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Abstract 

High-tension bars or cables, such as diagonal braces of a truss, cables of a bridge, struts of a space structure, tie-bars of an 
arch, various anchorage cable and rods, usually play an important role in a civil structure. Identification of axial forces in 
these members is critical to post earthquake damage assessment of the structure. In view of the increasing uncertainty in 
boundary conditions due to seismic damage, two analytical methods assuming that the member is an Euler-Bernoulli beam 
or a Timoshenko beam are examined for rapid estimation of axial forces in high-tension bars based on dynamic testing. 
Bending stiffness effects are taken into account. Using the dynamic measurements from five or more sensors, the methods 
are able to identify the axial force in the bar and to determine the damage degree of the supports at two ends.  

Numerical studies based on finite element methods are conducted for a single beam member, considering different 
parameters with regard to the effect of bending stiffness, slenderness ratio and boundary condition, to compare the 
effectiveness of the two methods in a wide range of situations. It turns out that the two methods are more suitable for the 
lower values of the non-dimensional parameter ξ for bending stiffness. When ξ<30, both methods can achieve good 
estimation with high accuracy. On the other hand, the estimation error of the Euler beam based method rapidly increases 
with the decrease of the slenderness ratio till the value of 20. The Timoshenko beam based method, comparatively, is quite 
steady and completely independent of this parameter.  

A more complex externally prestressed structure is then simulated to investigate the feasibility of the methods by using both 
global and local modes. It is validated that all the cable tension estimations have been achieved with high accuracy. The 
estimation errors are less than 5%. 

Laboratory experiments are carried out to validate the applicability and accuracy of the two methods. A steel bar is fixed at 
both ends onto the loading device and loaded increasingly by uniaxial tension. Using the frequencies and mode shapes 
identified by modal tests, the axial forces as well as the boundary conditions of the specimen are determined based on the 
two methods. It has been validated that most identified axial forces achieve a satisfied accuracy with a relative error below 
10%. All the identified boundary stiffness approaches infinite, consistent with the actual fixed end. 

 

Keywords: post-earthquake evaluation, axial force, boundary condition, dynamic testing, high-tension bar 
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1. Introduction 

Modern advances in material, analysis, and construction technology have resulted in increasing number of high 
tension bars in civil structures such as bridges, beam string structures, trusses, spatial grid structures, and cable-
membrane systems. Since they are crucial components for the overall structure in most cases, accurate 
measurement of cable tension force is strategic for safety evaluation and maintenance of the structures in service 
and even more important after earthquake. 

Vibration based methods are amongst the most widely employed techniques for cable force identification 
owing to their simplicity, speed and economy. Depending on whether sag-extensibility and bending stiffness are 
taken into account, these methods may be classified into four categories, including the classic taut string theory 
that neglects both effects, the approach based on modern cable theory that accounts for sag-extensibility without 
bending stiffness, the technique that considers bending stiffness but neglects sag-extensibility, and the last 
category that takes the two effects into account. 

The classic taut string theory was first used to determine cable forces by using the basic mode of vibration 
by hand and employing a simple relation between the fundamental frequency and the tensile force. The second 
technique mainly focuses on slender or high-tensioned cables and involves solving nonlinear characteristic 
equations by the trial-and-error method. Irvine [1], one of the most important authors in this field, was the first to 
show how the symmetric in-plane modes were heavily dependent on a parameter which allowed for the effects 
of cable geometry and elasticity.Due to their correspondence with many practical situations, the last two 
categories that involve bending stiffness effects have always attracted extensive attention. On the basis of single 
mode natural frequencies, some practical formulas were proposed by introducing a non-dimensional parameter ξ 
for bending stiffness [2]. While these methods are simple and speedy, they have limitations to the members 
which are not slender or not sufficiently tensioned since the applicable range of the formulae depends on the 
value of ξ. It was not until Zui [3] that someone dealt with those problems presenting new formulae exclusively 
of use for small values of ξ. Mehrabi and Tabatabai [4] were also the first to introduce a unified finite difference 
approach taking into account the combined effects of all important parameters involved including tension, sag-
extensibility, bending stiffness, end conditions, variable cross sections, and intermediate springs or dampers. 
Even though the formulation was computationally efficient, these formulas relied on the assumption that the 
ends of the beam member are hinged or fixed but, in engineering practice, boundary conditions are more 
complex than that. To account for the influence of boundary rotational stiffness, Lagomarsino and Calderini [5] 
addressed the problem of identifying the tensile axial force of metallic tie-rods in masonry arches and vaults by 
using the first three modal frequencies of the tie-rod. Tullini and Laudiero [6] proposed a method based on one 
natural frequency and the corresponding modal displacements at three points determining the axial force as well 
as the boundary rotational stiffness under the condition of infinite translational stiffnesses at the beam ends. 

