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Abstract 
A novel approach for the seismic retrofit of linear frame structures is presented and described. Use is made of optimal 
control theory to attain structural changes in stiffness coefficients, changes in mass and supplemental damping. An 
optimization problem that is required to satisfy constraints on maximum total story accelerations and maximum interstory is 
formulated. The general system interconnections paradigm is introduced as a closed-loop control system with a passive 
controller that consists of the structural changes and has simulated feedback on the structural response and seismic 
excitation. The cost function minimizes the H∞ norm of the maximum closed-loop response, single-input single-output 
(SISO) transfer function case. The first-order steepest descent of Apkarian and Noll [1] is introduced, utilized and enhanced 
to solve the optimization problem. A numerical example of a 9-story shear-type building is studied. Optimal changes in 
mass, stiffness and damping that are obtained, show significant improvement in the peak dynamic response. The results 
clearly indicate the efficiency of the proposed methodology that possesses the capability of attaining optimal changes in all 
of the structure’s physical characteristics (mass, stiffness, damping) while adhering to preassigned maximum response 
levels. 
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1. Introduction 
The field of optimal control offers solution procedures for optimizing the performance of a control system 

(typically by minimizing a cost function), subjected to equilibrium and stability of the system. Optimizing 
changes in structural properties, that are considered as the controller gain matrix, and satisfy the equation of 
motion and allowable response constraints; fall within the realm of such problems. Soong [2] addressed the 
minimization of the Linear Quadratic Regulator (LQR) and showed the resemblance between the passive control 
gain to changing the stiffness and damping of a structure. Gluck et al [3] used his solution procedure to develop 
a method which handles simultaneous changes in story stiffness and damping by applying the least squares 
approximation approach to the displacement and velocity related passive gain matrices individually. Agrawal 
and Yang [4] followed suit and introduced an iterative procedure for minimizing the LQR cost function’s 
gradient so as to calculate the optimal passive gain matrix. Their procedure can also apply to changes in story 
stiffness and linear damping. The work of Cimellaro et al. [5] considered mass changes as well. They applied the 
technique of Smith et al. [6] to the LQR gain matrix. 

Other optimization problems deal with the minimization of system norms. The solution procedures for 
these types of problems have also been implemented for upgrading of structures. Baratta et al. [7] showed that 
the squared maximum displacement response of a single-degree-of-freedom (SDOF) structure is bounded by the 
multiplication of the second-norm of the excitation force and the second-norm of the Dirac-impulse response. 
They formulated the parametric response solution for the structure and use “random walk” in order to find the 
optimal solution for free-vibration radial frequency and damping ratio, which are assigned to the structure as the 
passive control gain. In case of multi-degree-of-freedom (MDOF) structures, they use modal analysis and apply 
their procedure to each mode individually. Bai et al. [8] proposed an approach for calculating and assigning 
linear viscous dampers to frame structures that are subjected to harmonic vibrations. They address the H∞ norm 
of the transfer function for the structure (from applied force into velocities) and prove that it has smaller norm 
than the inverse of the symmetric added damping matrix, an inequality that allows them to achieve a required 
H∞ norm from the damped structure and thus, reduce maximum velocity response due to earthquakes. Lin et al. 
[9] suggest imposing a H∞ norm value so as to minimize the entropy of the closed-loop transfer function matrix, 
which bounds the H2 norm of a system. It is explained that minimizing the entropy term would also push down 
the eigenvalues of the transfer function and thus, result in a lower H∞ norm as well. The Langrage multipliers 
are utilized and applied to stability constraints in order to minimize the entropy term and calculate the optimal 
gain matrix which consists of damping and stiffness changes. The above methodologies provide numerical 
examples of shear-type buildings that show in their results improved peak dynamic response (to some extent). 
While this may be the case, they do not impose a constraint on the peak response quantities in their problem 
formulation and solution procedure. 

