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Abstract 
This paper proposes a new seismic modification methodology for optimal design of multistory frame structures to avoid 
damage and attain a robust response to extreme hazards. The methodology determines added damping devices of optimal 
size at strategic locations and modifies story stiffnesses, by solving a newly formulated constrained optimization problem. 
The objective is to minimize a cost function representing total energy while satisfying the equations of motion and 
allowable interstory drifts for given severe ground motions. The proposed methodology combines the classical Linear 
Quadratic Regulator (LQR), which searches for an optimal gain matrix, with the analysis-redesign procedure of Levy and 
Lavan [1] to produce a Robust Analysis Redesign (RAR) iterative approach. A new algorithm approximates the equivalent 
stiffness to fit the displacement gains. At convergence, the RAR procedure will yield optimal sizing and new topology for 
the designed system.  
The RAR procedure is developed here for shear structures. However, RAR can be utilized for complex structures by 
modeling them first as equivalent shear-type structures having stiffness properties that yield the same maximum interstory 
drifts for the given records. Two numerical examples of shear-type structures are examined. These examples use structures 
already having an “optimal” configuration which are further optimized using the methodology developed herein. In 
addition, a numerical example comprised of a 10-story MRF structure is presented to illustrate the use of the equivalent 
shear structure approach. The results of the exemplified retrofitted MRF structure show great improvements in its dynamic 
response. 
 
Keywords: Earthquake engineering; optimal control; added stiffness and damping; robustness 
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1. Introduction 
During the lifetime of a structure, extreme hazards such as earthquakes may impact the structural system and 
result in damage that endangers human life. Newer approaches which totally avoid damage, or which produce 
robust structures with minimum losses that can be quickly repaired to continue their function were suggested 
after the major earthquakes in New Zealand in 2013. An efficient design and retrofit solution for multistory 
buildings which must withstand seismic loads should mitigate structural vibrations and associated damage. 
Passive energy dissipation devices (dampers) have been well received as effective means of control and 
mitigation of the effects of dynamic loadings caused by strong earthquakes (Constantinou et al. [2]) because of 
their attractive properties, (stable performance during energy dissipation, not requiring external power supply 
and long-term reliability).  

Viscous dampers, in particular, are found to be very efficient and attractive for linear retrofit. They are 
velocity dependent and the forces in the dampers are thus, out of phase with the columns axial loading and 
proven to be reliable. Various procedures for the design of added viscous damping for structures were proposed 
by many researchers (for example, Inaudi et al. [3]; Shen and Soong [4]; Lopez-Garcia [5]; and Levy and Lavan 
[1]). Viscous dampers can control the deformations within desirable limits (Levy and Lavan [1]).  

Where mitigating non-structural components damage is concerned, the accelerations become important 
Weakening of the structure and adding damping devices as suggested by Reinhorn et al. [6] can lower the 
accelerations and limit deformations. Weakening can be achieved by disconnecting some of the moment 
resisting frames, or walls or by adding devices like the adaptive negative stiffness system (ANSS) of Pasala et 
al., [7]). The negative stiffness device (NSD), which is basically a pre-compressed spring placed vertically 
between the two chevron braces (Sarlis et al. [8]), reduces the stiffness of the structure to almost nil, simulating 
an “apparent” yielding system. When coupled with passive viscous dampers it can reduce both accelerations and 
deformations.  

Various procedures can be found in the literature for seismic design and retrofit of multistory structures by 
changing their damping and stiffness coefficients. Gluck et al [9] developed a comprehensive procedure based 
on the well-known Linear Quadratic Regulator (LQR) which handles changes in stiffness and damping to obtain 
an optimal retrofit solution. Nakamura and Tsuji [10], Takewaki [11] and others followed suit and more recent 
work is that of Cimellaro et al. [12]. Most of these methodologies will usually require mathematics of stochastic 
processes, optimization methods, and/or variational mathematics—tools, not that familiar to the practicing 
engineer.  

