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Abstract 
 
MR damper is a semi-active control device used effectively to control the response of building frames for earthquakes. In 
most practical situations, it is not possible to take response measurements from all degrees of freedom and use them for 
developing feedback control algorithm to be used for actuating the MR dampers.Therefore, observer based control strategies 
are to be developed. Herein, an observer-based control algorithm is developed for semi-active control of building frames 
using MR dampers for stochastic control. The algorithm is developed using Kalman filter, LQG algorithm and clipped 
optimal control. The control of a ten storey building frame is achieved by employing a maximum number of 3 MR dampers 
and three displacement measurement locations employed strategically in the building frame. Locations of the MR dampers 
and measurement locations are determined using the genetic algorithm. The measurements are provided as feedback 
information to the control algorithm. The controlled responses of  interest are the top storey displacement, maximum drift 
and the base shear of the frame. These three response quantities are determined for a number of real and artificial 
earthquakes. The artificial earthquakes considered are oftwo types, one broadband and the other narrowband. The results of 
the study suggest that; (i) the degree of control of the response quantities of interest varies with the earthquakes (ii) for the 
numerical problem solved here, the optimal locations of the dampers remain same for all the three response quantities of 
interest and for all earthquakes (iii) optimal locations of observations vary with the response quantities of interest and 
earthquakes. Therefore, no unique solution exists for the overall good performance of a partially observed controlled 
structure. 
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1. Introduction 
In the last three decades, a significant contribution has been made by the researchers in the field of the structural 
control. As a result, many control devices and algorithms have been proposed [1-6] for the four categories of 
structural control namely, passive, active, semi-active and hybrid control systems. Amongst them, the semi-
active control has recently become a preferred topic of interest because of its less power requirement. Previous 
studies indicate that for effective response reduction and satisfactory performance of the structures proper 
selection of semi-active control system is necessary. Various types of semi-active control systems have been 
investigated namely variable stiffness devices, smart tuned mass dampers, smart tuned liquid dampers, 
controllable friction dampers, controllable impact dampers, controllable fluid dampers and ER or MR dampers. 
Amongst them, MR dampers have attracted considerable attention due to its low power requirement, large force 
capacity and robustness. It is also stable and fail – safe, because the damper becomes passive when the control 
mechanism breaks down. 

A large number of studies have been made on MR dampers using different control strategies. Dyke et al. 
[7]proposed a clipped optimal law based on acceleration feedback. The desired control force was predicted using 
H2/LQG strategy. Jansen et al. [8]compared different control algorithms like Bang- bang control, clipped 
optimal control, Lyapunov control  and modulated homogenous friction control algorithm by using multiple MR 
dampers. Xu et al. [9]proposed two optimal displacement control strategies for semi-active control of seismic 
response of framed structures using MR or ER dampers. Zapateiro et al. [10]used quantitative feedback theory 
for response reduction taking into account the nonlinear dynamics of MR damper. Bahar et al. [11]proposed a 
hybrid control system combining a nonlinear base isolator and MR damper. In the MR damper, the voltage was 
updated by a feedback control loop. Chang et al. [12]used recurrent neural network models for structural control. 
They emulated the inverse dynamics of MR damper to produce required command voltage. Two examples of 
structural control were taken: optimal prediction control of a single degree of freedom system and LQR control 
of a multi-degree of freedom system to illustrate the proposed scheme. Heon et al. [13]applied the neuro 
controller to a base-isolated benchmark problem. The training algorithm based on minimizing the cost function 
was used. A clipped optimal algorithm was then employed to produce the desired control force. Das et al. 
[14]used an ANN- cum- fuzzy control scheme for structural response mitigation. Bharti et al. [15]investigated 
the behavior of an asymmetric building plan  with MR dampers.  
Genetic algorithm introduced by Holland [16] has been used quite extensively in the structural control. Rao et 
al.[17]usedthe genetic algorithm to find the optimum location of active controllers for a two bay truss by 
minimizing the dissipation energy of active controller as the objective function. Furuya and Haftka [18] applied 
GA using an integer and binary coding to find the optimal location of actuators for large space structures. 
Dhingra and Lee[19],  Abdullah et al. [20]used a hybrid optimization scheme based on GA and gradient based 
technique to solve a multi-objective optimization problem for the determination of the optimum location of 
actuators/sensors. Li et al. [21]proposed a multilevel genetic algorithm to determine the optimum number and 
location of actuators for active control under wind load. Ahlawat and Ramaswamy [22] proposed a multi 
objective genetic algorithm to determine optimal configurations of a hybrid control system. Li et al. 
[23]proposed a two level genetic algorithm to determine the optimal number and position of actuators in active 
control structures. Cha et al. [24]proposed a multilevel genetic algorithm to determine the optimal number and 
location of active devices and sensors for a 20 story structure.  

