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Abstract 
Motivated by a need to reduce energy consumption in wireless sensors used for Vibration-based Structural Health 
Monitoring (V-SHM) in seismically prone areas, this paper explores the potential of a recently established sampling 
scheme, termed co-prime sampling, in conjunction with the multiple signal classification (MUSIC) pseudo-spectrum for 
earthquake-induced structural damage detection. Firstly, co-prime sampling is adopted to acquire noise-corrupted response 
acceleration measurements of low-amplitude white-noise excited structures before and after an earthquake, treated as 
stationary stochastic processes in agreement with the operational modal analysis theory. The obtained measurements are 
acquired by two different samplers per recording channel operating at different uniform sampling rates, 1/(N1T) and 1/(N2T), 
where N1 and N2 are co-prime numbers and 1/T is the Nyquist frequency rate used in conventional sampling schemes. The 
adopted sampling strategy accumulates samples at an average sub-Nyquist rate (i.e., 1/(N1T)+1/(N2T) < 1/T), supporting the 
use of arrays of wireless sensors of reduced power consumption associated with data acquisition and wireless transmission 
rate. Secondly, the MUSIC super-resolution spectral estimator is used to identify up to N1N2 structural natural frequencies 
with resolution 1/(N1N2T) from the auto-correlation function of the sub-Nyquist measurements without taking any (typically 
computationally expensive) signal reconstruction step in the time-domain, as required by various recently proposed in the 
literature sub-Nyquist compressive sensing-based approaches for structural health monitoring, while filtering out any 
broadband noise added during data acquisition. It is assumed that within the short pre- and post- earthquake time interval, 
the environmental conditions remain the same and thus any (likely to be slight) change to the natural frequencies detected 
by the proposed approach can be related to damage due to the input seismic action to the structure.  

 The applicability of the proposed approach is numerically illustrated using a white-noise excited linear reinforced 
concrete 3-story frame in a healthy and two damaged states caused by ground motions of increased intensity. The damaged 
states are represented by linear finite element models with reduced effective flexural rigidities at plastic hinge zones, 
computed by non-linear response history analysis and the Takeda hysteretic model. The furnished numerical results 
demonstrate that the considered approach can detect structural damage manifested by changes to the natural frequencies as 
minor as 1% directly from the sub-Nyquist measurements even for additive white noise of SNR=10dB. These results suggest 
that the adopted approach makes a dependable noise-immune structural damage detection technique that can be potentially 
embedded within arrays of wireless sensors for cost-efficient (in terms of data sampling and wireless transmission rates) 
vibration-based structural health monitoring in seismically prone regions. 

Keywords: structural health monitoring; earthquake damage detection; spectral estimation; co-prime sampling; wireless 
sensors 

mailto:bamrungt@g.swu.ac.th


16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

2 

1. Introduction 
Vibration-based structural health monitoring (V-SHM) techniques are commonly used in practice to capture 
changes to the structural properties of critical civil engineering structures caused by long-term 
ageing/degradation under operational conditions [1]. In the past three decades, a plethora of damage detection 
algorithms have been developed and applied in practice within the operational modal analysis (OMA) 
framework, often referred to as output-only modal analysis or system identification [1-3]. These algorithms aim 
to detect changes to the structural dynamic properties (e.g. natural frequencies and mode shapes) by processing 
acceleration response signals of linearly vibrating structures under low-amplitude ambient excitations, 
commonly modeled as broadband white noise stochastic processes. Importantly, some of the OMA algorithms 
and techniques proved useful for rapid condition assessment of instrumented structures in the aftermath of major 
earthquake events [4-6]. In this respect, it has been argued that the widespread installation of V-SHM systems in 
engineering structures (buildings, bridges, etc.) in seismically prone areas may be a way to improve the 
resiliency of communities against the seismic hazard [7]. This consideration can be facilitated by reducing the 
installation and operational cost of such monitoring systems.  