In this paper, we introduce an approach for upgrading linear frame structures by assigning structural 
changes in mass, damping and stiffness while limiting peak response of total story accelerations and interstory 
drifts. In our formal optimization problem, the proposed objective function is subjected to constraints on the 
peak response quantities. For solving our optimization problems, we utilize and enhance the first-order steepest 
descent algorithm of Apkarian and Noll [1]. 

2. METHODOLOGY 
The following section describes the developed methodology for upgrading linear frame structures by 

containing their peak response to given allowable values through attaining optimal changes in structural 
properties using optimal control theory. A unique control system is proposed and addressed within a formal 
optimization problem 

2.1 Constraint Requirements 
The concern of this paper lies in redistributing the story mass, changing story stiffness and adding linear 

viscous dampers, i.e. the structural changes. The structure is required to satisfy the controlled equation of 
motion: 
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𝐌�̈�(t) + 𝐂�̇�(t) + 𝐊 𝐱(t) = −𝐌𝛊ag(t) + 𝐮(t)
𝐱(0) = 0, �̇�(0) = 0
where:
𝐮(t) = −∆𝐌𝛊ag(t) + 𝐮∆(t)
𝐮∆(t) = −∆𝐌 �̈�(t) − ∆𝐂 �̇�(t) − ∆𝐊 𝐱(t) 

 (1) 

where 𝐌, 𝐂 and 𝐊 are the mass, inherent damping and stiffness matrices of the structure respectively. The 
vectors 𝐱(t), �̇�(t) and �̈�(t) are the relative to ground displacements, velocities and accelerations of the story 
floors (respectively), 𝛊 is the influence vector and ag(t) is the ground motion record. The vector 𝐮(t) contains 
the control forces induced by the structural changes. These structural changes are the supplemental damping, ∆𝐂, 
changes in mass and stiffness matrices, ∆𝐌 and ∆𝐊, having the following form: 

 

∆𝐌 = diag{∆m1, … ,∆mN}
∆𝐂 = 𝐓T∆𝐂d𝐓, ∆𝐂d = diag{∆c1, … ,∆cN}
∆𝐊 = 𝐓T∆𝐊d𝐓, ∆𝐊d = diag{∆k1, … ,∆kN}

𝐓 = �
1
−1 1

⋱ ⋱
−1 1

�

 (2) 

Where 𝐓 is a transformation matrix, from displacements into drifts coordinates, and [∙]T denotes the transpose of 
a matrix. The parameters ∆mn, ∆cn and ∆kn are the assigned changes of mass, damping and stiffness to the nth 
story respectively. The total story accelerations 𝐚tot(t) and interstory drifts 𝛅(t) become: 

 𝐚tot(t) = �̈�(t) + 𝛊ag(t) (3) 

 𝛅(t) = 𝐓 𝐱(t) (4) 

The peak response quantities of the controlled structure are to satisfy the following behavioral constraints: 

 
maxt{|atotn(t)|} /aalln ≤ 1.0
maxt{|δn(t)|} /δalln ≤ 1.0
∀ n = 1, … , N

�∀ag(t) (5) 

Where 𝛅all and 𝐚all are the allowable interstory drifts and total story accelerations vectors. 

2.2. General System Interconnections 

The general system interconnection is a paradigm which defines the transfer function interconnections, within a 
control system of some kind, between the external input/controller input, and the regulated outputs/simulated 
feedback. The scheme in Fig 1 describes the proposed general system interconnection paradigm. 

