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Abstract

Seismic isolation is a design approach that aimsedticing earthquake demands on a structure andoitgents.

Conventional practice places the isolation systethefoundation level and calls for the construetof rigid diaphragms
above and below the isolation layer. ConsequetiiBse rigid diaphragms prevent the isolators frapedencing rotation,

and the isolators displace horizontally and veltiicanly. However, there are several scenarios whisplators do

experience rotations, including in tall buildings, mid-story isolation applications, in bridgesc.eVarious mechanical
models have been proposed to investigate the hdakbehavior of elastomeric isolators under treuagption of zero top
and bottom rotation. Those studies have charaetbrihe effect of vertical load on the lateral se&s and the lateral
stability limit (defined as the displacement at @¥hthe tangent stiffness becomes zero). In thidystiliree existing models
are considered: the Nagarajiah-Ferrell, lizuka, Had-Warn models. First, these three models arkiael by comparing
their predictions to results of Finite Element Arsié (FEA), assuming no rotation at the supportenl the models are
modified to account for the effect of rotation. Timedified models are evaluated using results fr@A kinder prescribed
rotation values. The results show that the Han-Waodlel provides more accurate predictions tharN&garajiah-Ferrell

and lizuka models.
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1. Introduction

Seismic isolation is an approach to earthquaksteeti design that aims at decreasing the seismieuol@ rather
than increasing the structure’s seismic capacityThis is achieved through the introduction of @ikontally
flexible layer that in effect decouples the superttire from the horizontal seismic excitation. Thest widely
used seismic isolation devices for buildings anddas are steel-reinforced elastomeric bearingesé@thearings
are made of layers of natural or synthetic rubb#en filled to enhanced their damping propertiatgrieaved
with thin steel reinforcing plates (shims). A typi@lastomeric isolator features thick steel eradgsl, bonded to
the rubber during the vulcanization process. Thikemates are connected to the superstructure drsiraature
with bolts. The manufacturing process for elastémnbearings has to be conducted precisely to peowd
adequate bond between the rubber and the steel [2].

Past studies have shown that elastomeric isolatmler combined axial and horizontal loading behave
nonlinearly, and an individual isolator undergoiagge lateral displacements may experience a deeri@aits
axial-load capacity [3]. Previous experimental aauhlytical studies assessed the horizontal behasfior
elastomeric bearings under the assumption thabeheing was sheared and compressed but the topadian
supports did not experience any rotation. This rmag$ion is often fairly valid due to the high rigigiof
structural elements above and below the bearingtwhrevent it from experiencing rotation at the punts.
There are, however, several scenarios where @dsiple for an isolator to experience rotation. &fset al. [4]
who investigated the dynamic response of a basatésb10-story reinforced concrete frame buildisghg 3D
FEA, noted that the elastomeric isolators expegdnotation at their supports. In applications saslisolation
of high-rise buildings or mid-height isolation, tefect of rotation may be significant. The effeftrotation
may also be important in bridge applications, whbkeeseismic isolators are placed between the driggk and
the piers or abutments can experience rotationtalfiexure of the deck above the isolator or therpibelow.
Rastgoo Moghadam and Konstantinidis [5] who inggggd the effect of rotation on the lateral behawib
elastomeric isolators using 3D FEA noted that fotatioes not significantly affect the critical daspement at
the instability point (i.e., the point at which ttengential lateral stiffness becomes zero) butdeerease or
increase the critical shear force. It was concluthed rotation at the supports, depending on thetiom value
and the axial force, can appreciably influencelaberal behavior of a rubber bearing, and consetpigrtannot
be neglected.

There are many experimental studies in the libgea{6-12] focused on the horizontal behavior and
instability (critical) point of bearings. Since shstudy focuses on mechanical models that are tamib
estimating the critical point, the introductionddly discusses models currently available in therditure. Koh
and Kelly [13]proposed a simple two-spring mechanical model lioly both shear and flexural deformations,
to study the stability of elastomeric isolatorseyltompared the results of this model with expeniiaeresults
for natural rubber bearings; it was shown thatrtteelel captured the behavior with good accuracy., ba@l.
[14] modified the Koh-Kelly model by using an instaneous apparent shear modulus obtained frometagts
instead of a constant shear modulus value. Inntlidel the shear modulus is a function of the skam and
can be represented by a polynomial function obthime least squares fitting of test results. Nag#ah and
Ferrell [15] developed a nonlinear analytical model which iseatension of the Koh-Kelly model to include
large displacements. They showed that the critazad and horizontal stiffness decreases with irsingglateral
displacement. lizuka [16] developed a model byoitticing finite deformation and nonlinear springwithe
Koh-Kelly model. Based on experimental and anadyticesults, this model accurately captures the
characteristics of elastomeric bearings, such adehing, load deterioration, and buckling phenomérte
nonlinear parameters of the rotational and shedanggp in the model are determined through expertaien
testing. The advantage of this model is that iteasily handle a variable axial force. A three-disienal model
which includes multiple shear springs at the mitfihieand a series of axial springs at the top asttbin of an
isolator was proposed by Yamamoto, et al. [17] Kikdichi, et al. [18] for circular and rectangulaplators,
respectively. Han and Warn [19] conducted sensjtiamalysis on previous models using FEA and pregpan
alternative model which does not rely on experiraiyicalibrated parameters. This model includesrées of
vertical springs with a simple bilinear constitativelationship. These vertical springs replace rttational
spring which was used in the Koh-Kelly model. Tbhiison process to find the critical point is siarito that in
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the lizuka model. Vemuru et al. [20] showed that Neagarajaiah-Ferrell model cannot accurately ptetie
stiffness degradation beyond the stability poird.tAis model is based on quasi-static tests, tffaests of the
bearings beyond the stability limit is larger thpredicted by the model. Vemuru et al. [20] modifidn:
Nagarajaiah-Ferrell model by incorporating higheder displacement terms in the rotational springe T
modified model is capable of characterizing theaigit behavior of bearings more accurately thanipusv
models, particularly beyond the instability point.