In this study, optimally placed MR dampers are employed for controlling the seismic response of partially 
observed building frames. The LQG control algorithm along with clipped optimal control is used for activating 
the MR dampers. Genetic algorithm (GA) is used for optimal placement of MR dampers and optimal location of 
sensors for response measurements. For this purpose, a single objective GA is used with response quantities of 
interest as base shear, top floor displacement and inter-story drift. 

2. Theory: 

The equation of motion for the building frame fitted with MR dampers in Figure 1 takes the form: 
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[𝐌]{𝐱̈} + [𝐂]{𝐱̇} + [𝐊]{𝐱} = [𝐆]{𝐟𝐦} − [𝐌][𝐫]{𝐮𝐠̈} (1) 

where, M, C, and K are the mass, damping and stiffness matrices of the system, respectively; fm is the 
MR damper force vector, respectively; G is the damper location matrix; x is the displacement vector with respect 
to the ground; r is an influence coefficient vector; and gu  is the earthquake ground acceleration. The governing 
Eq. (1) is expressed in the state-space form as below: 

{𝐳̇} = [𝐀]{𝐳} + [𝐁]{𝐟𝐦} + [𝐄]{𝐮𝐠̈};𝐲 = [𝐂]{𝐳} + [𝐃]{𝐟𝐦} + 𝐯 (2, 3) 

where A is a 2n x 2n system matrix, B is a 2n x 2nC control matrix, E is a 2n x 1 disturbance (excitation) matrix, 
C is a p x 2n measurement matrix, D is a p x nc matrix, z is a 2n x 1 state vector, y is a p x 1 vector of measured 
outputs and v is a p x 1 measurement noise vector; n is the number of states, nC is the number of controllers and 
p is the number of measurements. 

2.1 Linear Quadratic Gaussian Algorithm 

The LQG controller is a combination of Kalman filter and linear quadratic regulator. The Kalman filter estimates 
the state by minimizing the covariance matrix of error at each time step and the LQR estimates the control force 
by minimizing the quadratic cost function. The following cost function is used: 

𝐉 = 𝐄[𝐱𝐓(𝐓)𝐅𝐱(𝐓)] + ∫ 𝐱𝐓(𝐭)𝐐𝐱(𝐭) +  𝐮𝐓(𝐭)𝐑𝐮(𝐭)  𝐝𝐭𝐓
𝟎    (4) 

where E denotes the expected value; T denotes the final time which may be finite or infinite and when T tends to 
infinity the first term of the cost function 𝐱𝐓(𝐓)𝐅𝐱(𝐓)becomes negligible; Q and R are the positive definite 
matrices. 

For partially observed system, the full state 𝐱�(𝐭) is estimated from the measurement y(t) by the following 
equation: 

𝐱̇�(𝐭) =  𝐀𝐱�(𝐭) + 𝐁𝐮(𝐭) + 𝐊(𝐭)�𝐲(𝐭) − 𝐂𝐱�(𝐭)�   (5) 

whereK(t) is the Kalman gain associated with the Kalman filter. At each time step t, the Kalman gain estimates 
the state from past measurements and inputs. The Kalman gain is obtained from A, B, V, W matrices and 
𝑬(𝒙(𝟎)𝒙𝑻(𝟎))by solving the following Riccati equations. V and W are the covariance matrices of white 
gaussian noise v(t) and excitation w(t). Thus, excitations in Eqn. 1,2 and 3 should be ideally be white noise. 