Analysis-redesign procedures which are based on limiting the desired maximum response may be used 
with time history analyses or design spectra to provide more suitable solutions. An analysis-redesign 
methodology that was proposed by Levy and Lavan [1] can distribute and size viscous dampers optimally. This 
paper proposes a methodology that combines the classical LQR which searches for an optimal gain matrix with 
the analysis-redesign procedure of Levy and Lavan [1] into a Robust Analysis Redesign (RAR) iterative 
approach. A new algorithm approximates the equivalent stiffness to fit the displacement gain. At convergence 
RAR procedure will yield an optimal sizing and topology of the system. 

The RAR procedure is developed here for shear structures. However, RAR can be utilized for complex 
structures by modeling them first as equivalent shear-type structures having stiffness properties that yield the 
same maximum interstory drifts (for a given ensemble of ground motion records) and then applying the RAR 
procedure. 

2. Problem Formulation 
The problem at hand is formulated as an optimization problem where the objective is to mitigate story 

displacements and velocities, while minimizing the added transmitted force so as to attain maximum structural 
robustness. In addition, interstory drifts should be limited to allowable values as prescribed by seismic design 
standards.  
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The optimization problem is comprised of the following cost function under the constraints of dynamic 
equilibrium equations and allowable interstory drifts as:  

 

 

min∆𝐟T[0,tf] �∫ 𝐱(t)T𝐐1𝐱(t) + 𝐱̇(t)T𝐐2𝐱̇(t) + ∆𝐟T(t)T∆𝐟T(t)dttf
0 �

s. t.
𝐌𝐱̈(t) + 𝐟T

total(t) = −𝐌𝛊ag(t) 
𝐟T
total(t) = 𝐟T(t) +  ∆𝐟T(t)

𝐟T(t) = 𝐊 𝐱(t) + 𝐂 𝐱̇(t)
∆𝐟T(t) = ∆𝐊 𝐱(t) + ∆𝐂 𝐱̇(t)
maxi(maxt(|di(t)|)) ≤ dalli ⎭

⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

∀𝐚g(t)  (1) 

Here 𝐟Ttotal(t) is the total transmitted force vector where 𝐟T(t) is the initial transmitted force vector which can be 
written as 𝐟T(t) = 𝐊 𝐱(t) + 𝐂 𝐱̇(t) and ∆𝐟T(t) is the added transmitted force vector and is presented as ∆𝐟T(t) =
∆𝐊 𝐱(t) + ∆𝐂 𝐱̇(t). The matrices 𝐊 and 𝐂 are the initial stiffness and inherent damping matrices respectively, ∆𝐊 
and ∆𝐂 are the added stiffness and supplemental damping matrices respectively, 𝐱(t) is the displacements vector 
and 𝐱̇(t) is the velocities vector. tf is the duration time of seismic vibrations, t is the time variable, 𝐌 is the mass 
matrix of the structure, 𝐱̈(t) is the story accelerations vector, 𝐚g(t) is the ground acceleration, 𝛊 is the influence 
vector of ground acceleration, di(t) is the drift of the ith story in time and dalli is the allowable drift for the ith 
story. The matrices 𝐐1 and 𝐐2 are diagonal and are assigned to set the relative importance between 
displacements, velocities and added transmitted force (referred to as weighting matrices). Assigning coefficients 
of the weighting matrices should lead to least changes (adding or reducing) of stiffness and total damping in the 
retrofitted structure while minimizing the maximum interstory drifts. 

In the proposed formulation the changes in stiffness and damping are emphasized so as to minimize the 
newly proposed cost function, which includes the state variables and the transmitted force. This control 
formulation differs from the usual LQR formulation in that two weighting matrices are used for the state 
variables (one for displacements and another for velocities) and with the weighting matrix for the transmitted 
forces taken as an identity matrix. Both formulations lead to Riccati’s equation. However, the newly proposed 
cost function is advantageous since it enables the flexibility of assigning importance factors to stiffness and 
damping and thus caters to the structural robustness needs. 