 In this regard, the use of wireless sensors/accelerometers is rather promising to achieve low up-front cost 
and rapid implementations of V-SHM compared to arrays of tethered sensors, especially in large-scale and 
geometrically complex structures [8, 9]. However, wireless sensors require frequent battery replacement (or 
expensive local energy harvesting solutions), which increase maintenance costs, while they pose restrictions to 
the amount of data that can be reliably transmitted due to bandwidth limitations, especially in heavily 
instrumented structures. It has been recently established that both the above disadvantages of wireless sensors for 
V-SHM may be addressed in a cost-effective manner by considering compressive sensing (CS)-based data 
acquisition strategies [10-13] to improve power consumption at sensors by reducing the number of 
measurements acquired (sampled) and transmitted. In particular, CS contemplates that sparse signals (i.e., 
signals with significant energy clustering in a number of discrete bands in some domain) can be faithfully 
represented by non-uniform-in-time random samples acquired at an average sampling rate below the Nyquist 
frequency (sub-Nyquist sampling). In this regime, the minimum average sampling rate is not governed by the 
maximum frequency contained in the signal to be acquired (as in the case of the conventional uniform-in-time 
sampling), but, rather, by the level of signal sparsity. Notably, noiseless response acceleration signals from linear 
vibrating structures tend to be appreciably sparse in the frequency domain, since their Fourier coefficients with 
non-negligible magnitudes are well-localized (clustered) about their natural frequencies (see e.g., [14]). 
Nevertheless, typical CS-based sampling approaches require a computationally demanding signal reconstruction 
step from the compressed (i.e., sub-Nyquist sampled) measurements, while they are sensitive to additive 
broadband noise [15] as the latter reduces their sparsity level. Both these shortcomings of CS-based sampling 
have been effectively addressed by the authors [16-19], by considering signal reconstruction-free sub-Nyquist 
sensing techniques for OMA and damage detection that enjoy noise immunity. Specifically, the adopted 
sampling approach in [16-19] relies on non-uniform in time deterministic multi-coset sampling implemented in a 
single sampling device per measurement channel. This sampling strategy is coupled with spectral estimation 
applied directly to the sub-Nyquist measurements without posing any signal sparsity requirements. 

 In this context, and inspired by recent work in radar applications, this paper couples the deterministic sub-
Nyquist co-prime sampling scheme in [20] with the multiple signal classification (MUSIC) algorithm for 
spectral estimation [21] to infer earthquake-induced structural damage by monitoring shifts to the resonant 
frequencies directly from compressed response acceleration measurements without signal reconstruction in time-
domain. Note that, as in the case of multi-coset sampling in [16-19], the herein adopted sampling scheme does 
not rely on any signal sparsity conditions while it treats the acquired signal as a wide-sense stationary stochastic 
process (random signal), aiming to acquire/sense its auto-correlation function with the aid of the spatial 
smoothing technique detailed in [22]. From a theoretical viewpoint, this treatment is consistent with the OMA 
framework, which assumes stochastic input excitation and linear structural response [1], leading to stochastic 
structural response processes in accordance with the theory of random vibrations. However, co-prime sampling 
is fundamentally different from the multi-coset sampling adopted in [16-19], as it considers two sensors per 
acceleration channel operating at different sub-Nyquist rates and accumulating collectively in time a much 
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smaller number of measurements than a single sensor operating at the Nyquist rate. Notably, the MUSIC 
algorithm has also been considered in the past for earthquake-induced damage detection in building structures 
[6], using only conventional sensors to acquire structural acceleration signals at Nyquist rate. Furthermore, this 
pseudo-spectrum technique has found to outperform conventional FFT-based spectral estimators for V-SHM 
applications [23-25]. This is because MUSIC is a “super resolution” spectral estimator able to capture very small 
changes in resonant frequencies of linear structural response acceleration (random) signals between healthy and 
damaged structural states.  

The effectiveness and applicability of the herein proposed approach is numerically assessed by 
considering simulated acceleration response signals corrupted by different levels of additive white noise, 
originating from a low-amplitude white-noise excited 3-story reinforced concrete frame building before and after 
being exposed to a particular ground motion, pertaining to a healthy and to a potentially damaged state, 
respectively. Two different earthquake intensities are considered through scaling of the input ground motion, 
yielding different levels of structural damage. Special attention is given in modelling the different levels of 
earthquake-induced damage, based on localized stiffness degradation at the formed plastic hinge zones, as this is 
captured by the well-known Takeda hysteretic model in conducting non-linear response history analysis.  

