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Abstract 
Seismic isolation is a design approach that aims at reducing earthquake demands on a structure and its contents. 
Conventional practice places the isolation system at the foundation level and calls for the construction of rigid diaphragms 
above and below the isolation layer. Consequently, these rigid diaphragms prevent the isolators from experiencing rotation, 
and the isolators displace horizontally and vertically only. However, there are several scenarios where isolators do 
experience rotations, including in tall buildings, in mid-story isolation applications, in bridges, etc. Various mechanical 
models have been proposed to investigate the horizontal behavior of elastomeric isolators under the assumption of zero top 
and bottom rotation. Those studies have characterized the effect of vertical load on the lateral stiffness and the lateral 
stability limit (defined as the displacement at which the tangent stiffness becomes zero). In this study, three existing models 
are considered: the Nagarajiah-Ferrell, Iizuka, and Han-Warn models. First, these three models are evaluated by comparing 
their predictions to results of Finite Element Analysis (FEA), assuming no rotation at the supports. Then, the models are 
modified to account for the effect of rotation. The modified models are evaluated using results from FEA under prescribed 
rotation values. The results show that the Han-Warn model provides more accurate predictions than the Nagarajiah-Ferrell 
and Iizuka models. 
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1. Introduction 

Seismic isolation is an approach to earthquake resistant design that aims at decreasing the seismic demand rather 
than increasing the structure’s seismic capacity [1]. This is achieved through the introduction of a horizontally 
flexible layer that in effect decouples the superstructure from the horizontal seismic excitation. The most widely 
used seismic isolation devices for buildings and bridges are steel-reinforced elastomeric bearings. These bearings 
are made of layers of natural or synthetic rubber, often filled to enhanced their damping properties, interleaved 
with thin steel reinforcing plates (shims). A typical elastomeric isolator features thick steel end plates, bonded to 
the rubber during the vulcanization process. The end plates are connected to the superstructure and substructure 
with bolts. The manufacturing process for elastomeric bearings has to be conducted precisely to provide an 
adequate bond between the rubber and the steel [2].  

 Past studies have shown that elastomeric isolators under combined axial and horizontal loading behave 
nonlinearly, and an individual isolator undergoing large lateral displacements may experience a decrease in its 
axial-load capacity [3]. Previous experimental and analytical studies assessed the horizontal behavior of 
elastomeric bearings under the assumption that the bearing was sheared and compressed but the top and bottom 
supports did not experience any rotation. This assumption is often fairly valid due to the high rigidity of 
structural elements above and below the bearing which prevent it from experiencing rotation at the supports. 
There are, however, several scenarios where it is possible for an isolator to experience rotation. Ohsaki, et al. [4] 
who investigated the dynamic response of a base-isolated 10-story reinforced concrete frame building using 3D 
FEA, noted that the elastomeric isolators experienced rotation at their supports. In applications such as isolation 
of high-rise buildings or mid-height isolation, the effect of rotation may be significant. The effect of rotation 
may also be important in bridge applications, where the seismic isolators are placed between the bridge deck and 
the piers or abutments can experience rotation due to flexure of the deck above the isolator or the piers below. 
Rastgoo Moghadam and Konstantinidis [5] who investigated the effect of rotation on the lateral behavior of 
elastomeric isolators using 3D FEA noted that rotation does not significantly affect the critical displacement at 
the instability point (i.e., the point at which the tangential lateral stiffness becomes zero) but can decrease or 
increase the critical shear force. It was concluded that rotation at the supports, depending on the rotation value 
and the axial force, can appreciably influence the lateral behavior of a rubber bearing, and consequently it cannot 
be neglected. 