In Fig 1, 𝐐∆ is the controller (gain matrix), the four partitions 𝐆11(s), 𝐆12(s), 𝐆21(s) and 𝐆22(s) are the 
transfer function matrices that connect the external input vector 𝛚1(s) and the controller’s input 𝛚2(s) to the 
regulated outputs vector 𝐲1(s) and the simulated feedback vector 𝐲2(s). Consequently, their linear connectivity 
is given by: 

 

𝐲1(s) = 𝐆11(s)𝛚1(s) + 𝐆12(s)𝛚2(s)
𝐲2(s) = 𝐆21(s)𝛚1(s) + 𝐆22(s)𝛚2(s)
and:
𝛚2(s) = 𝐐∆ 𝐲2(s)

 (6) 
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Where 𝐆(s) is the generalized plant transfer function matrix. The closed-loop transfer function matrix for 
the general system (𝐂𝐋ω1→y1(s)), which is the linear relation between 𝛚1(s) to 𝐲1(s), is formulated by 
substituting the control law 𝛚2(s) = 𝐐∆ 𝐲2(s) into 𝐲1(s) and 𝐲2(s) terms of Eq. (6) and then substituting the 
new term of 𝐲2(s) into 𝐲1(s) to yield:  

 
𝐲1(s) = 𝐂𝐋ω1→y1(s) 𝛚1(s)
where:
𝐂𝐋ω1→y1(s) = [𝐆11(s) + 𝐆12(s)𝐐∆[𝐈 − 𝐆22(s) 𝐐∆]−1 𝐆21(s)]

 (7) 

The particular transfer function matrix 𝐏(s) of Fig 1 is related to the common transfer matrix 𝐇(s), used 
to solve the equation of motion in its state space representation using the Laplace transform, denoted by ℒ[∙], 
through: 

 

𝐏(s) = 𝚲𝐇(s)
where:
𝚲 = [𝐈 𝟎]
𝐇(s) = (s𝐈 − 𝐀)−1 𝐁

 (8) 

More specifically, for excitation force 𝐅(s) = ℒ[𝐟(t)] the transfer function matrix is 𝐇(s) = (s𝐈 − 𝐀)−1 𝐁 
so that 𝐙(s) = 𝐇(s)𝐅(s) and 𝐳(t) = ℒ−1[𝐙(𝐬)]. The state space representation of the system is defined as: 

 

�̇�(t) = 𝐀 𝐳(t) + 𝐁 𝐟(t)
where:
𝐳(t) = [𝐱(t) �̇�(t)]T;   𝐳(𝟎) = [𝟎 𝟎]T

𝐀 = � 𝟎 𝐈
−𝐌−1𝐊 −𝐌−1𝐂� ;   𝐁 = � 𝟎

𝐌−1� ;  

 (9) 

The external input ω1(s) is scalar and is the ground acceleration ag(t) in the “S” domain. The ground 
acceleration is the excitation force of the system that introduces the force 𝐟(t) so that 𝐟(t) = −𝐌𝛊ag(t). The 
controller, 𝐐∆, receives 𝐲2(s) as negativity feedback of �̈�(t), �̇�(t), 𝐱(t) and 𝛊ag(t) in the “S” domain (i.e. 
s2𝐗(s), s𝐗(s), 𝐗(s) and 𝛊ℒ�ag(t)� respectively). These feedbacks are multiplied by the proposed controller’s 
partitions so that it produces the controller’s input 𝛚2(s) of “−∆𝐌𝛊ag(t)” and 𝐮∆(t) in the “S” domain (i.e. 
−∆𝐌𝛊ℒ�ag(t)� and 𝐔∆(s) respectively). We note that the proposed passive controller 𝐐∆ is unique in that it 
receives feedback on structural response as well as dynamic excitation. The regulated outputs are simply 𝛅(t) 
and 𝐚tot(t) in the “S” domain (i.e ∆(s) and 𝐀tot(s) respectively). 
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Fig 1. The proposed general system interconnections 

Substituting 𝐆11(s), 𝐆12(s), 𝐆21(s), 𝐆22(s), 𝐐∆ and ω1(s) into Eq. (7) yields the following linear 
relations, in the “S” domain, between ℒ�ag(t)� and the response of 𝐀tot(s) and ∆(s): 

 