 The remainder of the paper is organized as follows. Section 2 outlines the theory of the adopted co-prime 
sampling method along with the spatial smoothing technique for auto-correlation function estimation, and 
reviews the mathematical details of the MUSIC algorithm. Section 3 furnishes and discusses numerical results 
obtained by processing noise-corrupted response acceleration signals, originating from a 3-story frame building 
subjected to seismic excitations of increased intensity. Finally, Section 4 summarizes concluding remarks. 

2. Theoretical Background 
2.1 Co-prime sampling and auto-correlation estimation of stationary stochastic processes 
Let x(t) be a complex-valued wide-sense stationary band-limited stochastic process (or random signal), 
expressed as a superposition of M sinusoidal functions with frequencies fi, complex amplitudes Ai, and 
uncorrelated random phases ui uniformly distributed in the interval [0, 2π], where i=1,2,…,M. That is,  
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where 1j = − . Co-prime sampling [20, 22] assumes that the signal x(t) is simultaneously acquired by two 
sampling devices, operating at different (sub-Nyquist) sampling rates, 1/(N1T) and 1/(N2T), where N1, N2 are co-
prime numbers (N1 < N2), and 1/T= 2fmax is the Nyquist sampling rate with fmax being the highest frequency 
component in Eq. (1). The signal x(t) is then divided in time blocks of (2N1-1)N2T duration and, within each such 
block, only 2N1+N2-1 samples are retained from a total number of floor{2(N1+N2)-1-N2/N1} acquired 
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where η1[k] and η2[l] are zero-mean complex Gaussian white noise sequences, assumed to have the same power, 
2
ησ . Notably, the noise sequences η1[k] and η2[l] in Eq. (2) are added at the output of the two sampling devices 

and assumed to be uncorrelated with the signals and from each other. In this manner, N2 samples are obtained 
from the first device, which operates at sampling rate 1/(N1T). Similarly, 2N1-1 samples are retrieved from the 
second device with sampling rate 1/(N2T). This choice is not arbitrary; it can be shown [20] that the cross-
difference set of numbers { }21 12S = {0, , 1}, {1, ,, 2 1}kN l N N l Nk− ∈ − ∈ −    contains all possible integers 
within the range [-N1N2, N1N2]. Thus, the cross-correlation function of the sequences x1[k], x2[l], whose support 
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involves all the time-lags included in the set S, can be continuously estimated in the above range of interest. To 
this aim, the sequences in Eq. (2) are first stacked in a vector 1 2(2 1)N N

n
+ −∈y   as in 
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where the superscript “T” denotes column vector, 1 2(2 1)N N
n

+ −∈η   is the vector collecting the noise terms, and 
1 2(2 1)( ) N N

if
+ −∈e   is given by 

1 2 1 2 1 2
T2 2 ( 1) 2 2 (2 1)( ) 1    i i i ij f N T j f N N T j f N T j f N N T

if e e e eπ π π π− − =  e   . (4) 

 Notably, in Eq. (3), the inclusion of the non-negative integer index *n∈  allows for arbitrarily placing 
the co-prime sampling block in time (e.g., for n=0 the time block starts at t=0 and corresponds to the block 
considered in Eq. (2)). Therefore, an arbitrary large number of blocks (and corresponding vectors ny ) can be 
used for co-prime sampling a theoretically infinitely long random signal x(t). The position of each block in time 
depends on the adopted values of n. The autocorrelation matrix of ny  is given as ([22]) 
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in which 1 2 1 2(2 1) (2 1)N N N N+ − × + −∈I   is the identity matrix, the superscript “H” denotes Hermitian matrix 
transposition, and the mathematical expectation operator E{∙} averages over n. In other words, the matrix Ryy in 
Eq. (5) is computed by averaging over all the time blocks considered in sampling, within a Monte Carlo-based 
context.  