FEA is a common approach to understand the behatioubber isolators. Recently, studies using this
approach have evaluated the behavior of isolatearibgs under compression and shear [21-29]. Sdife F
studies have focused specifically on the stabditypearings. Warn and Weisman [30] conducted anpeiréc
study to investigate the effect of geometry on dhigcal load of rubber bearings using 2D FEA. Theisults
showed that the critical load is more sensitivehobearing width and the individual rubber layeckness than
it is to the number of rubber layers. Montuori kef3l] studied the effect of the second shapeofaefined as
the ratio of the diameter/width to the total thieks of rubber material) on the stability of elasdmbearings.
They considered different bearings with a shaptfaaf 20 and a second shape factor ranging fré@td6.2.
Their result showed that the lateral behavior arsthbility of the elastomeric bearings is rela@dhe value of
the second shape factor.

The objective of this paper is to evaluate aneérmktexisting models available in the literatureapture
the effect of rotation on the stability of elastainadearings. In this study, three models (Nagahafterrell [15],
lizuka [16] and Han-Warn [19]) are considered. fritse paper summarizes these models and evalteies
performance by comparing their predictions to mssaf FEA assuming no rotation at the supports.nT liee
models are extended to account for support rotatioid their predictions are compared against FEdeun
prescribed rotation values.

2. Review of Existing M echanical Models

This section is intended to summarize the main @opg of each model. For the specifics of each rode
discussed here, the reader is referred to thenatigaper.

The Nagarajaiah-Ferrell model (see Fig. 1a) is rilesd the following nonlinear equations, which sliou
be solved simultaneously [15]

u=scosd+ hsird D)
v=ssing+ h(1- cod) 2)
M =K, 8=Pu+ F(h-) 3
Q.=K, s= Psind+ Fcod (4)

whereh is the total height of the bearing,is the local shear deformation that develops @nlittear shear spring
with stiffnesK,, @ is the rotation concentrated in the rotationalrg with the stiffnesK,, M is rotational
spring moment, and), is the shear spring force. Under axial I#adnd shear forcg, the model introduces the
global horizontal displacemeuntand vertical displacemewnt K and K, are obtained by Egs. (5) and (6),

K, :%[1— 0. 325taaniD (5)
h 25.4

nganls[l_(%A—tj( s jj ®)
h D 254

whereG is the shear modulus of the rubber materfal= A(h/ t,? , A'is the total cross sectional ar¢ajs the
total height of rubberEl_ =E,I (h/t), E, is the bending modulus of the elastomeric beasiriich is equal to
EC/3 for a circular baringE, is compression moduluS§,is the shape factol,is area moment of inertia of the
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rubber layer,t is the thickness of single rubber layer abdis the bearing diameter. For a circular
bearingE, =6GS, S= J4t and | =7D* / 64. It should be noted thatt andD in Egs (5) and (6) are in mm.

5

Fig. 1: lllustration of the mechanical models ie thterally unreformed and deformed shape: a) Ngigar
Ferrell b) lizuka c) Han-Warn

lizuka (see Fig. 1b) converted Egs. (1)-(4) totéirdifference format, from which Eq. (7) can beaittd
[16],

[ hsin @+ scosd sib -1 0]

(AG hcos@—- . ssind coy 0 0 0
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! = —_ 0 'F v—-h
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whereAd, As, Av and AF are the incremental response quantities for angiearing, under the axial forde,
and incremental lateral displacement,), at stepi. They are added to the current step to find thpamse
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values at the next stept{), and this procedure is repeated until thecalitpoint is obtained. In order to avoid
ill-conditioned matrix, (to solve Eq. 7) linear spy properties can be assumed for the first stép. thngential
rotational stiffnessdM/d@, and tangential shear stiffnes) / ds, at each step, can be obtained using

