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Abstract. A multi-fiber beam finite element based on the Timoshenko theory is proposed to simulate
failure of reinforced concrete structural elements subjected to static or seismic loadings. The elements
section can be of arbitrary shape and each fiber has a local constitutive law representing a specific ma-
terial. The embedded discontinuity concept is adopted to enrich the fiber displacement field in order
to describe crack openings and the development of plastic hinges. The material behavior at the dis-
continuity is characterized by a linear cohesive law linking the axial stress and the displacement jump,
which permits to capture the released fracture energy. The variational formulation is presented in the
context of the incompatible modes method followed by the corresponding computational procedure.
Finally, two numerical applications are given to illustrate the performance of the proposed multi-fiber
Timoshenko beam finite element.

1 Introduction
The development of robust and efficient numerical models to simulate the dynamic behavior of

structures is mandatory in earthquake engineering. Nevertheless, the use of 2D or 3D finite element
meshes requires high computational capacities due to the important number of the necessary degrees
of freedom.

In order to simplify the global equilibrium equations and to reduce the required number of degrees
of freedom different kinematic assumptions are often used in structural analysis. The Timoshenko
beam theory considers that plane sections remain plane after deformation but not necessary normal
to the deformed axis. The advantage of this theory is that it takes into account the influence of shear
strains and has a very good performance in the context of dynamic calculations [1].
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One of the first work introducing the idea of dividing a beam in “fibers”, where a specific stress/strain
relation is defined, is the book of Owen and Hilton [2]. Finite elements of this type are proven ef-
ficient for various applications in civil engineering: nonlinear analysis of beam type or bearing wall
structures with non-homogenous sections [3], [4], arbitrarily geometrical plane or hollow shape sec-
tions [5], [6], bending, shear or torsion [7], Soil Structure Interaction [5], vulnerability assessment [6]
and Fiber-Reinforced Polymer retrofitting problems [8].

We present hereafter a new multi-fiber Timoshenko beam finite element with embedded disconti-
nuities to simulate failure of reinforced concrete structural elements subjected to static and dynamic
loadings. The displacement-based formulation introduced in [9] is first adopted, with shape functions
of order three (3) for the transverse displacements, two (2) for the rotations and an additional internal
node resulting to a shear locking free finite element. The superior performance of this element with
respect to other formulations found in the literature [11], [12] was already studied in [?]. In the follow-
ing, an extension of the previous formulation is provided, introducing the embedded discontinuities
concept.

If an internal length parameter is not considered in the adopted constitutive models, mesh de-
pendency problems arise [13]. Under quasi-static loading conditions the equations governing the
incremental equilibrium lose ellipticity, while under dynamic loading conditions wave speeds be-
come imaginary [14]. Different approaches can be found in the literature to deal with this problem:
local approaches [14], [15]; non local approaches [16], [17], [18]; enhanced approaches [19], [20]...
In the following, we focus on the enhanced approach [20] and more specifically on the Embedded
Discontinuity Approach (EDA) [21]. EDA represents an alternative way to the smeared and discrete
crack representations avoiding some of their drawbacks as described in [22].

The EDA based on the strong discontinuity approach [20] is adopted hereafter, hence localized fail-
ure is incorporated into the standard displacement-based finite element formulation using additional
variables. More specifically, the fibers are enhanced in order to describe concrete crack openings and
the development of plastic hinges [23]. The strong discontinuity is introduced by adding a jump in the
displacement field. Accordingly, additional shape functions are added to interpolate the displacement
jump within the enhanced finite element. The material behavior at the discontinuity is considered us-
ing a linear decreasing cohesive law linking the axial stress and the displacement jump, which allows
capturing the released fracture energy. The variational formulation is presented in the context of the
incompatible modes method. Finally, the additional modes are statically condensed at the element
level in order to decrease the necessary computational time.

The outline of the paper is as follows: in section 2, the governing equations of the multi-fiber Timo-
shenko beam (without and with embedded discontinuities) and the adopted interpolation functions [9]
are briefly introduced. In section 3, we present the constitutive laws for the continuum and cohesive
parts. In section 4, we focus on the variational formulation of the multi-fiber Timoshenko beam finite
element with embedded discontinuities. Two numerical applications are presented in section 5. The
article ends with some concluding remarks.

2 Governing equations
Consider a beam of length Ł discretized into n elements e = [xi;xj] of length L = xj − xi and

external nodes i and j. The generalized displacement vector is approximated by an equation of the
form U(x) = NUe, where Ue is a vector containing the external nodal displacements of the element
e and N is the matrix of the shape functions depending on x. For simplicity reasons the presentation
hereafter is made in 2D.