It is worth noting that most of the aforementioned methods require not only the measured modal 
parameters but also additional information such as the effective vibration length of the beam member. However, 
such information, which affects the accuracy of the resulting force, is often not available in practice. Especially 
as the anchorage devices become complicated and uncertain after earthquake, the determination of the real 
vibration length and the boundary conditions is quite difficult. Two methods have recently been proposed 
solving this problem based on the dynamic measurements from at least five sensors by assuming that the 
member is an Euler-Bernoulli beam [7] or a Timoshenko beam [8]. 

Aiming to post earthquake damage assessment of a structure, two analytical methods recently presented 
by Li et al. [7] and Maes et al. [8] are examined for rapid estimation of axial forces and boundary stiffnesses in 
high-tension bars based on dynamic testing. Numerical studies for a single beam member are first conducted 
regarding different parameters defining the effect of bending stiffness and slenderness ratio to compare the 
effectiveness of the two methods in a wide range of situations. A more complex externally prestressed structure 
is then simulated to investigate the feasibility of the methods by using both global and local modes. Laboratory 
experiments are finally conducted to validate the applicability and accuracy of the two methods. 
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2. Theoretical formulation 

 

Fig. 1 –A beam member 

This section examines theoretically the estimation of axial forces and boundary conditions for tension bars (as 
shown in Fig.1) through the vibration-based estimation from the data of five or more sensors. The transversal 
force and moment equilibrium for a free beam section are given, respectively, by: 

                                                       (1) 

                                                            (2) 

Here M(x, t) is the bending moment and V(x, t) is the shear force, both defined along the deformed member 
coordinate system; N is the axial force, positive in tension; the transverse displacement of the centerline is v(x, t) 
and βz(x, t) is the rotation of the beam cross-section. The position along the centerline x and the time t occur as 
independent variables. The area of cross section A, geometric moment of inertia I and material density ρ are 
assumed to be known. The axial force N and the boundary stiffness (k1～k4) are unknowns to be identified by 
using the measurements of five sensors (S1～S5). 

2.1 The method based on Euler-Bernoulli beam theory 

If an Euler-Bernoulli beam is considered [7], with the constant axial force N, the flexural stiffness EI and the 
mass per unit length m, then the equation of free vibration of the system can be written as 

                                          (3) 

A solution of this equation can be obtained by separation of variables as: 

                                                                  (4) 

It presents the free vibration motion with specific shape ϕ(x) and being time-dependent with an amplitude Y(t).  
Substituting this expression in Eq.(3), it yields two ordinary differential equations 

  0)( 2  tYtY                                                                      (5) 

      042  xxgxiv                                                      (6) 

in which 2g  is given by 

EI

N
g 2                                                                          (7) 

The natural frequency and mode shape of the beam element can be obtained by 

m

EI4
2


                                                                                      (8) 

  xqCxqCxqCxqCx 24231211 sinhcoshsincos                        (9) 

where C1, C2, C3, C4 are real constants; q1, q2 are written as: 

k1 

k2 k4 
N N 

k3 
S1        S2          S3          S4         S5 S: Sensors 
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For a given value of the frequency ω, the parameters q1 and q2 only depend on the axial force N according to 
Eq.(7) and Eq.(8). 

