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Abstract 
This paper develops the ‘Damage Analysis Method’ to detect, locate and quantify multiple damages in civil structures. 
Damage extent coefficients are proposed to be used to locate and quantify damaged elements in structures altogether in one 
stage. They are obtained by solving a series of equations simultaneously. These equations are related to the degrees-of-
freedom and to the summation of the product of the changes in frequency responses and stiffness of each element. A 
numerical truss structure is used to test and compare the proposed method with the ‘Two-Stage Method’ presented by Guo 
and Li [17] for different damage cases ranging from single damage to multiple damages. The results demonstrate that the 
proposed method locates and quantifies damages accurately. It also allows structures with multiple damages to be analyzed 
with high accuracy while the Two-Stage Method cannot be performed for all multiple damages scenarios. Moreover, the 
method works in one stage which removes the need for manual analysis and knowledge of the geometry of the structure, 
which are required for the Two-Stage Method. 
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1. Introduction 
Civil structures of the likes of bridges and buildings are the fundamentals of any urban fabric. However, due to 
the increase in population demand as well as the severe environmental conditions the structures are faced to, they 
are in constant degradation, which as a result, increases the risk of catastrophic failures. Also, after the 
occurrence of natural disasters such as earthquakes and tsunamis, these structures are left with severe damages 
which make them prone to failure. Therefore, Structural Health Monitoring (SHM), which aim is to monitor the 
structural condition of structures, is essential for the safety of the society. It allows the authorities to take 
appropriate measures to maintain and replace damaged structural components before more severe damages 
occur, hence increasing the safety and lifetime of these structures. 

 The traditional approach used in SHM consists of labor-intensive visual inspection and several non-
destructive local damage detection methods such as acoustic emission and ultrasound [1]. This approach usually 
requires the damage locations to be known a priori, and accessible for inspections, which makes it not practical 
[2]. Moreover, only damages on or near the surface of the structures can be detected which limits the reliability 
of the traditional approach [3]. As a result, in the past decades, researchers have been active in developing 
methods for global damaged detection which monitor the changes occurring in the vibration properties of the 
structures under consideration [2]. The principle behind this vibration-based approach is that, any change 
occurring in the physical properties (mass, stiffness and damping) of the system due to damage (e.g. cracks and 
lose connections), will alter its vibration properties (natural frequency, mode shape, etc.) and frequency 
responses (displacement, velocity and acceleration). If the change of vibration characteristics is captured, 
damages in the structure may be located and quantified via the processing of the measured data. 

One of the strategies used in the vibration-based approach is to monitor the changes of natural frequency 
which occur as a result of damage [2-7]. Natural frequency can be readily obtained using only a few sensors and 
is not highly affected by the presence of noise, which makes its use attractive in SHM [6]. However, only large 
damages can be detected due to the fact that small damages will not change the natural frequency substantially 
[3]. Also, finding the exact location and severity of damage is not always possible due to the non-uniqueness of 
the natural frequency obtained from different damage scenarios [6]. It is obvious that for a symmetrical structure, 
damage with the same severity at the same symmetrical location will result in the same natural frequency. Also, 
different damage severities at different damage locations can also produce the same natural frequency. 
Moreover, system identification is required to extract the natural frequency from the raw measured data, which 
might introduce errors. Thus, due to these constrains, the use of natural frequency is limited. 

Another strategy proposed in the literature is to use mode shape of the structure and its derivatives as key 
parameters for damage detection [2, 5-10]. As mode shape is sensible to local damages, this feature can therefore 
be used to locate and quantify multiple damages in a structure [6]. However, similar to natural frequency, the 
mode shape needs to be extracted from the raw measurement, which as a result can introduce errors. This 
approach also has the disadvantage that the measured data is easily contaminated by noise which therefore 
decreases its accuracy [1]. In addition, a large amount of sensors are required and the placement of these sensors 
is subject to the expertise of the engineers [6]. Hence, the use of mode shape for damage detection is restricted. 