Solution of the optimal problem of Eq. (1) is obtained using a robust analysis-redesign methodology that 
is described herein. The methodology features the continuous time Linear Quadratic Regulator (LQR) 
formulation of optimal control for the assessment of the structural system variables in the form of displacement 
and velocity related gain matrices. A novel approach for assessing changes in stiffness uses the displacement 
related gain matrix and the iterative analysis-redesign scheme of Levy and Lavan [2006] that was originally 
applied to optimal sizing and location of viscous dampers. 

3. Methodology 
3.1 Continuous Time LQR Solution Algorithm 

The LQR cost function may be regarded as a special case of an optimization problem where the story 
displacements and velocities are optimized in time, by calculating the added\reduced stiffness and damping of a 
shear structure (i.e. optimal control gain), subject to the physical equations of motion. 

To solve the optimization problem in Eq. (1), the continuous time LQR optimization problem is 
introduced for the case of stochastic noise with full state information feedback: 

 min𝐮[0,tf] E{J} = min𝐮[0,tf] E �∫ [𝐳T(t)𝐐𝐳(t) + 𝐮T(t)𝐑𝐮(t)]dttf
0 �

s. t.  𝐳̇(t) = 𝐀𝐳(t) + 𝐁𝐮(t) + 𝐰(t), 𝐰(t)~𝒩(𝟎,𝐖)
 (2) 
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The LQR optimization problem minimizes the expected value of the cost function “J” subject to the 
differential state equation of the closed-loop system. Here 𝐳(t) is the state vector, 𝐀 is the closed-loop system 
matrix, 𝐮(t) is the control signals vector, 𝐁 is the control-to-state matrix and 𝐰(t) is a Gaussian zero-mean 
white-noise process with intensity matrix (covariance) 𝐖, 𝐐 and 𝐑 are positive semi-definite and positive 
definite matrices respectively, referred to as weighting matrices, whose magnitudes are assigned according to the 
relative importance between 𝐳(t) and 𝐮(t).  

As shown by Anderson and Moore [13] the closed-loop control policy which minimizes the value of the 
cost can be expressed as: 

 𝐮(t) = 𝐆 𝐳(t); 𝐆 = [𝐆𝐱 𝐆𝐱̇];and 𝐆 = −𝐑−1𝐁T𝐏 (3) 
Here 𝐆 is a constant gain matrix and the matrix 𝐏 is called the time-invariant Riccati Matrix, and is used to 
define an optimal control policy (control gain). It is determined by solving the continuous algebraic Riccati 
equation: 

 𝐀T𝐏+ 𝐏𝐀 − 𝐏𝐁𝐑−1𝐁T𝐏+ 𝐐 = 𝟎 (4) 
The optimization problem presented in Eq. 2 is a LQR optimization problem with ground accelerations of 

zero-mean in the time interval [0, tf].  

The control gain sub-matrices that are presented here, 𝐆𝐱 and 𝐆𝐱̇, lead to the changes ∆𝐊 and ∆𝐂 
respectively. However, these sub-matrices are not necessarily symmetric or tri-diagonal and their practical 
implementation within the structure may not be possible. Gluck et al. [9] cater to this difficulty for shear 
structures by using Least Square Approximation (LSA) formulation on the story forces, in drift coordinates to 
attain interstory changes in stiffness and damping. This concept may not lead to equivalence and optimal 
solution in maximum response since none of their solutions associates with dynamic response and maximum 
response limit simultaneously. 

3.2 Approximation for Stiffness Changes 

Developing a new methodology for determining the changes in floor stiffness, ∆ki, is one important goal of this 
paper. The added stiffness matrix ∆𝐊 should have the same optimal attributes as the displacement related gain 
matrix 𝐆𝐱. Since stiffness is the extent to which a structure resists deformation to applied forces, interstory drifts 
are taken as the measure for equivalence. The structure with the stiffness of 𝐊 + 𝐆𝐱 (controlled structure) is 
required to have the same maximum interstory drifts as the shear structure with the stiffness of 𝐊 + ∆𝐊 
(equivalent structure) for the specified seismic records. 