𝐀tot(s) = s2𝐏(s) �−𝐌𝛊𝐋�ag(t)� + 𝐔(s)� + 𝛊 ℒ�ag(t)�

∆(s) = 𝐓 𝐏(s) �−𝐌𝛊ℒ�ag(t)�+ 𝐔(s)�
where:
𝐔(s) = −∆𝐌𝛊ag(t) + 𝐔∆(s)
𝐔∆(s) = −∆𝐌 s2𝐗(s)− ∆𝐂 s𝐗(s) − ∆𝐊 𝐗(s)
𝐗(s) = 𝐏(s)�−(𝐌 + ∆𝐌)𝛊ℒ�ag(t)��

 (10) 

We note that the terms of Eq. (10) is in essence the Laplace transform of Eq. (1), while considering the 
terms of interstory drifts and total story acceleration (given in Eq. (3) and (4) respectively). Consequently, the 
closed-loop transfer function matrix 𝐂𝐋ω1→y1(s) = 𝐂𝐋L�ag(t)�→[𝐀tot(s) ; ∆(s)]T(s), which will be henceforth 
denoted as 𝐂𝐋(s), takes the explicit form of: 

 𝐂𝐋(s) = �
−s2 𝐏(s)�(𝐌 + ∆𝐌) 𝛊 + (∆𝐌 s2 + ∆𝐂 s + ∆𝐊)𝐏(s)𝐌𝛊�+ 𝛊
−𝐓 𝐏(s)�(𝐌+ ∆𝐌) 𝛊 + (∆𝐌 s2 + ∆𝐂 s + ∆𝐊)𝐏(s)𝐌𝛊�

� (11) 

In the formulation of the formal optimization problem below, the H∞ norm of 𝐂𝐋(s) will be taken as the 
objective function and the solution of that problem will yield the optimal design variables ∆mn, ∆cn and ∆knthat 
construct ∆𝐌, ∆𝐂 and ∆𝐊 according to Eq. (2). 

2.3 Formal Optimization Problem  

The seismic upgrade in this paper involves in calculating the components of ∆𝐌, ∆𝐂 and ∆𝐊 in order to attain 
peak response lower than allowable quantities of total story accelerations and interstory drifts. This is regarded 
by the constraints of our proposed optimization problem: 

5 
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minimize
∆mn,∆cn,∆kn

�J = maxi∈[1,…,2N]{γi‖CLi(s)‖∞ }�
s. t
maxt{|atotn(t)|} /aalln ≤ 1.0
maxt{|δn(t)|} /δalln ≤ 1.0
∀ n = 1, … , N ⎭

⎪
⎬

⎪
⎫

∀ag(t) (12) 

The first “N” responses (CLi(s): i = 1, … , N) are the total story accelerations and the next “N” responses 
(CLi(s): i = N + 1, … ,2N) are interstory drifts. The value for ‖CLi(s)‖∞, is the “peak response” factor for the ith 
dynamic response and is calculated by substituting s = jω (“j” denotes imaginary number) into the ith term of 
𝐂𝐋(s), from Eq. (11), and searching for the largest absolute value (of complex number): 

 ‖CLi(s)‖∞  = sup
ω∈[0,∞].

{|CLi(jω)|} ∀ i = 1, … ,2N (13) 

The objective function is, actually, minimizing the maximal peak harmonic response for s = jω in the “S” 
domain (resonant response). Now, since CLi(s) is a single-input single-output (SISO) scalar transfer function, 
the peak response is equal to its H∞ norm. The value for ‖CLi(s)‖∞  indicates the maximum response possible 
due to ag(t), that is: 

 
max
t

{|atotn(t)|}/max
t
��ag(t)�� ≤ ‖CLn(s)‖∞ 

max
t

{|δn(t)|}/max
t
��ag(t)�� ≤ ‖CLN+n(s)‖∞  

∀ n = 1, … , N

�∀ag(t) (14) 

it is worth noting that the value of the objective function J will always satisfy the following ratios: 

 
max
t

{|atotn(t)|}/max
t
��ag(t)�� ≤ J/γn

max
t

{|δn(t)|}/max
t
��ag(t)�� ≤ J/γN+n 

∀ n = 1, … , N

�∀ag(t) (15) 

where the parameter γi is chosen by the designer to gear to a practical and acceptable engineering solution. 