2.2 The method based on Timoshenko beam theory  

If the Timoshenko’s beam theory is adopted [8], a partial differential equation can be obtained, containing the 
transverse displacement v(x, t) as the only dependent variable: 

   (11) 

where  (called the Timoshenko shear coefficient), is a shear deformation coefficient depending on the 

geometry and  is the shear modulus of the material.This equation can be transformed to an ordinary differential 
equation if a separation of variables is performed and assuming that the transverse displacement v(x, t) is 
harmonic at a frequency ω: 

                                                          (12) 

It can be obtained by substituting Eq.(12) into Eq.(11): 

                                           (13) 

with a, b and c defined as: 

                                                                  (14) 

                                         (15) 

                                                                (16) 

For a given value of the frequency ω, the parameters a, b and c only depend on the axial force N. The solution 
for Eq.(13) is given by: 

                                                            (17) 

with 

, , , (18)

2.3. Evaluation of axial forces and boundary conditions. 

The major concern is to identify the axial force and boundary conditions based on the known structural 
parameters and the measured modal information (ω, ϕ) obtained from sensors distributed along the beam. The 
ratio of modal displacements in any two points, e.g. point i and j, can be calculated by: 
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On the basis of four ratios of modal properties extracted from five sensors, characteristic equations can be 
constructed as: 

 4 4 1 2 3 4 0C C C C
 S                                                            (20) 

where [S] is the characteristic matrix. Its components are given according to Eq. (19) for acceleration, velocity or 
displacement dynamic measurements. Eq.(20) is a critical equation for the solution of the inverse problem in this 
study. As  must have a non-zero solution, the determinant of the characteristic matrix has to be 
equal to zero: 

0S                                                                             (21) 

from which the parameters (q1, q2) or  (β1, β2 , β3, β4) as well as the axial force can be determined. The boundary 
stiffness can be then derived, as presented in Table 1. 

Table 1 – Expressions for boundary stiffness  

Stiffness Euler beam Timoshenko beam 

k1    
 

k2   
 

k3  

 

k4 
  

 

3. Numerical studies for a beam member 

3.1 The effect of bending stiffness 

Numerical studies using finite element (FE) method are conducted to verify the applicability of the methods. A 
critical non-dimensional parameter has been adopted to evaluate the effect of bending stiffness on free vibration 
of a beam-like structural member, which can be written as:    

EI

N
L                                                                     (1) 
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A series of combination of the variables including the tension of the beam ( ), its length ( ), its elastic modulus 
( ) or its section area and therefore its moment of inertia ( ) are considered to alter the value of ξ and evaluate 
the accuracy of the methods for the identification of the axial force.  

The effect of bending stiffness is presented in Fig.2 (a). It can be seen that the two methods are more 
suitable for the lower values of ξ. When , both methods become increasingly unstable and consequently 
their errors are increasingly large; when 30 , the approach based on the Euler beam becomes 
numerically unstable whereas that on the Timoshenko beam achieves good accuracy; when , both 
methods have been verified to be effective with high accuracy. 

 
(a)                                                                                        (b) 

Fig. 2 –The effect of (a) bending stiffness and  (b)slenderness ratio on the accuracy of the methods 

3.2 The effect of slenderness ratio 

To investigate the applicable conditions of the two methods, the next step is to focus on their main difference: 
shear and rotational inertia. A usual way to determine when these parameters become more or less relevant is by 
using the slenderness ratio, which is the ratio between the length and the width or the thickness of a structural 
element. When a beam member is very slender, the parameters such as the shear deformation or the rotational 
inertia can be neglected because their implications on the structural analysis are very small and therefore the 
formulation based on the Euler beam is valid for these cases.  

Note that in order to maintain  constant (around 12), two different parameters have been adjusted at the 
same time: the length or the section that will change the slenderness ratio, and the tension that will compensate 
the alterations on the bending stiffness effects caused by the first change.  

It stands clear from Fig.2 (b) that for the lower values of the slenderness ratio, the error of the method 
based on the Euler beam rapidly increases with the decrease of the slenderness ratio till the value of 20. On the 
other hand, the Timoshenko beam based method is quite steady regardless of the slenderness, showing that its 
approximation is completely independent of this parameter. 