Next, following the spatial smoothing technique in [22], the autocorrelation matrix in Eq. (5) is first 
stacked in a column vector, ry=vec(Ryy), with 

2
1 2(2 1) 1N N+ − ×∈yr  . Then, the elements of ry are sorted and 

truncated within the range [-N1N2, N1N2], while the repeated terms are eliminated, so that the integer indices of 
the exponential terms in Eq. (4) are given in increasing order with no repetition. The thus generated reduced 
autocorrelation vector ˆyr  (i.e. sorted and truncated), is subsequently divided into i= 1,2,…, N1N2+1 overlapping 
subarrays, ˆ

iyr , each consisting of (N1N2+1) elements, which are averaged as in  
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to generate the spatially smoothed matrix Rss 1 2 1 2( 1) ( 1)N N N N+ × +∈ . In the following section, this matrix is used as 
input to a specific super-resolution spectral estimator to detect the M frequencies fi , (i= 1,2,…,M), of the 
considered stochastic process x(t).  

2.2 Multiple Signal Classification (MUSIC) algorithm for resonant frequencies estimation 
The Multiple Signal Classification (MUSIC) algorithm [21] is a super-resolution pseudo-spectrum estimation 
method, which relies on the eigenvalue decomposition of autocorrelation matrices estimated by field 
measurements. For the purposes of this study, the MUSIC algorithm is applied to the autocorrelation matrix Rss 

in Eq. (6), which is decomposed as in  
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where the eigenvectors vi are orthonormal, i.e. H 0i j =v v  for i j≠ . The first term in Eq. (7) represents the signal 
sub-space with M eigenvalues 2( )i + ηλ σ , i=1,…,M, and M principal eigenvectors spanning the same subspace 
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with the signal vector in Eq. (4). Likewise, the second term corresponds to the noise sub-space with (N1N2-M) 
identical eigenvalues 2

ησ , and (N1N2-M) eigenvectors.  

 The cost function of the unbiased MUSIC estimator is then given as 
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 The above estimator (pseudo-spectrum) relies on the orthogonality condition between the signal vectors 
and the noise sub-space, that is, 
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to attain, theoretically, infinite values at the locations on the frequency axis where the natural frequencies of the 
considered system lie, i.e. at f=fi. In practical numerical applications, though, involving errors in solving the 
eigenvalue problem and other estimation errors, Eq. (8) takes finite values observing sharp peaks at each fi and 
resulting in a spectrum-like shape. Limitations of the MUSIC algorithm are the a priori knowledge on the 
number of M signal components required, as well as the increased computational demands of the eigenvalue 
decomposition in Eq. (7). Nonetheless, the significance of utilizing the MUSIC algorithm together with the co-
prime sampling strategy and the spatial smoothing technique lies on its capability to capture up to M≤N1N2 
natural frequencies in noisy signals, at the high frequency resolution of 1/(N1N2T), outperforming conventional 
approaches at Nyquist rate that can only retrieve up to (2N1+N2-2) frequencies (see also [22]). 

3. Numerical Application 
3.1 Adopted structure and seismic action 
The planar 3-story single-bay reinforced concrete (RC) frame shown in Fig. 1 is herein considered to illustrate 
the usefulness and applicability of the signal acquisition and processing techniques reviewed in the previous 
section for earthquake-induced structural damage detection. The geometrical properties of the frame along with 
the longitudinal and transverse reinforcement of its beams and columns are also shown in Fig.1. The nominal 
concrete strength is taken equal to 20MPa. The characteristic steel yielding strength is fyk=400MPa for both the 
longitudinal and transverse reinforcement and the steel hardening ratio is taken as fuk/fyk=1.15. In computing the 
axial forces carried by the columns, a gravitational uniform distributed load along the beams equal to 35 kN/m is 
assumed.  

 
Fig. 1 – Configuration details of the adopted RC frame  
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 (a)  (b) 

Fig. 2 – Considered Chuetsu-oki (Japan, 2007) horizontal ground motion component: (a) Time-history, (b) 
Squared amplitude of Fourier spectrum 

 The structure in Fig.1 is then exposed to the horizontal ground motion (GM) shown in Fig.2 and to a 
scaled version of this GM by a factor of 0.5, leading to two different levels of structural damage. Notably, the 
considered (unscaled) GM of Fig.2 was recorded from the “Sanjo Shinbori” station during the Mw=6.8 Chuetsu-
oki earthquake (16.7.2007) that occurred in Japan. It has a peak ground acceleration (PGA) equal to 3.17m/s2 and 
is characterized by high energy in a wide range of frequencies. The two different damaged states of the structure 
in Fig.1 are modelled in a finite element (FE) software, as detailed in the following sub-section. 