2.4 Solution of 𝐇∞ Control Problems 

Apkarian and Noll [1] developed a first-order steepest descent algorithm for minimizing the H∞ norm of a 
general closed-loop transfer function matrix. The algorithm applies to systems that can be modified into the first-
order state-space presentation and adopts the iterative approach of the steepest descent method. Consequently, 
the solution converges into a local minimum. 

This paper adopts their algorithm for solving a problem of minimizing the H∞ norm by using a “structured 
controller”. This type of controller has passive gain with defined “free parameters” that are the variables in the 
minimization procedure, where all other variables are kept “fixed”. MATLAB©’s “hinfstruct” function handles 
this type of algorithm and is used herein. 

The algorithm is applied to the objective function of Eq. (12) with 
∆m1, … ,∆mN,∆cn, … ,∆cN,∆k1, … ,∆kN as the free parameters. The algorithm is applied, repeatedly, until the 
total story acceleration and interstory drifts constraints are satisfied. Let the handled response for minimizing the 
objective function have the index “i”, then the generalized plant transfer function for the hinfstruct function is: 

 

𝐆�(s)k = �G
�11(s)k 𝐆�12(s)k
𝐆21(s) 𝐆22(s) �

where:
G�11(s)k = 𝐞i𝐆11(s)
𝐆�12(s)k = 𝐞i𝐆12(s)

 (16) 
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Where k is the iteration index and 𝐞i denotes a vector where all components are zero besides the ith component, 
which equals one. 

The output for the hinfstruct function is the optimal controller 𝐐∆ which consists of the structural changes 
∆𝐌, ∆𝐂 and ∆𝐊. The implementation of the hinfstruct function and our retrofit procedure, for solving Eq. (12), 
are described in the next section. 

2.5 Iterative Procedure for Seismic Upgrade 

The proposed procedure for seismic upgrading of frame structures is summarized herein as a 5-steps iterative 
algorithm: 

Step 1. Determine the matrices 𝐌, 𝐂, 𝐊. 
Assign initial structural changes ∆m1

0, … ,∆mN
0,∆cn0, … ,∆cN0,∆k1

0, … ,∆kN
0. 

Choose the set of ground motion records. 
Define 𝛅all and 𝐚all. 

Step 2. Perform time-history analysis to derive the ith index for which the following ratio is maximal: 

 maxi �
maxt��atoti(t)��

k

aalli
: i = 1, … , N ;  maxt{|δi−N(t)|}k

δalli−N
: i = N + 1, … ,2N� (17) 

If the value is less than 1.0, then stop. Else, proceed to step 3. 

Step 3. Determine the reduced general plant transfer function matrix G�(s)k according to Eq. 
(16) where the components of ei are all zero besides the ith component, which equals one. 
Step 4. Perform H∞ minimization for CLi(s) by applying MATLAB©’s hinfstruct to 𝐆�(s)k to obtain the 
upgraded ∆𝐌, ∆𝐂 and ∆𝐊 from 𝐐∆. 
Step 5. Perform time-history analysis for the upgraded structure, with ∆𝐌k + ∆𝐌, ∆𝐂k + ∆𝐂 and ∆𝐊k +
∆𝐊, to drive the ith index with maximal value. If that value is less than 1.0, then stop. Else, go to the next step 3. 

3. Numerical Example 
The following numerical example reexamines the simplified 9-story shear-type building from Cimellaro et al. 
[9], using the proposed seismic upgrade procedure. Elevation scheme of the building is shown in Fig 1. The 
structure is analyzed here for “BO 10% in 50 years” ground motion records from PEER database: 
(http://nisee.berkeley.edu/data/strong_motion/sacsteel/motions/bo10in50yr.html) with a 2% inherent damping 
ratio assigned to the first and second modes according to Rayleigh classical damping. Table1(A) and Table 1(B) 
show the selected results for their simplified and retrofitted structure respectively. The results are for the 1st story 
the 9th story and relevant intermediate stories in terms of maximum interstory drifts, total story accelerations and 
shear forces.  
The proposed procedure of section 2.5 is applied to the simplified structure in Table1(A). A step by step 
description of its application is presented below. 