Both of the strategies mentioned above have the common disadvantage that preprocessing of the raw 
measured data is required to extract these natural frequency and mode shape; therefore, devising an approach 
that uses the raw measurements directly becomes more appealing. In this regard, one approach is to use the 
frequency responses and frequency response function of the structures directly for damage detection [11-16]. 
The use of frequency responses and frequency response function eliminate the computational complexities and 
associated numerical errors in extracting the modal parameters [11]. Thus, the use of this approach in SHM is 
appealing. The ‘Two-Stage Method’ proposed by Guo and Li [17], which is the subject of a comparison with the 
proposed method in this paper, works in two stages using frequency responses. In the Two-Stage Method, a 
damage index is firstly proposed to locate potentially damaged elements, followed by determining the damage 
extent using a reduced system of equations which is related to the degrees-of-freedom (DOFs) of the potentially 
damaged elements. The method performs well for single damaged cases; however, for multiple damaged cases, it 
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requires that the amount of available DOFs is equal to or greater than the number of potentially damaged 
elements. Also, the method works in two stages which makes it less favorable in implementation. 

In this paper, a method to analyze structures with multiple damaged elements using frequency responses is 
proposed. This method detects, locates and quantifies multiple damages in structures accurately, and works for 
cases where the amount of DOFs of the structure is less than the amount of damaged elements. Moreover, it 
works in one stage which makes it advantageous, unlike conventionally been done where two stages of analysis 
are required [17]. 

2. Formulation of Damage Analysis Method 
Consider a structure with n number of DOFs subjected to a forced harmonic excitation. The mathematical model 
representing the motion of the structure can be given by the equation of motion as follows 

 MẌ(t) + CẊ(t) + KX(t) = fejωt (1) 

Where 

M, C and K are the n × n mass, damping and stiffness matrices of the structure, respectively; 

X(t) is the n × 1 displacement response vector of the structure; 

f is the n × 1 amplitude vector of the forced harmonic excitation; 

j is the imaginary unit (= 1− ); 

ω is the angular excitation frequency of the forced harmonic excitation. 

For simplicity, the damping matrix C is neglected. Thus, Eq. (1) becomes 

 MẌ(t) + KX(t) = fejωt (2) 

Structural damage here is referred to as a reduction in the stiffness property of the structure with no 
change in the mass property. Hence, the equation of motion of the structure in its damaged state under the same 
forced harmonic excitation can be given as 

 MẌd(t) + KdXd(t) = fejωt (3) 

Where 

Kd is the n × n stiffness matrix of the damaged structure; 

Xd(t) is the n × 1 displacement response vector of the damaged structure. 

The stiffness matrix and the displacement response vector of the damaged structure can be expanded and 
rewritten as 

 Kd = K - δK (4a) 

 Xd = X - δX (4b) 

Where 

δK represents the small change of the stiffness matrix due to damage; 

δX represents the small change of the displacement response vector due to damage. 
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Substituting Eq. (4) into Eq. (3) and noting Eq. (2) leads to 

 MδẌ(t) + KδX(t) + δKXd(t) = 0 (5) 

Since the input excitation is harmonic, the steady-state output will also be harmonic. Therefore, at steady-
state 

 X(t) = Yejωt (6a) 

 δX(t) = δYejωt (6b) 

 Xd(t) = Ydejωt (6c) 

In which Y, δY and Yd represent the n × 1 steady-state vibration amplitudes of X(t), δX(t) and Xd(t), 
respectively. 

Substituting Eq. (6) into Eq. (5) leads to Eq. (7) which is only valid for a specific excitation frequency ω. 

 (K – ω2M)δY + δKYd = 0 (7) 

Rearranging yields 

 δKYd = (ω2M – K)δY (8) 

In which the left-hand side of the equation has an unknown term δK which represents the change in global 
stiffness of the structure as a result of damage.  This change is due to the reduction in elemental stiffness of all 
the damaged elements, and it can be represented by 

 δK = N
s

E
ss 1

c
=∑ K               (0 ≤ cs ≤ 1) (9) 

Where 

NE is the total number of elements in the structure; 

Ks is the elemental stiffness matrix of the sth element; 

cs is the damage extent coefficient of the sth element with two extreme cases being cs = 0 for no damage and cs = 
1 for fully damaged. 