PE

- (6<0))
am _ 7PEl_/h
dé / wr (6>6)) ®
1+£ ﬁ_
=39
4Q _GA s)
dg  h [“%(H %)(J } ©)

wherer is a dimensionless parameter with a recommendeé @tween 1.2 and 3.5.ands, are dimensionless
parameterss can be varied between 0.0068 and 0.01 ani equal to 3. In this studg =0.01, s, =3 andr
= 2. g, is yielding rotational angle which is given by

_2hZ(J —J)
6= anyIs

whereZ is the elastic section modulus of bonded rubbea 41=7TD3/32 for a circular bearing)g is hominal
stress (/A), and g is the yielding stress, which is equal 8.3

In the Han-Warn model (see Fig. 1c), the rotatisming is replaced by a series of parallel velrtica
springs. The cross section is discretized intoviddial springs, which is similar to a fiber-elemenbtdel. The
number of springsn, should be large enough to obtain a convergedtisnldior all axial loads for a given
bearing. Similar to the lizuka model, Eq. (7) iedisdM/dé at each step is obtained by

(d_sz i'vI _i—llvI (11)
de)” 6-.,6

i i-1

(10)

At each step, the vertical springs should satisfy

n

P=ZUSIA1 (12)
i
M =Zn:asj Aj(dsj + x) (13)
]
£l el &l el
22 = 2% = = = = 3° = (14)
d, +x d +X d§+x d+ X

where g, and ¢, are the stress and strain in jtrevertical spring, respectivelyr, can be determined from

_|Ee, (sﬁsay/Ec)

“ o (es] >ay/Ec)

Sj

(15)
y
whereA is the area of thigh vertical spring element, is the distance between the centre ofjthevertical

spring and the center of the bearing cross secti®the distance between the neutral axis andehtecof the
bearing cross section, amdis the initial length of vertical spring elemenrtiieh is calculated by



ﬁﬁ;@ 16" World Conference on Earthquake, 16WCEE 2017

/ag Santiago Chile, January 9th to 13th 2017

Ea ., 7EI
ToAd =I5 (16)

r

The tangential shear stiffnesdq)/ ds, is obtained by
9Q_CAl ¢ fanif Y (17)
ds h t

3. Evaluation of Existing M echanical Models

In this study the mechanical models discussed enptievious section, are compared against FEA sefuita
given bearing. The detail of FEA model for thremdnsional circular bearings is available in [5]blEal shows
the properties of the bearing that is used in ghisly. This bearing is similar to the bearing tédig Weisman
and Warn [11]. In this study, the compressible Memkean hyperelastic material model was used torithes
the rubber material. This material model is defibgdwo material constants: the shear mod@wend the bulk
modulusK. The strain energy function of the compressible-Ne@okean model is [32],
w:c;o(‘|1—3)+i(‘1—1)2 (18)
Dl
where C,,=G/2, D,=2/K, I, is the first reduced invariant (deviatoric partyprof the left Cauchy-Green
deformation tensor, andl is the elastic volume ratio. The material paramdde is 2x10° mm?/N assuming
incompressible material. The steel material waseteatiusing a bilinear isotropic material model withung's
modulus of 200 GPa and a Poisson’s ratio of 0.post-yield modulus of 2 percent of the initial mhduwas
specified.

Table 1: Properties of bearings used in this study

Properties Symbol  Unit
Outside diameter D mm 152
Thickness of individual rubber layer t mm 3
Thickness of individual steel shim ts mm 3
Number of rubber layers N - 20
Shape factor S - 12.67
Second shape factor S - 2.53
Shear modulus G MPa 0.9

In the FEA model, all nodes of the top end plateensonstrained to a point (control node) locatethat
centroid of the end plate. The boundary conditieese assigned to this point. The control nodeés o move
vertically and laterally in one direction and iretbase of rotation; this node can rotate in theifipd direction.
Similar to the top end plate, all nodes at thedmtend plate were constrained to a control nodes paint is
restrained in all degrees of freedom except forcduee of rotation. The analysis was performed im $tages:
during the first stage, the axial load but als@tiohs were imposed gradually until the desirediealwere
reached; and in the second stage of the analyseshorizontal displacement is gradually increasdulew
maintaining the axial load and rotation value frame first stage constant. The analysis includedimeer
geometry, large displacements, and large straihs. ificremental nonlinear analysis was conductedguan
updated Lagrangian formulation and the Newton-Rapliteration method.