Step 1.  Initial structural changes were taken as ∆𝐌0 = 𝟎 𝑘𝑔, ∆𝐂0 = 𝐓T𝐓 ∙ 105 𝑁𝑠𝑒𝑐/𝑚 and ∆𝐊0 =
𝟎 𝑁/𝑚. The allowable interstory drifts and total story acceleration were set as: 

𝐚all = {0.1, 0.1, 0.1,0.1, 0.1, 0.1, 0.1, 0.1, 0.1}𝐓 𝑔
𝛅all = {3.84, 2.77, 2.77,2.77, 2.77, 2.77, 2.77, 2.77, 2.77}𝐓 ∙ 10−2𝑚

 

Step 2.  Time-history analysis is performed for the initial structure by using all “BO 10% in 50 years” 
records. The output with the largest maximum to allowable response ratio is: 

max
t

{|atot4(t)|}0 /aall4 ≅ 2.85 

7 
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Step 3.  The generalized plant transfer function matrix for i = 4, 𝐆�(s)0, is defined according to Eq. (16). 

Step 4.  H∞ minimization is performed for CL4(s). The hinfstruct function is applied to 𝐆�(s)0 to derive the 
optimal controller 𝐐∆. The matrices ∆𝐌, ∆𝐂, ∆𝐊 are extracted from 𝐐∆, to yield: 

∆𝐌 ≅ diag{1.00, 1.00, 1.00,1.00, 0.36, 0.64, 0.25, 0.15, 0.34} ∙ 105 𝑘𝑔
∆𝐂 ≅ 𝐓Tdiag{0, 0, 0,−0.0064,−0.0003, 1.7, 0,0, 0}𝐓 ∙ 107 𝑁𝑠𝑒𝑐/𝑚
∆𝐊 ≅ 𝐓Tdiag{−2.87,−5.26,−4.5,−3.4,−1.5,0,−1.4,−2.35,−0.66}𝐓 ∙ 105 𝑁/𝑚

 

The matrices ∆𝐌, ∆𝐂, ∆𝐊 are then added to the structural changes: ∆𝐌1 = ∆𝐌0 + ∆𝐌, ∆𝐂1 = ∆𝐂0 + ∆𝐂 
and ∆𝐊1 = ∆𝐊0 + ∆𝐊.  

Here, we changed the options of the hinfstruct function so that damping is added only to stories where 
allowable drifts are not satisfied and deducted otherwise. 

Step 5.  Time-history analysis is performed for the upgraded structure by using all “BO 10% in 50 years” 
records. The output with the largest maximum to allowable response ratio is: 

max
t

{|atot4(t)|}0 /aall4 ≅ 2.5 

The value is greater than 1.0. Therefore, the algorithm proceeds to Step 3. 

The current simulation stops after 5 iterations. For comparing the upgraded design with that of the 
simplified structure and to highlight the redistribution of mass in the structure, we scaled the mass, stiffness and 
damping of the upgraded structure by: 

∑ mn
N
n=1

∑ ∆mn
k=4 + mn

N
n=1

= 0.4634 

This scaling ensures an upgraded mass equal to the initial mass and does not change the dynamic 
response. The structural changes ∆𝐌∗, ∆𝐂∗, ∆𝐊∗, after scaling, now become: 

∆𝐌∗ ≅ diag{9, 9, 9,9,−14, 9, 9,9,−49} ∙ 103 𝑘𝑔
∆𝐂∗ ≅ 𝐓Tdiag{0, 0, 0, 0, 5.05, 0, 2.03,0, 0}𝐓 ∙ 106 𝑁𝑠𝑒𝑐/𝑚
∆𝐊∗ ≅ 𝐓Tdiag{−120,−221,−190,−143,−63,−197,−43,−230,−77}𝐓 ∙ 106 𝑁/𝑚