3.3 Identification of boundary conditions 

Five beams with different boundary conditions have been investigated to verify the application of the proposed 
method for identifying the boundary stiffness. As shown in Table 2, all the parameters except the boundary 
stiffenesses (k1～k4) are same for the beams. The sensor placement as shown in Fig. 1 is employed. Using the 
first-order frequency and modal displacements, axial forces and boundary stiffness are finally determined. 
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Table 2 –Numerical cases for the beams with different boundary conditions 

Cases k1(N/m) k2(Nm/rad) k3(N/m) k4(Nm/rad) a(m) b(m) L(m) E(N/m2) ρ(kg/m3) N(kN)

C1 ∞ ∞ ∞ ∞ 

0.08 0.012 0.72 2.10E11 7860 5 

C2 ∞ 0 ∞ 0 

C3 ∞ 1000 ∞ 1000 

C4 ∞ 0 2000 0 

C5 ∞ 1000 2000 1000 

It can be found from Table 3 that the axial forces and the boundary stiffness identified by the two methods 
are all achieved with high accuracy. Note that C3-C5 are in an intermediate state between C1 (fixed-fixed beam) 
and C2 (simple beam). The good estimations verify a significant ascendancy of the methods by comparing with 
the traditional techniques which first assume the boundary conditions to be fixed or hinged and then identify 
axial forces directly based on the measured natural frequencies.  

Table 3 –Identified axial forces and boundary conditions 

Case 1 2 3 4 5 

Euler beam 

Nid (kN) 5.000 5.000 5.000 5.001 5.001 

k1 (N/m) 1.04E+11 4.39E+12 5.07E+12 7.20E+12 2.10E+12 

k2 (Nm/rad) 1.06E+12 -0.01 999.99 0 1000 

k3 (N/m) 1.04E+14 4.39E+12 5.07E+12 1998.9 1998.86 

k4 (Nm/rad) 2.23E+11 -0.02 999.97 0.05 1000.06 

Timoshenko 
beam  

Nid (kN) 5.000 5.001 5.000 5.000 5.002 

k1 (N/m) 1.21E+11 1.17E+12 2.30E+12 4.15E+12 3.21E+12 

k2 (Nm/rad) 2.06E+12 0.08 999.11 0.7 1002 

k3 (N/m) 2.07E+13 1.13E+12 3.02E+12 1999.4 1999.1 

k4 (Nm/rad) 1.17E+12 0.02 998.89 0.5 999.51 

 

4. Numerical studies for a structure 

To evaluate the accuracy of the two methods applied to more complex structures, an actual externally prestressed 
structure as shown in Fig.3 is investigated. The floor is a typical beam string structure (BSS), using bars 
connecting cables and concrete floor. A FE model is built up for this actual structure. Cables are modeled using 
3-D spar elements while the concrete floor is defined by 3-D linear finite strain beam elements. The material and 
the geometric properties of the structures are listed in Table 4.  

    

Fig. 3 –A cable-supported floor 
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Table 4 – Properties of the simulated structure 

Concrete components Cable 

E(N/m2) ρ(kg/m3) R(m) N(kN) E(N/m2) ρ(kg/m3)   

32E9 2300 0.0075 22.4 1.95E11 1101 12 
 

Based on modal analysis, the first six frequencies and mode shapes of the structure are calculated and 
plotted in Fig.4. It can be seen that the first two are global modes for the full structure while the rest four are 
local modes for the cables.  Using the calculated modal parameters, the axial forces can be identified by the two 
methods and compared with the set cable tension of 22.4kN. It can be found from Table 5 that all the cable 
tension estimations are achieved with high accuracy, either by using the global or local modes. The estimation 
errors are less than 5%.  

(a) Mode 1: f=7.88 Hz (b) Mode 2: f=31.32 Hz 

(c) Mode 3: f=67.38 Hz (d) Mode 4: f=67.40 Hz 

(e) Mode 5: f=67.83 Hz (f) Mode 6: f=67.83 Hz 

Fig. 4 – Frequencies and mode shapes of the structure 

Table 5 – Cable tension estimation of the cable-supported floor   

Modes 
1 2 3 4 5 6 

Global Global Local Local Local Local 

Euler beam 0.23% 1.92% 3.47% 3.46% 3.51% 3.51% 

Timoshenko beam 0.23% 1.92% 3.46% 3.45% 3.51% 3.51% 
 

5. Experimental investigation 

Laboratory tests [7] have been carried out for a steel bar with 0.72m length and a rectangular cross section of 
35mm×5mm. The specimen is fixed at both ends onto the loading device, i.e. k1=k2=k3=k4=∞, and loaded 
increasingly by uniaxial tension. Six cases are considered from 5kN to 30kN. Five accelerometers (0.1V/g, 1.5g 
mass) are installed onto its surface in an even distance along the length. For each case, single-point hammer 
impulsive excitation is applied and dynamic measurements from the five accelerometers are acquired at a 
sampling frequency of 2.5 kHz.   