U(x) =
[
Ux(x) Uy(x) Θz(x)

]
T (1)

2



16th World Conference on Eeathquake Engineerign, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017

Ux(x) being the generalized longitudinal displacement, Uy(x) the transverse displacement and Θz(x)
the rotation of the section. The displacements ux(x, y), uy(x, y) of another point of the section (or of
a “fiber” f(x, y)) can be evaluated using the displacements of the section following the Timoshenko
theory:

ux(x, y) =Ux(x)− yΘz(x),

uy(x, y) =Uy(x)
(2)

The strain field becomes:

εx(x, y) =
∂ux
∂x

= U ′x(x)− yΘ′z(x),

γxy(x, y) =
∂ux
∂y

+
∂uy
∂x

= U ′y(x)−Θz(x)
(3)

with εx(x, y) the axial strain and γxy(x, y) the transverse shear strain of the fiber f(x, y). The line
over the variables indicates that they are continuous.

Using the equilibrium equations, the kinematic assumption and the virtual work principle, the
stiffness matrix and the internal nodal forces of the multi-fiber Timoshenko element become:

Kelement =
∫ L

0
BTKSBdx

Fint,element =
∫ L

0
BTFSdx

(4)

where B is a matrix containing the derivatives of the shape functions with respect to x, KS is the
multi-fiber section stiffness matrix and FS is the generalized force vector of the section.

In order to enhance the element kinematics, the fiber axial displacement field (2) is enhanced with
an additional term [23], [24], [25], [26], as follows:

ux(x, y) = ux(x, y) + αMα(x), (5)

where

•Mα(x) = Hα(x)−N(x), (6)
•Hα(x) = {1 if x > xα or 0 if x ≤ xα}, (7)

•N(x) =
x

L
, (8)

with α the discontinuity variable and xα the position of the discontinuity within the element. The
enhanced axial strain field becomes:

εx(x, y) =
∂

∂x
(ux(x, y)) +

∂

∂x
(αMα(x))

= εx(x, y) + α
∂

∂x
(−N(x)) + α

∂

∂x
(Hα(x))

= εx(x, y) + α G(x)︸ ︷︷ ︸
ε̃

+ α δα(x)︸ ︷︷ ︸
ε

(9)

where δα(x) is the Dirac function at xα. The expression of the axial strain is therefore singular
(presence of ε). To deal with this singularity, [27] adopts a cohesive law, that models the material
discontinuity and thus eliminates the singular term.
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2.1 Displacement-based finite element formulation
In this section, the displacement-based finite element formulation introduced in [9] is briefly pre-

sented. The element is named Full Cubic Quadratic (FCQ), because Caillerie & al. [9] proved that one
FCQ element is able to predict the exact tip displacements for any complex loading (shear/flexion)
submitted to an homogeneous elastic beam (see also [?]). The element is free of shear locking and
uses an additional internal node.

i k j

Figure 1: FCQ element

The nodal displacement field takes the following form

UT
e = [Uxi, Uyi,Θzi,∆U

1
yk,∆Θzk,∆U

2
yk, Uxj, Uyj,Θzj],

where ∆U1
yk, ∆Θzk and ∆U2

yk are the degrees of freedom of the internal node (with no specific
physical meaning). The interpolation functions of the FCQ element are [9]:

N(x) =

N1 0 0 0 0 0 N7 0 0
0 N11 0 N13 0 N15 0 N17 0
0 0 N21 0 N23 0 0 0 N27

 (10)

where


N1 =1− x

Le

N7 =
x

Le

N11 =(1− x

Le
)2(1 + 2

x

Le
)

N13 =2(1− x

Le
)2(

x

Le
)

N15 =− 2(
x

Le
)2(1− x

Le
)

N17 =(
x

Le
)2(3− 2

x

Le
)

N21 =(1− x

Le
)(1− 3

x

Le
)

N23 =1− (1− 2
x

Le
)2

N27 =− (
x

Le
)(2− 3

x

Le
)

(11)
The three internal degrees of freedom can be treated locally (in the element subroutine) using the
static condensation method (see [9] for more details and the analytic expressions of the condensed
matrices and vectors). We present hereafter the FCQ element mass matrix that becomes:

Melement =



Le S ρ
3

0 0 0 0 0 Le S ρ
6

0 0

0 13Le S ρ
35

0 11Le S ρ
105

0 −13Le S ρ
210

0 9Le S ρ
70

0

0 0 2 I Le ρ
15

0 − I Le ρ
15

0 0 0 − I Le ρ
30

0 11Le S ρ
105

0 4Le S ρ
105

0 −Le S ρ
35

0 13Le S ρ
210

0

0 0 − I Le ρ
15

0 8 I Le ρ
15

0 0 0 − I Le ρ
15

0 −13Le S ρ
210

0 −Le S ρ
35

0 4Le S ρ
105

0 −11Le S ρ
105

0
Le S ρ

6
0 0 0 0 0 Le S ρ

3
0 0

0 9Le S ρ
70

0 13Le S ρ
210

0 −11Le S ρ
105

0 13Le S ρ
35

0

0 0 − I Le ρ
30

0 − I Le ρ
15

0 0 0 2 I Le ρ
15


(12)

where ρ represents the material density.