3.2 Finite element modeling of earthquake-induced damage  
Non-linear response history analysis (NRHA) is undertaken using the Ruaumoko FE software to quantify 

the structural damage induced to the structure in Fig.1 due to the earthquake excitation in Fig. 2 scaled by a 
factor of 0.5 (damaged state 1) and its unscaled version (damaged state 2). To this aim, a non-linear lumped-
plasticity FE model is developed, based on the material properties, geometry, and detailing of the considered 
structure given in the previous sub-section. This is accomplished by first conducting a section analysis to 
determine the values of the moment capacity- curvature pairs at yielding, My-φy, and at collapse, Mu-φu, at the 
critical (energy dissipation) zones of all the frame members (i.e., ends of all beams and columns in Fig.1). Then, 
the secant flexural rigidity at yielding, EIy=My/φy, corresponding to cracked RC sections at all the critical zones 
are obtained. In this respect, Table 1 reports the average EIy values of the two ends at each frame member. Next, 
the plastic hinge length of all critical zones is estimated by the empirical formula [26]  

min 0.2( 1) ,0.08 0.022
max

0.044

uk
o yk bl

ykpl

yk bl

f L f d
fL

f d

  
− +    =   




, (10) 

where Lo is the shear span taken herein as half the structural member length, dbl is the diameter of the 
longitudinal reinforcement, and fyk, fuk/fuk are the steel strength and strain hardening ratio, respectively, given in 
the previous sub-section. In this study, Eq. (10) yields the value Lpl=0.352m for the critical zones in all beams 
and columns with the exception of the beam at the 3rd story exhibiting plastic zones with Lpl=0.246m at both 
ends.  

Table 1 – Average secant flexural rigidity at yielding, ΕIy, at the ends of the frame structural members of Fig.1 

 
Beams Columns 

1st story 2nd story 3rd story 1st story 2nd story 3rd story 
ΕIy 

[kNm2] 23531 20719 16219 19709 18237 16573 
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 Having obtained the moment capacity-curvature pairs at yielding, My-φy, and at collapse, Mu-φu, as 
detailed above, non-linear rotational springs with moment-curvature curves, M-φ, governed by the Takeda 
hysteretic model [27], are used to capture the behavior of the plastic hinges that may develop at the critical zones 
of the considered frame under seismic excitation. The sections of beams and columns in between the critical 
zones are modelled as linear-elastic with flexural rigidity equal to ΕIy, that is, equal to the secant values at 
yielding given in Table 1.  

NRHA is applied to the developed non-linear FE model for the GM of Fig.2 scaled-down by a factor of 
0.5 and for the original GM (unscaled). For both considered GM intensities, it is observed that all beam members 
yield, while columns remain elastic. In this regard, the inelastic behavior of the considered structure represents 
well the case of a properly detailed RC frame structure for earthquake resistance. To further illustrate this point 
and to demonstrate the impact of scaling-down the considered GM by 0.5 in terms of non-linear response 
behavior, Fig.3 plots the moment-curvature curves at the left plastic hinge on the beam of the 1st story, for the 
two damaged states considered. Notably, the maximum curvature ductility in Fig. 3(a) is close to unity (i.e., 
μφ=1.45) associated with a very small structural damage near yield. From Fig. 3, it is readily observed that 
maximum stiffness degradation occurs at the maximum curvature ductility characterized by an effective flexural 
rigidity, EIeff (slope of red dashed lines in Fig.3), smaller than the secant flexural rigidity at yielding, EIy (slope 
of green dashed lines in Fig.3, also reported in Table 1). In this regard, the average ratio EIeff/EIy (flexural 
stiffness reduction factor) at the critical zones is herein considered to represent local earthquake-induced damage 
related to stiffness degradation as captured by the Takeda hysteretic model (which, however, does not take into 
account the strength deterioration and pinching effects due to cyclic loading). Table 2 presents the thus defined 
stiffness reduction factors for the two considered damaged states, which yield smaller values within the second 
case pertaining to a seismic event of increased intensity. As expected, the increased severity of the second 
damage state reflects on lower values of stiffness reduction factors for the beams, while columns remain 
practically linear.   
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Fig. 3 – Moment-curvature (M-φ) hysteretic curves at the left plastic hinge of the 1st story beam for (a) damage 
state 1 and (b) damage state 2. 