The interstory drifts of the controlled structure, 𝐝con(t), are determined by transforming the floor 
displacements, 𝐱con(t) , using 𝐝con(t) = 𝐓−1 𝐱con(t). The floor displacements are obtained by solving the 
following equation of motion: 

 𝐌𝐱̈con(t) + 𝐂 𝐱̇con(t) + (𝐊 + 𝐆𝐱) 𝐱con(t) = −𝐌𝛊ag(t) for all ag(t) in the active set (5) 

The interstory drifts of the equivalent structure, 𝐝(t), are similarly determined from the floor 
displacements, x(t) , using 𝐝(t) = 𝐓−1 𝐱(t). The floor displacements are obtained by solving the following 
equation of motion:  

 𝐌𝐱̈(t) + 𝐂 𝐱̇(t) + (𝐊 + ∆𝐊) 𝐱(t) = −𝐌𝛊ag(t) for all ag(t)  in the active set (6) 

The controlled structure in Eq. (5) has the mass and inherent damping matrices of the initial shear 
structure 𝐌 and 𝐂 respectively and a stiffness matrix 𝐊 + 𝐆𝐱, whereas the equivalent shear structure in Eq. (6) has 
the same mass and inherent damping matrices as that of the shear structure but a stiffness matrix 𝐊 + ∆𝐊, that is 
yet to be determined. 

When transformed to drift coordinates, the stiffness matrix 𝐊 becomes a diagonal matrix, for shear 
structures and each coefficient, (kd)i, of that diagonal matrix, 𝐊d, defines its corresponding story stiffness. 
Decreasing the story stiffness, will increase the interstory drifts and vice versa. The new story stiffness 
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coefficients are now evaluated according to the ratio of the maximum interstory drifts of the retrofitted shear 
structure and the maximum interstory drifts of the controlled structure: 

 (kd + ∆kd)ik+1 = (kd + ∆kd)ik �
(maxt(|di(t)|))

�maxt��dconi(t)���
�
q
 (7) 

Here q is a convergence parameter. 

3.3 Analysis-Redesign for Supplemental Damping 

Using the LQR solution of Eq. (2) to mitigate story displacements, velocities and the added transmitted force in 
time, does not assure optimal limitations of interstory drifts as dictated by Eq. (1). In addition, the solution is 
obtained for a base excitation of a zero-mean Gaussian white-noise process, which may not be the case for real 
seismic excitations. Combining LQR with an approach for controlling maximum drift response, using ground 
motion records, would derive a retrofit solution for the optimization problem of Eq. (2) which is the aim of this 
work’s methodology. 

Levy and Lavan [2006] suggested an iterative analysis-redesign procedure for controlling maximum 
dynamic response. Their procedure is composed of three main stages. Stage 1 identifies the “active” ground 
motion from a given ensemble of ground motion records. Stage 2 uses an iterative analysis-redesign approach 
with the following recurrence relationship for the redesign of supplemental damping: 

 ∆cdi
k+1 = ∆cdi

k�piik�
q
 (8) 

Here ∆cdi
k is the ith story damper at the kth iteration, piik is the ith story performance index that is defined as the 

ratio of the current maximum interstory drift divided by the allowable interstory drift and q is the convergence 
parameter. Time-history analysis is utilized to calculate the current interstory drift (analysis). In stage 3, the 
maximum response of the damped structure for each of the remaining ground motions in the ensemble is 
separately evaluated using time-history analysis. If the design achieved in stage 2 violates constraints of other 
records in the ensemble, i.e., maxi�piik� > 1.0, the ground motion for which maxi�piik� achieves the largest value 
is added to the active set. Limiting interstory drifts will satisfy the constraints of Eq. (1) which the LQR solution 
formulation may not be able to achieve. It might be worth noting that this procedure is valid for all types of 
frame structures for linear as well as nonlinear analysis. 