Substituting Eq. (9) into Eq. (8) yields 

 NE

s 1 s s dc( )
=∑ K Y = (ω2M – K)δY (10) 

Rearranging results into 

 NE

s=1 s s dc∑ K Y = (ω2M – K)δY (11) 

Eq. (11) can be decomposed into n number of equations, with each being expressed as 
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 NE

s= s s p d1 ,c∑ K Y = vp (12) 

 

Where 

Ks,p is the pth row in the elemental stiffness matrix of the sth element; 

vp is the pth row of the n × 1 vector v, where v = (ω2M – K)δY. 

Expanding Eq. (12) yields 

 c1K1,pYd + c2K2,pYd + c3K3,pYd + ··· + cNEKNE,pYd = vp (13) 

Hence, similar to Eq. (13), the system of the n number of equations due to the decomposition of Eq. (11) 
can be expressed as 

 c1K1,1Yd + c2K2,1Yd + c3K3,1Yd + ··· + cNEKNE,1Yd = v1 

 c1K1,2Yd + c2K2,2Yd + c3K3,2Yd + ··· + cNEKNE,2Yd = v2 

 ⁞ 

 c1K1,nYd + c2K2,nYd + c3K3,nYd + ··· + cNEKNE,nYd = vn (14) 

The system of equation above, which is strictly valid for a specific excitation frequency ω, can be solved 
simultaneously to obtain the damage extent coefficient of each element present in the structure. In order to solve 
all unknown damage extent coefficients, the amount of DOFs in the structure must be equal to or greater than the 
number of elements present in the structure. However, this is not always the case. To tackle this problem, several 
sets of equations may be generated using different excitation frequencies (ω1, ω2, …, ωe), where the subscript e 
represents the amount of excitation frequency used. Following this approach, a new set of equations can be 
formed by selecting NE equations from the generated sets of equations, followed by solving the new set of 
equations simultaneously to obtain the damage extent coefficients. Note that the undamaged elements will have 
damage extent coefficient of zero while the damaged elements will have values between zero and one with one 
representing fully damaged. 

The proposed method allows the damage locations and the damage extent to be obtained altogether in one 
stage. The method is also applicable in detecting damages of a structure, regardless of one or multiple damaged 
elements are present. 

3. Formulation of Two-Stage Method 
Since the incentive of this research is to improve the Two-Stage Method proposed by Guo and Li [17], their 
method is briefly described below for convenience. The Two-Stage Method works in two stages by first locating 
the potentially damaged elements, followed by giving the damaged extent of the damaged elements. 

The mathematical model under consideration is the same as that described in Eq. (1); therefore, 
formulation of damaged elements is exactly the same as that listed in Eqs. (2) - (7). In this method, to locate the 
potentially damaged elements, the left hand-side of Eq. (8) which has an unidentified term δK due to the 
reduction in stiffness caused by damage, is represented by a damage index ɳ so that 

 ɳ = (ω2M – K)δY (15) 
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After determining the potentially damaged elements using Eq. (15), the second phase is to quantify the 
damage. Damage is assumed to be a reduction in global stiffness of the structure which can be given by the 
summation of the product of each elemental stiffness matrix and an associated damage coefficient as 

 δK = NC
j jj=1

δc∑ K                (0 ≤ δcj ≤ 1) (16) 

Where 

Kj is the elemental stiffness matrix of the jth element; 

δcj is the damage coefficient of the jth element; 

NC is the total number of elements in the structure. 

Since only the damaged elements will contribute to the change of the global structural stiffness, Eq. (16) 
becomes 

 δK = ND
r rr=1

δc∑ K                (0 ≤ δcr ≤ 1) (17) 

Where 

Kr is the elemental stiffness matrix of the rth potentially damaged element; 

δcr is the damage coefficient of the rth potentially damaged element; 

ND is the total number of potentially damaged elements in the structure. 

Substituting Eq. (17) into Eq. (8) yields 

 ND
r rr 1 d=

δc( )∑ K Y = (ω2M – K)δY (18) 

Eq. (18) which is an n-dimensional system of equation, can be reduced to an ND-dimensional system of 
equation which is related to the DOFs correlating to the suspected damage elements as 

 ND
rr dr 1

( )δc
=∑ K Y = ( 2ω –M K )δY (19) 

Where 

rK  is the ND × n reduced elemental stiffness matrix of the rth element; 

( 2ω –M K ) is the ND × n reduced matrix of (ω2M – K). 