𝐏(𝐭)̇ = 𝐏(𝐭)𝐀(𝐭) + 𝐏(𝐭)𝐀𝐓(𝐭) +   𝐏(𝐭)𝐂𝐓(𝐭)𝐕−𝟏(𝐭)𝐂(𝐭)𝐏(𝐭) + 𝐖(𝐭)   (6) 

𝐊(𝐭) =  𝐏(𝐭)𝐂𝐓(𝐭)𝐕−𝟏(𝐭)and𝐏(𝟎) = 𝐄�𝐱(𝟎)𝐱𝐓(𝟎)�   (7) 

The control force is given by the following equation: 

𝐮(𝐭) =  −𝐋(𝐭)𝐱�(𝐭)   (8) 

whereL(t) is the feedback gain matrix and it is defined using A,B, Q, R matrices and F by solving the following 
Riccati equation: 

−𝐒(𝐭)̇ = 𝐀𝐓𝐒(𝐭) + 𝐒(𝐭)𝐀 −   𝐒(𝐭)𝐁𝐓𝐑−𝟏𝐁𝐓𝐒(𝐭) + 𝐐   (9) 

𝐋(𝐭) = 𝐑−𝟏𝐁𝐓𝐒(𝐭)𝐚𝐧𝐝  𝐒(𝐓) = 𝐅        (10) 

In discrete form, LQG control is given in the following form: 

𝐱𝐢+𝟏 =  𝐀𝐢𝐱𝐢 + 𝐁𝐢𝐮𝐢 + 𝐰𝐢 ;  𝐲𝐢 = 𝐂𝐢𝐱𝐢 + 𝐯𝐢 (11,12) 
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where i is the discrete time index ; vi, wi represent the discrete measurement noise and excitation. The objective 
of the control algorithm is to find out the control force by minimizing the following cost function: 

𝐉 = 𝐄(𝐱𝐍𝐓𝐅𝐱𝐍 + ∑ 𝐱𝐢𝐓𝐐𝐢𝐱𝐢𝐍−𝟏
𝐢=𝟎 +  𝐮𝐢𝐓𝐑𝐢𝐮𝐢 )   (13) 

In partially observed system, the state estimation is achieved by using Kalman filter as follows:  

The state (𝐱�(𝒊|𝒊−𝟏)) and the covariance estimation (𝑷(𝒊|𝒊−𝟏)) of the ith time step after the (i-1)th time step is given 
as: 

𝐱�(𝒊|𝒊−𝟏) =  𝑨𝒊𝐱�(𝒊−𝟏|𝒊−𝟏) + 𝑩𝒊𝐮�𝒊 + 𝑾𝒊    (14) 

𝑷(𝒊|𝒊−𝟏) = 𝑨𝒊𝑷(𝒊−𝟏|𝒊−𝟏)𝐀𝐢𝐓 +   𝑾𝒊   (15) 

where𝑾𝒊 is the covariance matrix of disturbance noise. 

Then the measurement residual ( 𝒚𝒊�) at ith time step is calculated as follow: 

 𝒚𝒊� =  𝒛𝒊 − 𝑪𝒊𝐱�(𝒊|𝒊−𝟏)  (16) 

where𝒛𝒊 are the measurements at ith time step. 