3.4 Retrofit Algorithm for Shear Structures 

In this section the LQR solution algorithm of section 3.1 is combined with the iterative procedures of 
sections 3.2 and 3.3 for attaining the added stiffness matrix (∆K) and the supplemental damping matrix (∆C) into 
a robust analysis redesign (RAR) iterative retrofit method for shear structures. The procedure solves, in essence, 
the optimization problem of Eq.(1). Following is a step by step description of the RAR procedure.  

Step 1. Define the physical parameters of the shear structure (K, C, M) and select the “active” ground 
motion (ag(t)0) from the given ensemble of ground motion records. 

Step 2. Calculate the optimal control gain matrix 𝐆 by solving Ricatti algebraic Eq. (4) and hence the 
displacements-related gain matrix 𝐆𝐱. 

Step 3. Attain the updated story stiffnesses using Eq. (7) that stems from the procedure of section 
“3.2 Approximation for Stiffness Changes” for the records within the active ground motion set. 

Step 4. Derive the added damping for the records within the active ground motion set using the 
analysis-redesign approach using Eq. (8) as described in section 3.3 

Step 5. Check for convergence for two consecutive updated story stiffnesses obtained from step 3. If 
convergence is not met, go to Step 2 with the initial stiffness matrix, K, and updated damping matrix 𝐂 + ∆𝐂. If 
met, continue to step 6. 

Step 6. Perform time-history analysis for all the ground motion records. If constraints on drifts are 
violated, then add the record with largest violation to the active set of ground motions records and go to Step 2. 

5 
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Step 7. Stop. 
The above RAR algorithm calculates the optimal changes in stiffness, ∆K and damping, ∆C for shear 

structures. The change in stiffness can be implemented by adding common braces or special negative devices 
(Sarlis et al. [8]). Changes in damping are easily implemented by simply adding fluid viscous dampers.  

4. Equivalent Shear Structures 
The suggested RAR algorithm applies to shear structure. This section describes a new method for forming an 
equivalent shear structure to multistory frame buildings, and thus, enabling the application of the RAR 
algorithm. The added damping and change in stiffness matrices are then added to the original structure as 
equivalent added matrices. 

The new method proposes to use the procedure of section 3.2 to generate that equivalent shear structure 
that models multistory frame structures.  

The following recurrence relationship is used to obtain the individual shear equivalent story stiffnesses: 

 (kd)ik+1 = (kd)ik �
(maxt(|di(t)|))
�maxt��dOi(t)���

�
q
 (9) 

Where maxt��dOi(t)�� is the maximum interstory drift at ith story of the original structure. When convergence is 
reached the equivalent shear structure will have identical maximum interstory drifts as the original structure for a 
given ensemble of ground motions records. We note that at every iteration, the inherent damping matrix of the 
equivalent structure is recalculated in order to maintain its classic damping proportionality properties and its 
initial damping ratios. 

5. Numerical Examples 
Three structures, taken from the literature, were re-examined using the RAR method: A 6-DOF damped mass-
spring model from Takewaki [11], a 9-story shear-type building from Cimellaro et al. [12] and a 10-story MRF 
structure from Levy et al. [14]. 

All the examples are initially processed according to the analysis-redesign procedure of Levy and Lavan 
[2006] (in section 3.3) for the redistribution of damping coefficients, so as to highlight the efficiency of changing 
stiffness coefficients using RAR. 

5.1 Example 1: 6-DOF damped mass-spring model 

Takewaki [11] applied his optimization method to a 6-DOF damped mass-spring model which is presented in 
Fig 1.  

The Maximum response for his optimal model is attained here using time history analysis for the “LA 
10% in 50 years” earthquake records ("http://nisee.berkeley.edu/data/strong 
_motion/sacsteel/ground_motions.html"). Results are shown in Table 1(A).  

 

Fig. 1 - Scheme of the model in example 1 (Takewaki [11]) 
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The analysis-redesign procedure of section 3.3 is now applied to his optimal structure for the same ground 
motion records and for an allowable s drift of 0.0237𝑚 and q = 2.0 for convergence. Results in Table 1(B) 
show a minor reduction in the sum of damping coefficients (about 2.7%) a small increase in maximum story 
acceleration (about 4.7%), practically no change in maximum force. The analysis-redesign procedure had a 
negligible effect due to initially well distributed damping coefficients. Finally, the RAR algorithm is applied to 
the original optimal structure of Table 1(A) as a starting point.  