Eq. (19) can be re-written as 

 βδc = ( 2ω –M K )δY (20) 

In which δc and β represent the damage coefficient vector of the suspected damage elements and a ND × 
ND matrix with each column represented by βri, respectively. Each component of δc represents the individual 
damage extent of each potentially damaged element expressed as δcr, where the subscript r indicates the rth 
potentially damaged element. βri can be expressed as 

6 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

 βri = rK Yd (21) 

Rearranging Eq. (20) and using Eq. (21), the damage coefficient vector can be obtained from 

 δc = β-1( 2ω –M K )δY (22) 

The method works in two stages which makes it less desirable when compared to the Damage Analysis 
Method which performs in only one stage. It is also worth noting that, to quantify the damage extent, the amount 
of available DOFs should be equal to or greater than the amount of potentially damaged elements present in the 
structure. However, this is not always possible and this premise makes the method not feasible for cases where 
many elements are damaged. Manual analysis and knowledge of the geometry of the structure are also required 
to select the potentially damaged elements, which increase the complexity of the method. 

4. Numerical Verification 
4.1 Model description 
A two-dimensional truss structure model shown in Fig. 1 is used to test and compare the Damage Analysis 
Method with the Two-Stage Method. The finite-element model of the structure consists of 31 elements and 28 
DOFs. All the elements are made of the same steel material with Young’s Modulus of 200 GPa, density of 7850 
kg/m3, and cross-sectional area of 0.001 m2. A harmonic excitation force is applied horizontally at the 27th DOF 
to excite the structure. For the Damage Analysis Method, since the number of elements is greater than the 
number of DOFs in the structure, two different excitation forces with frequencies ω1 = 2000 rads/sec and ω2 = 
2450 rads/sec are used to generate two sets of frequency responses. For the Two-Stage Method, only one 
excitation force with ω = 2000 rads/sec is used. The forced harmonic excitation amplitude used in both methods 
is 1N. 

 
Fig. 1 – Two-dimensional truss structure model 

4.2 Case studies 
Damage in the structure is simulated as a reduction in elemental axial stiffness of the members. Three different 
damage cases ranging from single damage to multiple damages are used to test and compare the two methods. 
The first case is a single damage case with element 8 having a reduction in stiffness of 10%. The second case is a 
multiple damage case with elements 10 and 21 having a reduction in stiffness of 30% and 20%, respectively. The 
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last case is an extreme case where all the diagonal elements in the structure have their stiffness being reduced by 
20%. 
4.2.1 Case 1: 10% reduction in stiffness of element 8 
The Two-Stage Method is first applied to the structure. The damage index is presented in Fig. 2, and it can be 
seen that DOFs 15 and 17 are affected. Since only element 8 is related to both affected DOFs, it is concluded 
that only element 8 is potentially damaged. To obtain the damage extent, only one DOF is required and DOF 17 
is selected. By selecting DOF 17 in the damage quantification formula in Eq. (22), the damage extent is 
calculated as δc8 = 0.10 which represents a reduction in stiffness of 10% in member 8. 

 
Fig. 2 – Damage index for case 1 

Now, by using the proposed Damage Analysis Method, the location of the damage elements with their 
damage extent can be obtained directly in one stage. The results are presented in Fig. 3, and it can be seen that 
only element 8 is damaged with a reduction in stiffness of 10% (c8 = 0.10). 

 
Fig. 3 – Damage extent coefficient for case 1 

The true damage element is identified by both methods. The results from both methods show that the 
damage location and extent can all be accurately obtained. Therefore, it can be concluded that both methods 
perform well for the case of a single damage in the structure. However, the Damage Analysis Method requires 
less processing than the Two-Stage Method, which makes it advantageous. Moreover, the Two-Stage Method 
requires manual analysis and knowledge of the geometry of the structure to select the potentially damaged 
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elements depending on which DOFs are affected, which are not required to implement the Damage Analysis 
Method. 