 

The structural coefficients and maximum response, for the 1st story the 9th story and relevant intermediate 
stories of the upgraded structure, are given in Table1(C). It is shown that all maximum responses of the upgraded 
structure satisfy the allowable quantities. The total stiffness coefficients reduced by approximately 80%. On the 
other hand, total damping remained roughly the same, attaining the allowable interstory drift between the 4th and 
5th floors while all the rest having results lower than the allowable. This is mainly due to better distribution of 
damping coefficients. Consequently, weakening of the structure and adding dampers provided lower base-shear 
force (reduction of 75%). The nature of these results is in accordance with the concept of Reinhorn et al. [10], 
where weakening of the structure while adding damping is very effective for reducing accelerations, 
deformations and base-shear simultaneously. The optimal retrofit of Cimellaro et al. [5], in Table 1(B), suggests 
the same concept, but with more than twice the amount of added damping for about the same total stiffness. As 
for the total story accelerations, they are lower than allowable in all stories. 
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Fig. 1 – Elevation scheme of the simplified 9-story shear-type building from Cimellaro et al. [9] 
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Table 1 –Maximum response of optimal and retrofitted 9-story shear-type building 

Floor Number Mass  
(kN s2/m) 

Added 
Damping (kN 

s/m) 

Stiffness 
(kN/m) 

Maximum 
Drift 
(%) 

Maximum 
Acceleration 

(g) 

Maximum 
Shear  
(kN) 

A: Simplified 9-story shear-type building by Cimellaro et al. [9] 
Ground      2,218 

  503.5 906.5 143,480 0.28%   
1     0.1828  
⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
6     0.2309 1,977 
  494.7 391 71,520 0.70%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8      1,130 
  534.1 411 100,020 0.29%   

Roof     0.2172 0 
SUM 4,501 7,725 1,586,660    

B: Retrofitted 9-story shear-type building by Cimellaro et al. [9] 
Ground      920 

  441 724 36,210 0.46%   
1     0.1063  
⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
4     0.1037 694 
  361 290 16,890 1.04%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8      219 
  350 1,353 18,210 0.30%   

Roof     0.0657 0 
SUM 3,006 14,971 329,510    

C: Retrofitted 9-story shear-type building using the proposed retrofit procedure 
Ground      556 

  513 0 22,800 0.44%   
1     0.0935  
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
4     0.0642 327 

 480 5,050 11,990 0.70%   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8      252 
  486 0 22,710 0.28%   

Roof     0.0529 0 
SUM 4,501 7,080 302,930    

 

6. Conclusions 
The current paper presents a new procedure for seismic upgrading of structures so as to satisfy allowable values 
of total accelerations and interstory drifts. Attained optimal changes in story mass, interstory stiffness and added 
damping show the validity of the approach through the results of a numerical example, which addresses a 9-story 
shear-type building. 
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A clear relation between the field optimal control and seismic design is shown. The relation is between the 
proposed objective function of an H∞ norm minimization and the upper bound for the peak seismic responses. 
The H∞ norm minimization is performed to reduce a single seismic response within the structure iteratively, 
until all peak responses are satisfied. The optimum is reached through the solution of a sequence of such SISO 
problems. 

The hinfsturct function of MATLAB© is applied for solving the proposed objective function. In our 
numerical example, we intervened with the free parameters so that damping is only added where interstory drifts 
are not satisfied and reduced otherwise, to result in very fast convergence to the optimum. This intervention led 
to a full allowable drift of 0.7 between the 4th and 5th floors and a full allowable floor acceleration of 0.1g in the 
1st floor to yield a “fully stressed” design (Levy [11]; Levy [12]; Levy and Lavan [13]). 
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