It took a total of 14 iteration (10 for one active record; 2 more for the two active records and another 2 for 
the three active records) to reach convergence and the results presented in Table 1, C. 

Comparing the response of the optimal structure in Table1(B), with the results of the RAR methodology 
that are described in Table1(C), a 13% decrease in maximum story acceleration is observed along with a 25% 
decrease in maximum base shear by adding 50% more damping while reducing the story stiffness by 20%. The 
optimal solution in terms of performance requires increase of damping and reduced stiffness, emphasizing the 
tradeoff between stiffness and damping. Another important aspect here is the successful application of the 
methodology. 

5.2. Example 2: 9-story shear structure 

Cimellaro et al. [12] presented a two-step algorithm for retrofitting multistory structures. The first step, 
determines the control gain matrix by applying the LQR algorithm. The second step utilizes the approach of 
Smith et al. [15] for linear-elastic structures where the control gain is considered as the sum of the active and 
passive control gain matrices. The passive gain matrix (which is composed of the added stiffness, damping and 
mass matrices) is determined by minimizing the active control power needed.  

In one of their examples, Cimellaro et al. [12] simplified the 9-story MRF structure of Ohtori et al. [16] 
into a shear-type structure while keeping the story heights of the original MRF and retrofitted it. . Their optimal 
retrofit includes changes in story mass, stiffness and damping. 

The optimal retrofit of Cimellaro et al. [12] is analyzed here for "BO 10% in 50 years" ground motion 
records from PEER database: (http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/bo10in50yr.html) 
with a 2% inherent damping ratio assigned to the first and second modes according to Rayleigh classical 
damping. Table 2(A) shows selected results, for the 1st story the 9th story and relevant intermediate stories in 
terms of maximum interstory drifts, accelerations and shear forces.  

The analysis-redesign procedure by Levy and Lavan [1] (described in section 3.3) for assigning added 
damping coefficients is applied to the optimal structure of Table 2(B) for an allowable interstory drift of 1.04% 
(which is the maximum value attained by Cimellaro et al. [12] optimal design) and convergence parameter 
q = 2. The results which are presented in Table 2(C) show that the total damping was reduced by 90% for 
attaining the same maximum interstory drift. The maximum story accelerations and shear forces, however, 
increased by about 43% and 23% respectively. 

The RAR method is now applied to the optimal structure of Cimellaro et al. [12] using the same steps as in 
previous example with weighting matrices of Q1 = diag{15.0 15.0 15.0 1.0 1.0 1.0 1.0 1.0 1.0}  ∙ 1013 
and Q2 = diag{15.0 15.0 15.0 1.0 1.0 1.0 1.0 1.0 1.0}  ∙ 1013, an allowable drift of 1.04% and a 
convergence parameter of q = 2. Selected results for this configuration are presented in Table 2(C). It is seen 
that the total sum of stiffness coefficients and damping coefficients decreased by 24% and 91%, respectively. In 
addition, the RAR results show roughly the same maximum acceleration and a decrease in maximum base shear 
(by 22%). The RAR algorithm produces a retrofit solution with improved maximum response and less added 
damping.   

7 
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Table 1 –Maximum response of the optimal 6-DOF damped mass-spring model {Example 1} 

Degree of 
Freedom 

Added Damping  
(kN s/m) 

Stiffness  
(kN/m) 

Maximum 
Drift 
(m) 

Maximum 
Acceleration 

(g) 

Maximum 
Force 
(kN) 