3 Constitutive laws
In the following, the constitutive laws for the continuum and cohesive materials are briefly elabo-

rated (see figure (2)).
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3.1 Concrete
In order to simulate concrete, a simple damage law based on the work of Ortiz 1985 [28] is adopted.

The thermodynamic free energy for such model is expressed as function of the damage deformation
εd, the damage compliance modulus D and the strain-like hardening variable ξ

d
:

Ψ
d

= σd
T
εd − 1

2
σd

T
Dσd +

1

2
ξ
d
Kd
hξ

d
(13)

The strain-strain relation is deduced as:

σd = D−1εd with D ∈ [E−1
c ,∞) (14)

where Ec is the concrete young modulus. The hardening law takes a linear form qd = Kd
hξ

d
where

Kd
h is the hardening modulus which is different in compression and traction. The damage criteria are

defined by the following damage surface

φ
d

= |σd| − (σdi − qd) ≤ 0 (15)

σdi =

{
σdc for compression

σdt for traction

3.2 Steel
The steel fibers are modeled with an elastoplastic model with isotropic hardening. The classical

decomposition of the continuous strain into elastic and plastic terms is assumed:

ε = εe + εp (16)

The thermodynamic free energy is expressed in terms of the internal variables: the elastic deformation
εe and the strain-like hardening variable ξ

s
.

Ψ
s
(εe, ξ

s
) =

1

2
εeEsεe +

1

2
ξ
s
Ks
hξ
s

(17)

whereEs is the steel elastic modulus andKs
h is the steel hardening modulus. The stress/strain relation

reads

σs = Es(ε− εe) with


ε̇
p

= γ̇
∂φ

s

∂σ

ξ̇
s

= γ̇
∂φ

s

∂q

(18)

where qs is the stress-like variable defining the linear hardening law qs = Ks
hξ and φ

s
is the elastic

yield surface:
φ
s

= |σs| − (σse − qs) ≤ 0. (19)

3.3 Cohesive material behavior at discontinuity
Linear cohesive laws are adopted. The thermodynamic free energies relative to concrete and steel

are:
Ψ
d

= 1
2
Kd2

cohξ
d
, Ψ

s
= 1

2
Ks2

cohξ
s

(20)
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where Kcoh is the softening modulus (< 0) of the cohesive material. The cohesive laws are expressed
as a relation between the traction at the discontinuity and the discontinuity variable:

td = Kd
cohα

d , ts = Ks
cohα

s (21)

In order to pass from the continuum model to the discrete one, a failure criteria should be verified.
This criteria is defined by the function φ such that:

φ
i

= |t(αi)| − (σiu − q
i
) ≤ 0 (22)

where qi = −∂Ψ
i

∂ξ
i = −Ki

cohξ
i

and i = {d, s}.

Figure 2: (a) Continuous model ; (b) Discontinuous model

The shear components for both models are supposed linear elastic and therefore the fiber shear
stress becomes:

τ = kGγ, (23)

where k is the shear correction coefficient, G is the shear modulus and γ is the fiber elastic shear
strain.

4 Variational formulation
Following the Hu-Washizu variational formulation [29], [30], the variational formulation leads to

the following set of nonlinear equations,

nelem∧
e=1

nact
fib∧
f=1

[
f inte,f (Ue, αe,f )− f exte,f

]
= 0 (24)

he,f (Ue, αe,f ) = 0,∀e ∈ [1, nelm],∀f ∈ [1, nactfib] (25)

where
∧

denotes the assembly operator and nactfib indicates the fibers with active discontinuity. The
first equation concerns the global equilibrium while the second is relative to the local equilibrium
corresponding to the active embedded discontinuities in the fibers (nactfib).

The linearized form of the system of equations (24) at incremental pseudo-time n+ 1 and iteration
k + 1 reads

nelem∧
e=1

nact
fib∧
f=1

{[
KBB KBG

KGB KGG +Kcoh

]k
n+1

[
∆Ue,f
∆αe,f

]k+1

n+1

=

[
f inte,f − f exte,f

he,f

]k
n+1

} (26)
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where

KBB =
∂f inte,f

∂Ue,f
=

∫
Vf

BT
f KfBfdVf ; (27)

KBG =
∂f inte,f

∂αe,f
=

∫
Vf

BT
f KfGfdVf ; (28)

KGB =
∂he,f
∂Ue,f

=

∫
Vf

GT
fKfBfdVf ; (29)

KGG =
∂he,f
∂αe,f

=

∫
Vf

GT
fKfGfdVf ; (30)

with Bf representing the interpolation function of the strain field at the fiber level, Gf the enhanced
interpolation function, Ue,f the nodal displacements of the fiber and Kf the material tangent modulus
of the fiber.