Table 2 – Flexural rigidity reduction factor (EIeff/EIy) at critical member zones of the structure in Fig.1 for the 
two different damage states considered due to different seismic intensity excitation  

 
Beams  Columns 

1st story 2nd story 3rd story 1st story 2nd story 3rd story 
Damaged state 1 0.71 0.53 0.46 1.00 1.00 1.00 
Damaged state 2  0.21 0.15 0.17 1.00 1.00 1.00 

 
The reduction factors of Table 2, obtained from NRHA as detailed above, are used to model earthquake-

induced structural damage to the structure of Fig.1 due to the two different levels of seismic excitation adopted. 
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Specifically, two equivalent linear FE models are defined, corresponding to the two different damage states, in 
which the earthquake-induced damage is represented by means of the flexural stiffness reduction factors of 
Table 2. In particular, the latter are assigned to linear beam elements of length Lpl at the considered plastic hinge 
zones, while the remaining non-critical frame members exhibit the flexural rigidities in Table 1. Notably, this 
modelling of local structural damage is deemed more realistic compared to the arbitrary reductions of floor 
stiffness (i.e., along the whole length of structural members), commonly considered in the relevant literature [25, 
28, 29]. Further, it is assumed that the pre-damage/“healthy” state of the considered structure (before the seismic 
event) is available and is modelled by a linear FE model with the secant flexural rigidities at yield presented in 
Table 1, which are assigned to the full length of structural members. Moreover, it is assumed that environmental 
conditions (e.g., temperature, humidity, etc.), whose fluctuations may influence the structural dynamic properties 
extracted from standard OMA techniques, are the same before and after the seismic event. Thus, in this 
particular study, any potential change to the modal properties of the considered structure is only associated with 
the seismic action. The latter assumption is reasonable given the small duration of a typical earthquake and the 
fact that a power-efficient V-SHM system is installed to the structure supported by sensors sampling at a sub-
Nyquist rate, allowing for more frequent data acquisition and processing.  

3.3 System identification and damage detection using co-prime sampling and the MUSIC spectrum 
Linear response history analyses (LRHA) are undertaken for the three FE models defined in the previous sub-
section (healthy plus two damaged states), which are subjected to the same low amplitude white noise base 
excitation of 80s duration. A time discretization step of 0.01s is taken corresponding to a Nyquist frequency of 
50Hz. The considered excitation models ambient wide-band noise input under operational conditions. A critical 
damping ratio of 5% for all modes of vibration is assumed in the analysis. Horizontal response acceleration 
signals at all floor levels are recorded with a sampling rate of 100Hz (i.e., 8000 Nyquist measurements per 
signal) and stored. They are treated as noise-free structural response acceleration time-histories due to ambient 
noise, field-recorded by sensors located at each floor. Further, these response signals are contaminated with 
additive Gaussian white noise at three different signal-to-noise ratios (SNRs): 1020dB (practically noise-free 
case), 30dB, and 10dB.  