A: Optimal 6-DOF model by Takewaki [2000] 
0     2,080 

 1,800 87,500 0.0237   
1    0.9009 1,927 

 1,500 82,500 0.0234   2    0.9341 1,686 

 1,300 72,500 0.0233   3    1.1131 1,379 

 1,220 60,000 0.0230   4    1.3038 964 

 1,220 42,500 0.0227   5    1.5379 422 

 1,300 18,000 0.0234   6    1.7475 0 
SUM 8,340 363,000    

B: Retrofitted 6-DOF model using analysis-redesign procedure by Levy and Lavan [1] 
0     2,074 

 2,420 87,500 0.0237   1    0.9183 1,954 

 1,648 82,500 0.0237   2    0.9349 1,718 

 1,437 72,500 0.0237   3    1.1240 1,423 

 401 60,000 0.0237   
4     1.3342 1,008 

 832 42,500 0.0237   5    1.6060 427 

 1,375 18,000 0.0237   6    1.8299 0 
SUM 8,114 363,000    

C: Retrofitted 6-DOF damped mass-spring model using RAR procedure 
0     1,667 

 3,699 70,360 0.0237   
1    0.8970 1,479 

 3,471 62,420 0.0237   2    0.7937 1,262 

 2,941 53,260 0.0237   3    0.9220 1,104 

 1,490 46,520 0.0237   4    1.0526 879 

 0 41,920 0.0210   5    1.2944 412 

 901 17,400 0.0237   6    1.5222 0 
SUM 12,501 291,880    
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Table 2 –Maximum response of optimal and retrofitted 9-story shear structure {Example 2} 

Floor Number Mass  
(kN s2/m) 

Added 
Damping (kN 

s/m) 

Stiffness 
(kN/m) 

Maximum 
Drift 
(%) 

Maximum 
Acceleration 

(g) 

Maximum 
Shear  
(kN) 

A: Optimal 9-story shear structure by Cimellaro et al. [12] 
Ground      920 

  441 724 36,210 0.46%   
1     0.1063  
⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
4     0.1037 694 
  361 290 16,890 1.04%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8      219 
  350 1,353 18,210 0.30%   

Roof     0.0657 0 
SUM 3,006 14,971 329,510    

B: Retrofitted 9-story shear structure using analysis-redesign procedure by Levy and Lavan [1] 
Ground      1,125 

  441 0 36,210 0.57%   
1     0.1178  
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
4     0.1431  
  361 964 16,890 1.04%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
6       

 336 381 15,680 1.04%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8     0.0606 348 

 350 0 18,210 0.48%   
Roof     0.1012 0 
SUM 3,006 1,349 329,510       

C: Retrofitted 9-story shear structure using RAR procedure 
Ground      709 

  441 0 31,650 0.41%   
1     0.1058  
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
4     0.1249  
  361 1,267 7,460 1.04%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8      203 
  350 0 5,770 0.89%   

Roof     0.0594 0 
SUM 3,006 1,267 245,930    

 

5.3 Example 3: 10 story Moment Resisting Frame Structure 

In this example a 10-story MRF structure previously analyzed by Levy et al. [14] is retrofitted using the 
proposed RAR methodology after its transformation into an equivalent shear structure. For applying the RAR 
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method, the MRF structure is first converted to an equivalent shear structure according to the methodology that 
is described in section 4. 

The 10-story MRF is first analyzed for the strong "SE 10% in 50 years" ground motion records 
(http://nisee.berkeley.edu/data/strong_motion /sacsteel/motions/se10in50yr.html). Their peak maximum 
response is shown in Table 3(A). The inherent damping coefficients were calculated using Rayleigh classical 
damping assuming 2% damping ratio for the first two modes. 