To obtain the critical point, the constant axiatc method [11] was used. In this method, which was
experimentally confirmed by Sanchez et al. [12§ tateral displacement and shear force associaitédthe
critical point are determined from the shear fdateral displacement curve for a given constardldsad,P. In
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the loading part (FEA model), the axial load wapligl first, and then the horizontal displacemeaswapplied
incrementally until the horizontal stiffness becareeo and the shear force reached its maximum value

In order to extend the Nagarajiah-Ferrell modehd¢sount for top support rotation, Egs. (1) to (9 a
modified by replacingg by 6-6,. 6, is the applied rotation at the top end plate, Whécpositive if the applied
rotation is counterclockwise. To modify the lizukiad Han-Warn models, the applied rotat#ns included in
the linear spring properties in the first step.

3.1 Results under zero rotation of the top surface

Fig. 2 shows the lateral behavior of the bearingeurtifferent average pressure valups; P/ A=5.5, 8.26 and
11.02 MPa, as predicted using the three mechamodkls and the FEA. As can be seen, the Han-Wadeimo
results is in good agreement with the FEA resekpecially for the common pressure (around 8 Msell in
practical design. In all three cases, the Nagaajierrell model underpredicts the shear fdfcavhile the
lizuka model overpredicts it, compared to the FESuits. A load-displacement curve, like the onesgnted in
Fig. 2, can be used to extract the and F,, values that correspond ®, . From this information, Fig. 3 can be
generated. The figure shows that the analyticaleisodre in good agreement with the FEA resultgims of
predicting the critical displacement, while theseaisignificant difference between the models timeding the
critical shear force. Predictions of the Han-Waradel and lizuka models are close to each otheh thié¢
lizuka model giving slighly larger values. Figsaf@d 3 show that, in general, the Nagarajaiah-Hemedel
underestimates the shear force at the criticaltpaiile the lizuka model overestimates it.

p =5.5 MPa p = 8.26 MPa p =11.02 MPa
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Fig. 2: Comparison of shear force-lateral displageimrelationships obtained from the analytical n®de
(Nagarajiah-Ferrell, lizuka, and Han-Warn) andFE& under average pressure of 5.5, 8.26 and 11102 M

3.2 Results under rotation of the top surface

Fig. 4 shows the lateral behavior of the bearindenrifferent average pressure valupss 5.5, 8.26 and 11.02

MPa, using modified analytical models to accounttfi@ effect of rotation, together with FEA resuitsen the
applied rotation at the top end plate is equal.@2 0ad (left column) and 0.04 rad (right columbshows that
the Han-Warn model is in good agreement with thé Fé&sults for both rotation values (0.02 and 0.8d)y
particularly for low and medium pressure value$ @nd 8.26 MPa). In terms of initial state (forsenot equal
to zero at zero displacement) that shows the effecttation, all modified models overestimate #féect of
rotation, particularly for the large pressure.
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Fig. 3: Comparison of critical points predicted tw three analytical models (Nagarajiah-Ferrefluka, and
Han-Warn) and the FEA
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Figure 4: Comparison of shear force-lateral disptaent relationships obtained using the modifiedyginal

models (Nagarajiah-Ferrell, lizuka, and Han-Wamj ¢he FEA under average pressure (a) 5.5 (b) #&1826(c)
11.02 MPa, and top rotation &f =0.02rad (left column) and, = 0.04rad (right column)
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Figure 5: Comparison of critical points resultsviltn the modified analytical models (Nagarajiahréikr
lizuka, and Han-Warn) and Finite Element analysjs=(0.01, 0.02, 0.03 and 0.04 rad)

Fig. 5 compares critical points as predicted byriuglified analytical models and the FEA under défe
rotation values. Depending on the rotation value @nessure, critical forces vary significantly, lutan be seen
that the larger value of pressure and rotationgusindified analytical models cause larger error garad to the
FEA results. Unlike the critical force, there isogoagreement between the results for critical disghent. Yet,
the agreement is more notable in lower value aftian.

4. Conclusions

This paper considered three mechanical models, the. Nagarajiah-Ferrell, the lizuka, and the HaarV
models, for assessing the stability of an elastanigolator. The study compared the results obthirgng these
models against FEA results for a given elastomisdlation bearing, for the case of zero rotatiothattop end
plate and non-zero rotation at the end plates.fdll@ving summarizes the most important observation

1. The Nagarajiah-Ferrell model, regardless of rotatralue, predicts lower values of shear force at th
critical point than the FEA. The relative differengecomes more significant for the bearing undegela
value of pressure.

The lizuka model overpredicts the shear force attitical point.
The Han-Warn model provides better agreement \wghHHEA.
All models predict the displacement at the critipaint with a good agreement with FEA.

a M DN

All modified models overestimate the effect of tmin, particularly for the large pressure.
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This study presented results for a given bearing, tb compare the results more comprehensively,emor
bearings, with a range of different properties,chgebe analyzed. The authors are in the procepsopbsing a
new model aimed at addressing the shortcominggistireg models.
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