 The thus obtained discrete-time noisy response acceleration signals from the healthy and the two damaged 
states are compressively sensed using the co-prime sampling strategy reviewed in sub-section 2.1. The 
underlying assumption is that two deployed samplers per recording location are acquiring uniform in time 
samples of the same signal. Their sampling rates are defined through the co-prime numbers N1=7 and N2=11 and 
are equal to 1/(7T) and 1/(11T), where 1/T= 100Hz is the Nyquist rate. Therefore, the two co-prime samplers 
accumulate measurements at rate 1/(7T) + 1/(11T) samples per second, which is about 76.6% lower than the 
Nyquist rate. Further, the assumed co-prime numbers define the cross-difference set S={11 l-7 k, k∈[0,10], 
l∈[1,13]}, which includes all discrete time lags within the support [-77, 77] of the cross-correlation function 
between the measurements of the two sensors (see also section 2.1). In this study, 492 time blocks are considered 
in computing the autocorrelation matrix in Eq. (5). Each block contains (2N1-1)×N2=143 Nyquist samples from 
which only 2N1+N2-1= 24 samples are taken to populate the Rxx 24 24×∈ matrix. It is noted that a certain level 
of overlapping between the considered time blocks occurs, given that the structural response acceleration signals 
are only 8000 Nyquist samples long. However, under the wide-sense stationary assumption and implied 
ergodicity in the data, this overlapping does not affect the obtained numerical results. Next, the spatially 
smoothing technique in [22] is employed to generate the semi-positive correlation matrix Rss 78 78×∈  in Eq. (6) 
directly from the coprime-sampled (compressed) measurements. Finally, the MUSIC algorithm reviewed in sub-
section 2.2 is applied, by first considering the eigenvalue decomposition of the spatially smoothed matrix Rss in 
Eq. (7). Next, the MUSIC estimator in Eq. (8) is evaluated, based on the assumption of M=3 degrees of freedom 
being present in the acceleration response signals of interest.  

Compared to traditional Discrete Fourier Transform (DFT) based spectral estimators, the MUSIC 
algorithm yields a pseudo-spectrum with sharp peaks corresponding to the natural frequencies of the white-noise 
excited 3-story frame (following standard OMA and linear random vibrations considerations), while filtering out 
additive broadband noise. As an example aiming at system identification, Fig. 4 plots the conventional 
periodograms (DFT-based spectral estimators) of Nyquist sampled response acceleration signals recorded at all 
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floors of the healthy 3-story white-noise excited structure for the extreme additive noise level of SNR=10dB, 
together with MUSIC pseudo-spectra. The latter spectra are obtained from both Nyquist sampled signals (red 
broken line) and compressively sensed signals (solid blue line) using the approach detailed in section 2. All 
spectra are normalized to their peak amplitude to facilitate a comparison. It is seen that it is not possible to 
extract the natural frequencies of the structure from the periodogram of the considered extremely noisy signals 
sampled at the Nyquist rate. However, the MUSIC pseudo-spectrum estimated directly from the co-prime 
sampled signals (using less than 76% measurements from the sub-Nyquist rate) can be readily used to detect the 
resonant natural frequencies of the structure with high resolution, even for this extreme noise level. More 
importantly, it is found that the MUSIC pseudo-spectrum derived from the Nyquist and the sub-Nyquist sampled 
signals practically coincide in this case. Thus, the signal information pertaining to the natural frequencies of the 
system is not lost due to a more than 76% signal compression at acquisition (sub-Nyquist sampling).  
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Fig. 4 – Spectrum estimation from noisy acceleration response signals with SNR=10dB at (a) the first, (b) 
second, and (c) third floor of the structure in Fig.1 (healthy state) subject to 80s duration white noise base 

excitation 

 Having demonstrated numerically the capability of the MUSIC spectrum to identify structural resonant 
frequencies from the compressively sensed signals buried in noise, structural damage detection is next pursued 
based on the shifts of the natural frequencies between the healthy state of the structure in Fig.1, and the two 
damaged states due to different levels of GM excitation, as detailed in previous sub-sections. For illustration, 
Figs.5 and 6 plot the MUSIC spectra obtained by co-prime sampled measurements for damaged states 1 and 2, 
respectively, at all three floors (recording locations). The MUSIC spectra of co-prime sampled measurements 
from the healthy state are superposed in all panels of Figs. 5 and 6. In all plots, a shift of the natural frequencies 
towards smaller values (more flexible structure) is evident indicating structural damage. Apparently, these shifts 
are relatively much smaller for the damage state 1 (i.e., lighter damage due to the scaled-down input GM), 
rendering the damage detection problem as a more challenging task. It is further important to note that in each 
panel of Figs.5 and 6 only two out of the expected three structural natural frequencies are detected. Specifically, 
the MUSIC spectra at the first floor do not capture the first (fundamental) natural frequency, while the spectra at 
the 2nd and the 3rd floor do not capture the highest (third) natural frequency. In this regard, the three natural 
frequencies, for each of the three different FE models considered, are estimated by averaging the natural 
frequency values obtained from the MUSIC spectra across all three floors. Tables 3 and 4 report the thus 
estimated three natural frequencies (i.e., averaged over the three floors) for the different FE models and for three 
different SNR levels i.e. 1020dB (practically noise-free case), 30dB, and 10dB. The “exact” natural frequencies 
obtained from standard modal analysis in Ruaumoko are also reported. It is seen that the MUSIC algorithm 
coupled with co-prime sampling can retrieve the underlying resonant frequencies of the adopted frame in the 
three considered structural states (i.e., one healthy and two damage states, respectively), with a small error of 1-
5% with respect to the exact solution. More importantly, the furnished numerical data show that the proposed 
methodology is capable to infer earthquake-induced structural damage from small changes to the natural 
frequencies without being affected by the noise level. This is verified by the fact that the differences of the 
natural frequencies between the healthy and damaged states, as detected by the MUSIC spectra from the co-
prime sampled measurements and as computed from the exact values, are almost the same within the wide range 
of SNRs considered (see also the percentage error in Tables 3 and 4).  
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Fig. 5 – MUSIC pseudo-spectra with co-prime sampling of noisy acceleration response signals with SNR=10dB 
at (a) the first, (b) second, and (c) third floor for the healthy and the damaged state 1 structure in Fig.1  
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Fig. 6 – MUSIC pseudo-spectra with co-prime sampling of noisy acceleration response signals with SNR=10dB 
at (a) the first, (b) second, and (c) third floor for the healthy and the damaged state 2 structure in Fig.1 