The optimal gain at ith time step is calculated as follow: 

𝑲𝒊 =  𝑷(𝒊|𝒊−𝟏)𝐂𝐢𝐓�𝑪𝒊𝑷(𝒊|𝒊−𝟏)𝐂𝐢𝐓 +   𝑽𝒊�
−𝟏  (17) 

The updated state 𝐱�(𝐢|𝐢) and covariance estimation 𝑷(𝒊|𝒊) at ith time step is given as: 

𝐱�(𝐢|𝐢) =  𝐱�(𝐢−𝟏|𝐢) +   𝐊𝐢{𝐳𝐢 − 𝐂𝐢𝐱�𝐢−𝟏}  (18) 

𝑷(𝒊|𝒊) = 𝑨𝒊𝑷(𝒊−𝟏|𝒊−𝟏)𝐀𝐢𝐓 +  𝑾𝒊  (19) 

The control force is given by  

𝒖𝒊 = −𝑳𝒊𝐱�𝒊   (20) 

where the feedback gain  𝑳𝒊 is determined by solving the Riccati equation that runs backward in time. 

𝑺𝒊 = 𝐀𝐢𝐓(𝑺𝒊+𝟏 − 𝑺𝒊+𝟏𝑩𝒊�𝐁𝐢𝐓𝑺𝒊+𝟏𝑩𝒊 +  𝑹𝒊�
−𝟏𝑩𝒊𝑺𝒊+𝟏)𝑨𝒊 +  𝑸𝒊   (21) 

with𝐋𝐢 =  �𝐁𝐢𝐓𝐒𝐢+𝟏𝐁𝐢 +   𝐑𝐢�
−𝟏𝐁𝐢𝐓𝐒𝐢+𝟏𝐀𝐢 and𝐒𝐍 = 𝐅   (22) 

In the development of Matlab coding the discrete frm of equations are used. 

2.2 Genetic Algorithm 

The concepts of the genetic algorithm are based on the Darwin theory of natural selection. In the genetic 
algorithm, a set of possible solutions to an optimization problem evolves towards the best solutions. The genetic 
algorithm is an iterative process and initially, a group of individuals is selected to form the initial population. 
Then the fitness of each is evaluated in the problem environment according to the objective function. The more 
fit individuals are choosen from the current population, and the gene of each is modified according to crossover 
and mutation. The cycle of fitness evaluation, selection, crossover and mutation are repeated until the population 
converges or the other criteria are satisfied. 
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2.2.1 Initialization: 
Initially, in GA, a group of individuals is selected from the set of possible solutions. The selection of individuals 
is random, but any particular selection procedure can be adopted for selection 

2.2.2 Selection: 

In each successive generation, a part of the current population is selected for breeding a new generation. The 
selection of individuals is based on their fitness value i.e. individuals having higher fitness values have more 
chance of getting selected. The fitness function is always problem dependent and is defined over the genetic 
representation of the possible solutions. For the study, tournament selection procedure is selected. 
2.2.3 Crossover and Mutation:  

After selection, next generation of the population is generated from the selected population through the process 
of crossover and mutation. Mutation functions make small random changes in the individuals in the population, 
which provide genetic diversity and enable the genetic algorithm to search a broader space. Crossover combines 
two individuals, or parents, to form a new individual, for the next generation. Adaptive feasible (mutation 
function) and scattered (crossover function) are used for the study. 

2.2.4 Termination 

The generation process is repeated until a terminating condition is reached. Common terminating conditions are 
like fixed number of generations reached, allocated budget computation time reached, the highest ranking 
solution's fitness is reaching or has reached a condition such that successive iterations no longer produce better 
results or combinations of the above 
3.Generation of Control Forces using MR Damper 

Force in the MR damper is generated based on the movement of the piston and the viscosity of the MR fluid 
which is manipulated by applying the voltage to the magnetic coil of the MR damper. While the actuation of the 
piston is governed by the vibration of the structure, the applied voltage is governed by the control algorithm.  
The control algorithm is shown in Figure 1. Modified Bouc Wen model is used for predicting the MR damper 
force. Inputs to the model are the inter-story drifts and velocities. By comparing the generated control force with 
the desired control force, voltage is held constant or set to zero using clipped optimal control. 