Using the frequencies and mode shapes identified by modal tests, the axial forces as well as the boundary 
conditions of the specimen are determined based on the above-mentioned two methods, as listed in Table 6. 
Most identified axial forces achieve a satisfied accuracy with a relative error below 10%. The estimations 
deviate a lot from the controlled load 5kN and the reason may be due to the low precision of loading device at a 
low loading level. All the identified boundary stiffness approaches infinite. 
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Table 6 – Experimental boundary conditions calculated with Euler-Bernoulli method 

Cases N (kN) 5 10 15 20 25 30 

Euler beam 

Nid (kN) 7.25 11.23 15.82 20.56 25.45 30.32 

Error (%) 45.0% 12.3% 5.5% 2.8% 1.8% 1.1% 

k1 (N/m) 1.46E+11 4.00E+11 1.73E+12 1.11E+12 3.86E+11 2.06E+11 

k2 (Nm/rad) 1.41E+11 1.63E+12 5.83E+11 7.80E+14 4.59E+11 4.68E+11 

k3 (N/m) 3.62E+11 1.88E+12 1.51E+13 2.54E+11 1.49E+13 3.29E+12 

k4 (Nm/rad) 3.82E+14 2.18E+13 1.44E+11 2.86E+13 1.35E+11 3.10E+11 

Timoshenko 
beam 

Nid (kN) 6.98 11.03 15.12 20.52 25.75 29.23 

Error (%) 39.6% 10.3% 0.8% 2.6% 3.0% 2.6% 

k1 (N/m) 1.06E+12 3.01E+11 1.13E+12 2.01E+11 2.16E+12 2.35E+13 

k2 (Nm/rad) 1.14E+11 1.50E+13 3.38E+11 5.08E+14 1.43E+11 3.57E+12 

k3 (N/m) 3.62E+12 1.76E+12 1.15E+13 2.14E+11 2.50E+13 2.18E+12 

k4 (Nm/rad) 2.32E+11 1.98E+13 2.74E+11 4.87E+13 1.45E+11 2.09E+11 

 

6. Conclusions 

Aiming to post earthquake damage assessment of a structure, two analytical methods assuming that the member 
is an Euler-Bernoulli beam or a Timoshenko beam are examined for rapid estimation of axial forces in high-
tension bars based on dynamic testing. Bending stiffness effects are taken into account. Using the dynamic 
measurements from five or more sensors, the methods are able to identify the axial force in the bar and to 
determine the damage degree of the supports at two ends. 

Numerical studies based on finite element methods for a single beam member verify that the two methods 
are more suitable for the lower values of the non-dimensional parameter ξ for bending stiffness. When , 
both methods become increasingly unstable and consequently their errors are increasingly large; when 
30 , the approach based on the Euler beam becomes numerically unstable whereas that on the 
Timoshenko beam achieves good accuracy; when , both methods have been verified to be effective with 
high accuracy. On the other hand, the estimation error of the Euler beam based method rapidly increases as the 
slenderness ratio is less than the value of 20. The Timoshenko beam based method, comparatively, is quite 
steady and completely independent of this parameter. 

Numerical simulations for an external prestressed structure verify the applicability of the two methods 
either by using the global or local modes. All the cable tension estimations are achieved with high accuracy. The 
estimation errors are less than 5%. 

Laboratory experiments on a steel bar are carried out to validate the applicability and accuracy of the two 
methods. It has been validated that most identified axial forces achieve a satisfied accuracy with a relative error 
below 10%. All the identified boundary stiffness approaches infinite, consistent with the actual fixed end. 
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