4.2.2 Case 2: 30% and 20% reduction in stiffness of elements 10 and 21, respectively 
For the second case, the damage index obtained from the Two-Stage Method is presented in Fig. 4. It is observed 
that DOFs 19 and 21 are highly affected while DOFs 7, 8, 23 and 24 are slightly affected when compared to 
other DOFs. Since only element 10 correlates to both DOFs 19 and 21, element 11 to DOFs 21 and 23, and 
element 21 to DOFs 7, 8, 23 and 24, these three elements are suspected to be damaged. By selecting DOFs 7, 19 
and 21 into stage 2 of the Two-Stage Method, the damage coefficient formula calculates the damage coefficients 
as δc10 = 0.30, δc11 = 0.00 and δc21 = 0.20. These indicate that element 11 is not damaged while elements 10 and 
21 are damaged with a reduction in stiffness of 30% and 20%, respectively. 

 
Fig. 4 – Damage index for case 2 

For the Damage Analysis Method, the results obtained are presented in Fig. 5. It can be seen from the 
figure that elements 10 and 21 have a reduction in stiffness of 30% and 20%, respectively. 

 
Fig. 5 – Damage extent coefficient for case 2 

From the damage index of the Two-Stage Method, three elements are suspected to be damaged. After 
calculating the damage coefficients, it is found that only elements 10 and 21 are damaged. Element 11 is 
suspected to be damaged because its associated DOFs are also associated to elements 10 and 21 which are 
damaged. However, the damage coefficients are used to validate the exact damage scenario. For multiple 
damages cases, there is a risk that the Two-Stage Stage Method suspects elements that are not damaged to be 
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damaged. Therefore, the damage index cannot be performed alone even for cases where only the damage 
locations are required. The damage coefficients should be calculated to validate the exact damage case. 

For the Damage Analysis Method, the results show that the true damage case is found directly and in one 
stage with high precision. 

4.2.3 Case 3: 20% reduction in stiffness of all diagonal elements 
For case 3, the damage index is given in Fig. 6. It can be seen that all the DOFs are affected and therefore, all the 
elements are suspected to be damaged. Thus, to validate this, the damage quantification formula needs to be 
employed. However, since there are more potentially damaged elements than DOFs available, the damage 
quantification formula cannot be employed to obtain the damage extent of the elements. The damage locations 
without their severities also cannot be obtained as was shown in case 2. As a result, it can be concluded that for 
this case, the Two-Stage Method is not applicable. 

 
Fig. 6 – Damage index for case 3 

For the Damage Analysis Method, the results are presented in Fig. 7. It can be seen that for this extreme 
case, the damage locations and extent are well determined. The elements 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 
30 and 31 are all identified to have identical reduction in stiffness of 20%. 

 
Fig. 7 – Damage extent coefficient for case 3 

From the results obtained, it can be concluded that the Two-Stage Method cannot be employed when the 
amount of suspected damaged elements is more than the available amount of DOFs associated to them. This is 
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because to employ this method, each suspected damaged element should have at least one correlated DOF which 
can only be used for that element. This, therefore, makes this method not practical for damage localization and 
quantification of structures containing multiple damages. 

For the Damage Analysis Method, it can be seen that it performs well for this extreme case due to the fact 
that two excitation forces are applied one at a time to generate two different sets of frequency responses, and 
therefore equations. In general, even if all the elements in the structure are damaged, this method would give 
their damage locations and extent accurately. This is because to apply this method, a minimum of NE number of 
equations is required, and can be generated by applying different excitation forces one at a time to the structure. 

5. Discussion and conclusion 
A method using frequency responses is proposed in this paper to locate and quantify multiple damages in civil 
structures. Damage extent coefficients are proposed to be used to locate and quantify the damaged elements all 
together in one stage. They are obtained by solving a set of equations simultaneously. The method is tested on a 
truss structure and is compared to the method proposed by Guo and Li [17]. From the results obtained, it is found 
that multiple damages in civil structures are well located and quantified using the proposed method. Extreme 
cases where the damaged elements affect all DOFs are also well located and quantified using the proposed 
method which is not able using the Two-Stage Method. The method works in one stage and does not require 
manual analysis and knowledge of the geometry of the structure after the equations have been formulated, which 
are required for the other method to select the potentially damaged elements. This, therefore, eliminates 
confusion in implementing the method. However, it is not always possible to use only one excitation force to 
generate the equations to apply the proposed method. Depending on the structure to be analyzed, the amount of 
different excitation forces required varies. 
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