3.1 Modified Bouc Wen model 

Equations governing the MR damper force predicted by this model is given as [25]:  

𝐟𝐦 =  𝐜𝟏𝐱̇ + 𝐤𝟏(𝐮𝐝 −  𝐱𝟎)  (23) 

where, the evolutionary variable z is given as: 

𝐳̇ =  −𝛄|𝐯𝐝 − 𝐱̇|(𝐳)|𝐳|(𝐧−𝟏) − 𝛃(𝐯𝐝 − 𝐱̇)|𝐳|𝐧 +  𝐀𝐦(𝐯𝐝 − 𝐱̇) (24)  

and𝑥̇ is given as 

𝐱̇ =  � 𝟏
𝐜𝟎+ 𝐜𝟏

� {𝛂𝟎𝐳 + 𝐜𝟎𝐯𝐝 + 𝐤𝟎(𝐮𝐝 − 𝐱)} (25) 

where, ud is the displacement of the damper; x is the internal pseudo-displacement of the damper; z is the 
evolutionary variable that describes the hysteretic behavior of the damper; k1 is the accumulator stiffness ; c0 is 
the viscous damping at large velocities; c1 is viscous damping for force roll-off at low velocities; k0 is the 
stiffness at large velocities; and x0 is the initial stiffness of spring k1; 0α is the evolutionary coefficient; and 
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,γ β , n and Am are shape parameters of the hysteresis loop. The model parameters dependent on command 
voltage, 0 1 0c ,c ,α , are expressed as follows: 

𝐜𝟎 =  𝐜𝟎𝐚 +  𝐜𝟎𝐛𝐔; 𝐜𝟏 =  𝐜𝟏𝐚 +  𝐜𝟏𝐛𝐔; 𝛂𝟎 =  𝛂𝟎𝐚 +  𝛂𝟎𝐛𝐔   (26, 27, 28)  

where, U is given as output of first order filter following the condition as below 

𝑼̇ = –h(𝑼 − 𝑽) (29) 

3.2 Clipped Optimal Control Law 

The input voltage to the MR damper is obtained using clipped optimal law [26]. When the absolute value of MR 
damper force is greater than the absolute value of LQG force, then the voltage is set to maximum, and when the 
absolute value of MR damper force is less than the absolute value of LQG force then the voltage is set to zero. 
The mathematical form of clipped optimal law is: 

𝐕 =  𝐕𝐦𝐚𝐱𝐇{(𝐅𝐝 − 𝐅𝐦𝐫)𝐅𝐦𝐫} (30) 

where V is the input voltage to the MR damper, H is the Heaviside function, Vmax is the maximum input voltage, 
Fd is the LQG force and Fmr is the MR damper force. The voltage is maximum when Heaviside function is one 
and zero when Heaviside function is zero. 

 

 

 

 

 

 

 

 

 

 

Figure 1- (a) Building equipped with three MR dampers and three sensors and (b)the control strategy 

4.Numerical Study 

For the study, a ten story linear shear type building is used having a mass of each floor as 18 ton and stiffness of 
each floor as 24965 KN/m.  The building is subjected to two real earthquakes (Elcentro and Mexico earthquake) 
and two artificially generated (narrowband and white noise) earthquakes.  The building is installed with three 
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MR dampers and three sensors. GA is used to find the optimal location of MR dampers and sensors. The 
narrowband earthquake is generated from a double filtered PSDF given as: 

𝐒̈𝐮𝐠(𝐰) =  
(𝟏+𝟒𝛃𝐠

𝟐� 𝐰𝐰𝐠
�)

�𝟏−� 𝐰𝐰𝐠
�
𝟐
�
𝟐
+𝟒𝛃𝐠

𝟐� 𝐰𝐰𝐠
�
𝟐

   𝐱  
� 𝐰𝐰𝐟

�
𝟒
∗𝐒𝐨

�𝟏−� 𝐰𝐰𝐟
�
𝟐
�
𝟐
+𝟒𝛃𝐟

𝟐� 𝐰𝐰𝐟
�
𝟐
 (31) 

where𝑤𝑔 = 6.28, 𝛽𝑔= 0.4, 𝑤𝑓 = 0.628, 𝛽𝑓 = 0.4, S0 = 0.0058, w is the frequency and S̈ugis the PSDF ordinate 
corresponding to the frequency w. The time histories of the narrowband earthquake and white noise are shown in 
Figure 2. The values of the parameters used for MR damper are shown in Table 1 [25]. 

