjected to base excitation in its long span direction. The modal components of the first five 
modes are listed in Table 4. The estimated stiffness matrices are given in Table 5. The bandwidths of the best-fit 
stiffness matrices are three, which indicates that the steel frame does not completely behave like a shear building. 
Comparing the components of stiffness matrices before and after yielding of columns reveals that the maximum 
change in the diagonal comoponents happens at component (5,5) and the relative difference is about 7.3%, while 
the relative differences for other diagonal components are less than 4%. Consequently, the columns of the first 
story were the most likely to yield during the shaking table test, which is consistent with what is found from the 
measured strains.  

Table 4 Identified modal components of five modes 

 

Floor 

t=4 s t=5.76 s 

Mode Mode 

1 2 3 4 5 1 2 3 4 5 

5 1.00 -0.94 0.97 -0.46 -0.21 1.00 -0.93 0.96 -0.48 -0.14 

4 0.90 -0.16 -0.94 1.00 0.68 0.90 -0.17 -0.86 1.00 0.70 

3 0.69 0.65 -0.98 -0.51 -0.96 0.72 0.67 -0.99 -0.45 -0.99 

2 0.47 1.00 0.77 -0.51 1.00 0.49 1.00 0.71 -0.56 1.00 

1 0.17 0.48 1.00 0.85 -0.65 0.17 0.49 1.00 0.82 -0.66 

 

Table 5 Identified stiffness matrices (unit: kN/m) 

t=4 s t=5.76 s 

5173.7 6721.9 1655.7 0 0
6721.9 14217.8 9244.3 1527.9 0

1655.7 9244.3 15184.7 9023.9 1719.3
0 1527.9 9023.9 15273.1 10229.0
0 0 1719.3 10229.0 18174.9

− 
 − − 
 − −
 

− − 
 − 

 

5016.0 6702.2 1761.7 0 0
6702.2 13903.1 9114.4 1648.1 0

1761.7 9114.4 14612.5 8827.3 1908.9
0 1648.1 8827.3 14719.8 9944.2
0 0 1908.9 9944.2 16848.9

− 
 − − 
 − −
 

− − 
 − 

 

5. Concluding remarks 
The work proposed an approach for assessing damage in a buidling under a strong earthquake by using its 
accelleration responses under such erathquake. The data of a building without damage is not needed, and the 
effects of environmental conditions such as temperature and humidity can be neglected. The measured 
accleration responses of a building and the input excitation are used to determine its instantaneous modal 
parmeters through establishing an appropriate TVARX model. The time-varying coefficient matrices in a 
TVARX model are expanded using piecewise second order polynomials. The Cauchy wavelet transforms with 
proper scale parameters and translation parameters are employed to the TVARX model to determine the time-
varying coefficient matrices. The instantaneous modal parameters are obtained from the identified coefficients of 
AR. The stiffness matrices of the building varying with time are estimated using those identified instantaneous 
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modal parameters through a Bayesian model updating procedure. The damage assessment is carried out by 
comparing the stiffness components at different particular time in an earthquake.  

The proposed approach was validated first by processing the numerically simulated acceleration responses 
of a six-story shear building with time dependent stiffness and damping in the first story. The responses of three 
floors and input excitation with 10%  random noise were processed to accurately identify the instantaneous 
modal parameters of six modes. The identified instantaneous modal parameters of the first three modes were 
employed to determine the instantaneous stiffness matrices via the Bayesian model updating procedure of Yuen 
[22]. The instantaneous modal parameters of the other modes were used to determine an appropriate bandwidth 
of stiffness matrix. The instantaneous stiffness matrices were accurately identified.  

The proposed approach was further applied to assess damage of a five-story steel frame in a shaking table 
test with the input of 60% of the strength the Kobe earthquake. The acceleration responses of all floors were 
used to identify the instantaneous modal parameters of five modes. Significant changes in the instantaneous 
natural frequencies were observed. The instantaneous modal parameters of the first four modes before and just 
after the significant decreases in frequencies were used to establish the corresponding stiffness matrices, which 
show that the maximum change of stiffness occurs at the first story. The findings from the analyses are 
consistent with what are observed from the measured strains.  
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