Table 3 –Data and maximum response of original and retrofitted structures {Example 3} 

Floor Number Added Damping (kN 
s/m) 

Maximum 
Drift 
(%) 

Maximum Story 
Acceleration 

(g) 

Maximum Shear  
(kN) 

A: Original 10-story MRF structure by Levy et al. [14] 
Ground    1,544 

  4.66%   
1   0.6330  
⋮ ⋮ ⋮ ⋮ ⋮ 
9    659 

  1.55%   
Roof   1.2498 0 

B: Retrofitted 10-story MRF structure using analysis-redesign procedure by Levy and Lavan [1] 
Ground       491 

  14,803 1.00%     
1     0.6569 864 
⋮ ⋮ ⋮ ⋮ ⋮ 

 2,533 1.00%     
3    0.4008 578 

 4,659 1.00%     
4    0.3642 574 

 932 1.00%     
5    0.3219 562 

 2,160 1.00%     
6    0.2425 595 

 682 1.00%     
⋮ ⋮ ⋮ ⋮ ⋮ 
9    246 

 0 0.60%   
Roof    0.4675 0 
SUM 25,770    

 
Preliminary retrofit is first determined using the analysis-redesign procedure by Levy and Lavan [1] 

(described in section 3.3) applied to the MRF structure for an allowable interstory drift of 1.0% and convergence 
parameter of q=2. The results shown in Table 3(B) present the added damping coefficients and the resulting 
maximum interstory drifts, story accelerations and story shear forces. 

When the RAR method is applied to the equivalent shear structure, using the weighting matrices 
𝐐1 = diag{1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0}  ∙ 109and 
𝐐2 = diag{1.0 1.0 1.0 1.0 1.0 1.0 20.0 25.0 30.0 35.0}  ∙ 109 for an allowable interstory drift 
of 1.0% and convergence parameter of q = 2, changes in added damping and in stiffness are determined (see 
Table 4). The changes obtained by RAR are added to the original MRF structure and the damping and stiffness 
matrices are updated for the suggested improved retrofit.  
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Table 4 -Data and maximum response of retrofitted 10-story MRF using RAR {Example 3} 

Floor Number Added Damping 
(kN s/m) 

Added/Reduced 
Stiffness (kN/m) 

Maximum Drift 
(%) 

Maximum Story 
Acceleration 

(g) 

Maximum 
Shear  
(kN) 

Retrofitted 10-story MRF using RAR procedure 
Ground     504 

  17,582 -8,770 1.00%     
1     0.6809 787 
  0 -1,630 0.87%     
2       0.4531 690 
  1,216 -1,350 1.00%     
3       0.4175 627 
  5,545 -2,420 1.00%     
4       0.3756 608 
  66 -1,120 1.00%     
5       0.3319 552 
  3,287 -1,960 1.00%     
6       0.2677 567 
  907 -1,330 1.00%     
7       0.2368 565 
  0 -150 0.93%     
8       0.2434 438 
  0 150 0.82%     
9       0.3848 242 
  0 290 0.59%     

10       0.4576 0 
SUM 28,603 -18,290       

 

Analysis results for the retrofitted MRF are also shown in Table 4. The results indicate that 
lowering the stiffness by 19.5% (according to the sum of stiffness coefficients in the equivalent shear 
structure) and increasing total added damping by 11% (comparing to the analysis-redesign of Levy and 
Lavan [2006]) a decrease in maximum story shear forces of 8.9% is achieved with roughly the same 
maximum story acceleration for the maximum interstory drift of 1%. 

6. Conclusions 
The proposed seismic retrofit method is aimed towards utilizing, enhancing and combining two design 
methodologies into one practical and robust approach for maximum structural robustness and retrofit of 
multistory frame structures using stiffness changes and added fluid viscous dampers. 

Results of RAR showed superior retrofit results when compared to the other seismic design shear methods 
in terms of maximum response and sum of damping and stiffness coefficients. This is due to a central advantage 
of RAR which is the ability of the designer to “toy” with the weighting matrices so as to control the priorities in 
maximum seismic response and retrofit.  

For the case of moment resisting frames (MRFs), the suggested novel approach requires first a conversion 
to an equivalent shear model before applying the RAR to determine the required stiffness changes and damping. 
Determining the equivalent shear model for the MRF is based on maximum response expressed by equal 
maximum interstory drifts for various ground acceleration records. The approach, proved efficient and 
sufficiently accurate in yielding optimal results for the retrofitted MRF structure. When this approach is 
combined to the RAR it produces structures with better performance by using less additional resources, such as 
stiffness and damping changes. 
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