Table 1- Parameters for MR damper 

Parameter             Value [Unit] Parameter         Value [Unit] 
𝑐0𝑎 50.30 [kN.sec/m] 𝛼𝑎 8.70 [kN/m] 
𝑐0𝑏 48.70 [kN.sec/m.V] 𝛼𝑏 6.40 [kN/m.V] 
𝑘0 0.0054 [kN/m] 𝛾 496 [m – 2] 
𝑐1𝑎 8106.2 [kN.sec/m] 𝛽 496 [m – 2] 
𝑐1𝑏 7807.9 [kN.sec/m.V] 𝐴 810.50 
𝑘1 0.0087 [kN/m] 𝑛 2 
𝑥0 0.18 [m] 𝜂 190 [sec -1] 

Q and R matrices for the LQG algorithm are taken as: Q = �𝑄1 𝑂
𝑂 𝑀�  and R is an identity matrix of size 3 x 3 

multiplied by a constant 10-4; where Q1 is an identity matrix of size 10 x 10 multiplied by a constant 106 and  O 
is a null matrix of size 10 x10. The noise covariance matrix V is selected such that the optimum results are 
obtained. For this problema, V is a matrix of 3x3 with diagonal elements as 10-9. 

Use of LQG algorithm for the partially observed system is not strictly valid for excitations and noises other than 
gaussian white. Therefore, LQG is used for the two real earthquakes and the synthetical earthquake with an 
assumption that they are gaussian white having a certain ratio between their intensities and the measurement 
noise intensities. The mean square value of excitations is taken as the covariance of the earthquakes. 

 
Figure 2-Time histories of a) white noise and b) PSDF generated narrowband earthquake 

0.00 0.75 1.50 2.25 3.00

-2

-1

0

1

2

0 5 10 15 20
-3

-2

-1

0

1

2

3

 

 

Time (sec)

 

 

(b)(a)

Gr
ou

nd
 A

cce
ler

ati
on

 (m
/se

c2 )

Time (sec)

7 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

 
Figure 3-Comparison of uncontrolled and controlled time histories of top floor displacement and base shear for 

generated narrow band earthquake 

 
Figure 4-Variations of damper force with piston displacement and velocity for generated narrow band 

earthquake 

For the narrowband earthquake, the comparison between the controlled and uncontrolled time histories of top 
floor displacement and base shear (Figure 3) shows that the building is well controlled. The maximum 
percentage reduction in top floor displacement and base shear is 38% and 24% respectively when LQG 
algorithm is used. For LQR algorithm, nearly the same reductions are obtained. Optimum locations of the 
dampers are found as first, second and third floors. The force-displacement and force-velocity plots for MR 
damper located at first floor are shown in Figure 4. 

 
Figure 5-Comparison of uncontrolled and controlled time histories of top floor displacement and base shear for 

white noise earthquake 
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Figure 6-Variations of damper force with piston displacement and velocity for white noise earthquake 

For white noise, the comparison between the controlled and uncontrolled time histories of top floor displacement 
(Figure 5) shows that the building is better controlled as compared to the narrowband excitation. However, the 
base shear reduction becomes less. The maximum percentage reduction for top floor displacement and base 
shear is 46% and 10% respectively. In this case also, no significant difference is observed between the responses 
obtained by using LQR and LQG algorithms. The force-displacement and force-velocity plots for the MR 
damper located on the first floor are shown in Figure 6. Here again, the optimum locations of the damper 
remains the same as those for the narrow band excitation. 