The local equilibrium equation represented by the second equation of the linearized system (26)
is solved locally for the active discontinuities, providing the jump increment ∆αe,f . Using the static
condensation technique, the condensed fiber stiffness is finally found:

Kcond = KBB −KBGK
−1
GGKGB (31)

5 Numerical applications
To illustrate the performance of the new Timoshenko multi-fiber beam with embedded discontinu-

ities for seismic problems, two numerical applications are presented hereafter.

5.1 Case study 1 - Eigenmodal analysis
The experimental results of Corn [1] are used hereafter. Consider an homogeneous Timoshenko

beam of circular cross-section with a length L = 257.8 mm. The material of the beam is Dural
(AU4G) with a density of 277 Kg.m3, a Young modulus of 7.2 × 1010 Pa and a Poisson coefficient
equal to 0.3. The boundary conditions are free-free. For more details about the beam instrumentation,
the reader is refer to [1]. The purpose of the experiment was to measure the beam eigenfrequencies.

We compare hereafter the experimental results with the eigenfrequencies obtained numerically
using the FCQ formulation. To do so, the beam is discretized with 100 FCQ elements. The first
six eigenfrequencies and the relative errors between the experimental and the numerical results are
presented in the following table:

Mode Experience FCQ
no fexp (Hz) fFE (Hz) error (%)
1 4957 4953 0.44
2 10542 10467 0.71
3 16476 16378 0.59
4 20514 20684 0.83
5 24439 25007 2.32
6 24679 25174 2.01

Table 1: Eigenmodal analysis: Experimental versus numerical results

It can be clearly seen that the natural frequencies obtained with the FCQ formulation are very close
to the experimental eigenfrequencies and this even for the higher modes.
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5.2 Case study 2 - Reinforced concrete column
In order to validate the performance of the multi-fiber displacement based Timoshenko finite el-

ement with embedded discontinuities an experimental study made in the Joint Research Center in
Italy [31] is used hereafter. During the tests, twelve identical cantilever-type column specimens were
subjected to several load paths of cyclic uniaxial or biaxial flexure and to imposed axial loads, to pro-
vide data for the development and calibration of numerical models for columns subjected to biaxial
bending. Each column had a 25 cm2 cross section, a free length of 1.5 m and was fixed at the base.
Longitudinal reinforcement consisted of eight 16 mm diameter bars, uniformly distributed around the
section perimeter (see figure (3)). More details about the experiment can be found in [31].

Figure 3: Experimental setup of the reinforced concrete column [31]

In [9], the authors were able to reproduce the experimental cyclic behavior of the S1 column
using the FCQ multi-fiber Timoshenko beam without any embedded discontinuities. In figure (4),
we present the results with the new formulation considering the embedded discontinuities. For this,
the column in discretized into 5 FCQ elements, the beam section with 18 fibers and an increasing
monotonic loading is applied. One can see that the model reproduces correctly the monotonic envelop
curves and captures failure around 8.5× 104 N.
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Figure 4: S1 column: experimental versus numerical results

Figures (5),(6) depict the crack openings (discontinuities) in the beam. One can notice that discon-
tinuities appear on the concrete fibers of the first element and decrease along the height of the section.
This example shows that the proposed simplified enhanced multi-fiber beam model can simulate the
global behavior of the beam providing also access to local information such as crack openings.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.01

0

0.01

0.02

0.03

0.04

0.05

Fiber length (m)

D
is

co
nt

in
ui

ty
 v

al
ue

 (
m

)

(a) Fiber 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.01

0

0.01

0.02

0.03

0.04

0.05

Fiber length (m)

D
is

co
nt

in
ui

ty
 v

al
ue

 (
m

)

(b) Fiber 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.01

0

0.01

0.02

0.03

0.04

0.05

Fiber length (m)

D
is

co
nt

in
ui

ty
 v

al
ue

 (
m

)

(c) Fiber 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.01

0

0.01

0.02

0.03

0.04

0.05

Fiber length (m)

D
is

co
nt

in
ui

ty
 v

al
ue

 (
m

)

(d) Fiber 4

Figure 5: Discontinuities values in the fiber along the beam
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Figure 6: Discontinuities values in the fibers along the beam

6 Conclusion
In this paper, a new multi-fiber displacement based Timoshenko finite element beam is proposed.

Higher order shape functions with additional internal degrees of freedom are used to interpolate the
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element displacement field and the embedded discontinuity approach is adopted to enhance the fiber
kinematic. Each material is modeled with a continuous model to describe the bulk behavior and a
cohesive model to illustrate the localized zones. The variational formulation is briefly described.
Numerical illustrations are provided in terms of an eigenmodal analysis and the numerical simulation
of a reinforced concrete column.
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