 There are many experimental studies in the literature [6-12] focused on the horizontal behavior and 
instability (critical) point of bearings. Since this study focuses on mechanical models that are capable of 
estimating the critical point, the introduction briefly discusses models currently available in the literature. Koh 
and Kelly [13] proposed a simple two-spring mechanical model including both shear and flexural deformations, 
to study the stability of elastomeric isolators. They compared the results of this model with experimental results 
for natural rubber bearings; it was shown that the model captured the behavior with good accuracy. Koo, et al. 
[14] modified the Koh-Kelly model by using an instantaneous apparent shear modulus obtained from test results 
instead of a constant shear modulus value. In this model the shear modulus is a function of the shear strain and 
can be represented by a polynomial function obtained by least squares fitting of test results.  Nagarajaiah and 
Ferrell [15] developed a nonlinear analytical model which is an extension of the Koh-Kelly model to include 
large displacements. They showed that the critical load and horizontal stiffness decreases with increasing lateral 
displacement. Iizuka [16] developed a model by introducing finite deformation and nonlinear springs into the 
Koh-Kelly model. Based on experimental and analytical results, this model accurately captures the 
characteristics of elastomeric bearings, such as hardening, load deterioration, and buckling phenomena. The 
nonlinear parameters of the rotational and shear springs in the model are determined through experimental 
testing. The advantage of this model is that it can easily handle a variable axial force. A three-dimensional model 
which includes multiple shear springs at the mid-height and a series of axial springs at the top and bottom of an 
isolator was proposed by Yamamoto, et al.  [17] and Kikuchi, et al. [18] for circular and rectangular isolators, 
respectively. Han and Warn [19] conducted sensitivity analysis on previous models using FEA and proposed an 
alternative model which does not rely on experimentally calibrated parameters. This model includes a series of 
vertical springs with a simple bilinear constitutive relationship. These vertical springs replace the rotational 
spring which was used in the Koh-Kelly model. The solution process to find the critical point is similar to that in 
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the Iizuka model. Vemuru et al. [20] showed that the Nagarajaiah-Ferrell model cannot accurately predict the 
stiffness degradation beyond the stability point. As this model is based on quasi-static tests, the stiffness of the 
bearings beyond the stability limit is larger than predicted by the model. Vemuru et al. [20] modified the 
Nagarajaiah-Ferrell model by incorporating higher order displacement terms in the rotational spring. The 
modified model is capable of characterizing the dynamic behavior of bearings more accurately than previous 
models, particularly beyond the instability point. 

 FEA is a common approach to understand the behavior of rubber isolators. Recently, studies using this 
approach have evaluated the behavior of isolation bearings under compression and shear [21-29]. Some FEA 
studies have focused specifically on the stability of bearings. Warn and Weisman [30] conducted a parametric 
study to investigate the effect of geometry on the critical load of rubber bearings using 2D FEA. Their results 
showed that the critical load is more sensitive to the bearing width and the individual rubber layer thickness than 
it is to the number of rubber layers. Montuori et al. [31] studied the effect of the second shape factor (defined as 
the ratio of the diameter/width to the total thickness of rubber material) on the stability of elastomeric bearings. 
They considered different bearings with a shape factor of 20 and a second shape factor ranging from 1.5 to 6.2. 
Their result showed that the lateral behavior and instability of the elastomeric bearings is related to the value of 
the second shape factor.  

 The objective of this paper is to evaluate and extend existing models available in the literature to capture 
the effect of rotation on the stability of elastomeric bearings. In this study, three models (Nagarajiah-Ferrell [15], 
Iizuka [16] and Han-Warn [19]) are considered. First, the paper summarizes these models and evaluates their 
performance by comparing their predictions to results of FEA assuming no rotation at the supports. Then, the 
models are extended to account for support rotation, and their predictions are compared against FEA under 
prescribed rotation values. 

2. Review of Existing Mechanical Models 

This section is intended to summarize the main equations of each model. For the specifics of each model 
discussed here, the reader is referred to the original paper. 

The Nagarajaiah-Ferrell model (see Fig. 1a) is described the following nonlinear equations, which should 
be solved simultaneously [15]     

 cos sinu s hθ θ= +  (1) 

 ( )sin 1 cosv s hθ θ= + −  (2) 

 ( )
θ

M K Pu F h vθ= = + −  (3) 

 s sin cossQ K s P Fθ θ= = +  (4) 

where h is the total height of the bearing, s  is the local shear deformation that develops in the linear shear spring 
with stiffness sK , θ  is the rotation concentrated in the rotational springs with the stiffness Kθ , M is rotational 
spring moment, and sQ  is the shear spring force. Under axial load P and shear force F, the model introduces the 
global horizontal displacement u and vertical displacement v. sK and Kθ  are obtained by Eqs. (5) and (6), 
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 (6) 

where G is the shear modulus of the rubber material, sA  = ( )r/A h t ,  A is the total cross sectional area, rt  is the 
total height of rubber, ( )r/s bEI E I h t= , bE  is the bending modulus of the elastomeric bearing, which is equal to 

3cE  for a circular baring, cE  is compression modulus, S is the shape factor, I is area moment of inertia of the 
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rubber layer, t is the thickness of single rubber layer and D is the bearing diameter. For a circular 
bearing: 2

c 6E GS= , 4S D t=  and 4 64/I Dπ= . It should be noted that s, t and D in Eqs (5) and (6) are in mm.    
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Fig. 1: Illustration of the mechanical models in the laterally unreformed and deformed shape: a) Nagarajiah-
Ferrell b) Iizuka c) Han-Warn 

 