 
Figure 7-Comparison of uncontrolled and controlled time histories of top floor displacement and base shear for 

El Centro (1940) earthquake 

 
Figure 8-Variations of damper force with piston displacement and velocity for El Centro (1940) earthquake 
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Figure 9-Comparison of uncontrolled and controlled time histories of top floor displacement and base shear for 

Mexico (1986) earthquake 

 
Figure 10-Variations of damper force with piston displacement and velocity for Mexico (1986) earthquake 
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Figs. 8 and 10.The reason for better control of response for the case of real earthquakes may be attributed to the 
difference in the nature of earthquakes in comparison to that of artificial ones. 
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dr 56.14 (51.75) 67.24 (60.97) 52.85 (64.28) 42.85 (63.49) 
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Percentage reduction in response quantities of interest for optimum location of dampers and sensors (response 
pickups) is summarized in Table 2.Here d = top floor displacement; Fd = Base Shear; dr = maximum inter story 
drift. It is seen that the control of responses varies with the earthquakes especially the base shear response.  

Table 3-Best pick up locations for top floor displacement; base shear and maximum inter story drift 

Responses El Centro 

Earthquake 

Mexico 

Earthquake 

White Noise Narrowband 
earthquake 

Base Shear 1, 2 and 5 1,4 and 5 7,8 and 10 1, 4 and 8 

Top floor displacement 2,4 and6 3,7 and 8 5,6 and 7 1,4 and 5 

Max. Inter story Drift 1,4 and 7 8,9 and 10 7,8 and 9 3,7 and 8 

 

Table 4- Comparison of results of best locations of dampers with that of arbitrary locations of dampers 

Location of 
Damper 

Responses %age 
reduction for 
El Centro 

%age reduction 
for Mexico 

%age 
reduction for 
White noise 

%age reduction 
for  

Narrowband 
earthquake 

Best Location 

(Arbitrary 
Location) 

d 54.46 (36.54) 59.93 (56.67) 45.86 (35.70) 37.98 (29.29) 

Fb 44.09 (27.67) 49.65 (42.46) 9.48 (9.48) 23.70 (20.21) 

dr 56.14 (28.50) 67.24 (40.75) 52.85 (27.14) 42.85 (4.7) 

Tables 3 and 4 show the results of the Pareto optimal solutions. Parameters which are varied in the genetic 
algorithm are locations of the MR dampers (3 nos.) and sensors (3 nos.) The objective function is chosen as 
either base shear or top floor displacement or maximum inter-story drift. For all the three objective functions, 
Pareto optimal solutions obtained through genetic algorithm provide same locations of dampers i.e. at story 1, 2 
and 3 but different locations of the sensors. Optimal locations of the sensors for each response quantity of 
interest are shown in Table 3. It is seen from the table that the optimal sensor locations are different for different 
response quantities and different earthquakes. Thus, there exists no unique solution for the optimally controlled 
responses using GA. Table 4 compares the responses between the optimally located dampers and dampers with 
arbitrary locations (placed at second, third and fourth floor). It is seen from the table that the optimally located 
dampers provide much better control of the top floor displacement and maximum drift. 

5.Conclusions 

The response of a ten story building is semi-actively controlled by MR dampers using LQG and clipped optimal 
control for earthquakes described by their PSDFs and for real earthquake records.For the latter, ergodic control is 
asumed, and the earthquake record represents the ensemble of a stationary process idealized as white noise with 
specified covariance function. The responses are partially observed and the full state of the system is obtained 
from the observations using Kalman filter. The control of response is achieved by three MR dampers and three 
observations (with sensors). Optimal locations of the dampers and observations are obtained by employing 
genetic algorithm. Three response quantities of interest namely, top floor displacement, maximum drift, and base 
shear are controlled. The following conclusions are drawn from numerical study: 

1. The degree of control of the response quantities of interest varies with the earthquakes. 
2. For the numerical problem solved here, the optimal locations of the dampers remain the same for all the three 

response quantities of interest and for all earthquakes. 
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3.  Optimal locations of observations vary with the response quantities of interest and earthquakes. Therefore, 
no unique solution exists for the overall good performance of a partially observed controlled structure. 

4. Both LQG and LQR control algorithms along with clipped optimal control provide nearly the same control of 
responses. 

5. The desirable performance of the MR dampers for the seismic control of structure in the case of   narrowband 
earthquakes may be difficult to achieve. 
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