Iizuka (see Fig. 1b) converted Eqs. (1)-(4) to finite difference format, from which Eq. (7) can be obtained 
[16], 
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 (7) 

where θ∆ , s∆ , v∆  and F∆  are the incremental response quantities for a given bearing, under the axial force, P, 
and incremental lateral displacement, u∆ , at step i. They are added to the current step to find the response 
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values at the next step (i+1), and this procedure is repeated until the critical point is obtained. In order to avoid 
ill-conditioned matrix, (to solve Eq. 7) linear spring properties can be assumed for the first step. The tangential 
rotational stiffness, dM dθ , and tangential shear stiffness, sdQ ds, at each step, can be obtained using  

 

( )

( ) ( )

2

2

1

1 1
3

s
y

s
yr r

y

EI

h
dM EI h
d

r

π θ θ

π θ θθ
θ
θ

+


≤


=  >
  
 + −      

 (8) 

 ( )
2

s s
1 21 1

s

r

dQ GA s
s s

d h tθ

  
 = + +  
   

 (9) 

where r is a dimensionless parameter with a recommended value between 1.2 and 3.5. 1s and 2s are dimensionless 
parameters. 1s can be varied between 0.0068 and 0.01 and 2s  is equal to 3. In this study 1 0 01.s = , 2 3s =  and r 
= 2. yθ  is yielding rotational angle which is given by 
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where Z is the elastic section modulus of bonded rubber area (= 3 32Dπ  for a circular bearing), σ is nominal 
stress (=P A), and yσ is the yielding stress, which is equal to 3G. 

In the Han-Warn model (see Fig. 1c), the rotational spring is replaced by a series of parallel vertical 
springs. The cross section is discretized into individual springs, which is similar to a fiber-element model. The 
number of springs, n, should be large enough to obtain a converged solution for all axial loads for a given 
bearing. Similar to the Iizuka model, Eq. (7) is used. dM dθ at each step is obtained by 
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At each step, the vertical springs should satisfy 
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where 
jsσ and 

jsε are the stress and strain in the jth vertical spring, respectively. 
jsσ can be determined from 
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where jA  is the area of the jth vertical spring element, 
jsd is the distance between the centre of the jth vertical 

spring and the center of the bearing cross section,x is the distance between the neutral axis and the center of the 
bearing cross section, and sl  is the initial length of vertical spring element which is calculated by  
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The tangential shear stiffness, sdQ ds, is obtained by 
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3. Evaluation of Existing Mechanical Models  

In this study the mechanical models discussed in the previous section, are compared against FEA results for a 
given bearing. The detail of FEA model for three-dimensional circular bearings is available in [5]. Table 1 shows 
the properties of the bearing that is used in this study. This bearing is similar to the bearing tested by Weisman 
and Warn [11]. In this study, the compressible Neo-Hookean hyperelastic material model was used to describe 
the rubber material. This material model is defined by two material constants: the shear modulus G and the bulk 
modulus K. The strain energy function of the compressible Neo-Hookean model is [32],  

 ( ) ( )2

10 1
1

1
3 1W C I J

D
= − + −  (18) 

where 10C = 2G , 1D = 2 K , 1I  is the first reduced invariant (deviatoric part only) of the left Cauchy-Green 
deformation tensor, and J is the elastic volume ratio. The material parameter 1D  is 2×10-6 mm2/N assuming 
incompressible material. The steel material was modeled using a bilinear isotropic material model with Young's 
modulus of 200 GPa and a Poisson’s ratio of 0.3. A post-yield modulus of 2 percent of the initial modulus was 
specified. 

Table 1: Properties of bearings used in this study 

Properties Symbol Unit  
Outside diameter  D mm 152 
Thickness of individual rubber layer t mm 3 
Thickness of individual steel shim ts mm 3 
Number of rubber layers nr - 20 
Shape factor S - 12.67 
Second shape factor S2 - 2.53 
Shear modulus G MPa 0.9 

 

In the FEA model, all nodes of the top end plate were constrained to a point (control node) located at the 
centroid of the end plate. The boundary conditions were assigned to this point. The control node is free to move 
vertically and laterally in one direction and in the case of rotation; this node can rotate in the specified direction. 
Similar to the top end plate, all nodes at the bottom end plate were constrained to a control node. This point is 
restrained in all degrees of freedom except for the case of rotation. The analysis was performed in two stages: 
during the first stage, the axial load but also rotations were imposed gradually until the desired values were 
reached; and in the second stage of the analysis, the horizontal displacement is gradually increased while 
maintaining the axial load and rotation value from the first stage constant. The analysis includes nonlinear 
geometry, large displacements, and large strains. The incremental nonlinear analysis was conducted using an 
updated Lagrangian formulation and the Newton-Raphson iteration method. 

To obtain the critical point, the constant axial force method [11] was used. In this method, which was 
experimentally confirmed by Sanchez et al. [12], the lateral displacement and shear force associated with the 
critical point are determined from the shear force-lateral displacement curve for a given constant axial load, P. In 
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the loading part (FEA model), the axial load was applied first, and then the horizontal displacement was applied 
incrementally until the horizontal stiffness became zero and the shear force reached its maximum value.  
 

In order to extend the Nagarajiah-Ferrell model to account for top support rotation, Eqs. (1) to (4) are 
modified by replacing θ  by tθ θ− . tθ  is the applied rotation at the top end plate, which is positive if the applied 
rotation is counterclockwise. To modify the Iizuka and Han-Warn models, the applied rotation tθ  is included in 
the linear spring properties in the first step. 

3.1 Results under zero rotation of the top surface 

Fig. 2 shows the lateral behavior of the bearing under different average pressure values, p P A= = 5.5, 8.26 and 
11.02 MPa, as predicted using the three mechanical models and the FEA. As can be seen, the Han-Warn model 
results is in good agreement with the FEA results, especially for the common pressure (around 8 MPa ) used in 
practical design. In all three cases, the Nagarajaiah-Ferrell model underpredicts the shear force F, while the 
Iizuka model overpredicts it, compared to the FEA results. A load-displacement curve, like the ones presented in 
Fig. 2, can be used to extract the cru  and crF  values that correspond to crP . From this information, Fig. 3 can be 
generated. The figure shows that the analytical models are in good agreement with the FEA results in terms of 
predicting the critical displacement, while there is a significant difference between the models in estimating the 
critical shear force. Predictions of the Han-Warn model and Iizuka models are close to each other, with the 
Iizuka model giving slighly larger values. Figs. 2 and 3 show that, in general, the Nagarajaiah-Ferrell model 
underestimates the shear force at the critical point, while the Iizuka model overestimates it.   
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Fig. 2: Comparison of shear force-lateral displacement relationships obtained from the analytical models 
(Nagarajiah-Ferrell, Iizuka, and Han-Warn) and the FEA under average pressure of 5.5, 8.26 and 11.02 MPa 

3.2 Results under rotation of the top surface 

Fig. 4 shows the lateral behavior of the bearing under different average pressure values, p = 5.5, 8.26 and 11.02 
MPa, using modified analytical models to account for the effect of rotation, together with FEA results when the 
applied rotation at the top end plate is equal to 0.02 rad (left column) and 0.04 rad (right column). It shows that 
the Han-Warn model is in good agreement with the FEA results for both rotation values (0.02 and 0.04 rad), 
particularly for low and medium pressure values (5.5 and 8.26 MPa). In terms of initial state (force is not equal 
to zero at zero displacement) that shows the effect of rotation, all modified models overestimate the effect of 
rotation, particularly for the large pressure.  
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Fig. 3: Comparison of critical points predicted by the three analytical models (Nagarajiah-Ferrell, Iizuka, and 
Han-Warn) and the FEA  
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Figure 4: Comparison of shear force-lateral displacement relationships obtained using the modified analytical 
models (Nagarajiah-Ferrell, Iizuka, and Han-Warn) and the FEA under average pressure (a) 5.5 (b) 8.26 and (c) 
11.02 MPa, and top rotation of t 0 02.θ = rad (left column) and t 0 04θ = . rad (right column) 
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Figure 5: Comparison of critical points results between the modified analytical models (Nagarajiah-Ferrell, 
Iizuka, and Han-Warn) and Finite Element analysis (t 0 01.θ = , 0.02, 0.03 and 0.04 rad) 

Fig. 5 compares critical points as predicted by the modified analytical models and the FEA under different 
rotation values. Depending on the rotation value and pressure, critical forces vary significantly, but it can be seen 
that the larger value of pressure and rotation using modified analytical models cause larger error compared to the 
FEA results. Unlike the critical force, there is good agreement between the results for critical displacement. Yet, 
the agreement is more notable in lower value of rotation. 

4. Conclusions 

This paper considered three mechanical models, i.e., the Nagarajiah-Ferrell, the Iizuka, and the Han-Warn 
models, for assessing the stability of an elastomeric isolator. The study compared the results obtained using these 
models against FEA results for a given elastomeric isolation bearing, for the case of zero rotation at the top end 
plate and non-zero rotation at the end plates. The following summarizes the most important observation: 
 

1. The Nagarajiah-Ferrell model, regardless of rotation value, predicts lower values of shear force at the 
critical point than the FEA. The relative difference becomes more significant for the bearing under larger 
value of pressure. 

2. The Iizuka model overpredicts the shear force at the critical point.    

3. The Han-Warn model provides better agreement with the FEA.  

4. All models predict the displacement at the critical point with a good agreement with FEA.  

5. All modified models overestimate the effect of rotation, particularly for the large pressure. 
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This study presented results for a given bearing, but to compare the results more comprehensively, more 
bearings, with a range of different properties, need to be analyzed. The authors are in the process of proposing a 
new model aimed at addressing the shortcomings of existing models.   
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