 

Table 3 – Assessment of MUSIC spectra from co-prime sampled noisy measurements for damage detection 
based on structural natural frequency shifts: damage state 1 

SNR 
[dB] 

 f1 [Hz] error f2 [Hz] error f3 [Hz] error 
state healthy Damaged [%] healthy Damaged [%] healthy damaged [%] 

∞ exact 1.51 1.40 7% 4.96 4.62 7% 9.68 9.46 2% 
1020 

MUSIC 
1.56 1.44 8% 4.97 4.67 6% 9.69 9.76 1% 

30 1.56 1.43 8% 4.97 4.67 6% 9.68 9.75 1% 
10 1.56 1.43 8% 4.96 4.66 6% 9.58 9.74 2% 

 

Table 4 – Assessment of MUSIC spectra from co-prime sampled noisy measurements for damage detection 
based on structural natural frequency shifts: damage state 2 

SNR 
[dB] 

 f1 [Hz] error f2 [Hz] error f3 [Hz] error 
state healthy damaged [%] healthy damaged [%] healthy damaged [%] 

∞ exact 1.51 1.07 29% 4.96 3.97 20% 9.68 9.09 6% 
1020 

MUSIC 
1.56 1.13 27% 4.97 3.98 20% 9.69 9.38 3% 

30 1.56 1.13 28% 4.97 3.98 20% 9.68 9.36 3% 
10 1.56 1.13 28% 4.96 3.97 20% 9.58 9.21 4% 
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4. Concluding Remarks 
A novel earthquake-induced structural damage detection approach was proposed, based on changes to the 
structural natural frequencies, before and after a seismic event, identified from low amplitude structural response 
acceleration signals within an operational modal analysis framework. It is assumed that within this short time 
interval (i.e., pre- and post- earthquake), the environmental conditions remain the same and thus any (likely to be 
slight) change to the natural frequencies is caused by the input seismic action to the structure. The considered 
approach employs a compressive/sub-Nyquist sensing technique (co-prime sampling) to acquire response signal 
measurements, treated as stationary stochastic processes in agreement with the operational modal analysis 
theory, at a much lower average rate than the Nyquist frequency rate currently used in practice for the task. 
Further, the adopted approach relies on the MUSIC super-resolution pseudo-spectrum to identify the structural 
natural frequencies directly from compressive (sub-Nyquist) measurements without taking any (typically 
computationally expensive) signal reconstruction step in the time-domain, as required by recently proposed in 
the literature compressive sensing based approaches for structural health monitoring. Moreover, any additive 
broadband noise during data acquisition does not affect the damage detection capabilities of the proposed 
approach (at least for the noise levels encountered in practical applications) as such kind of noise is filtered out 
by application of the MUSIC spectral estimator. 

The effectiveness and applicability of the approach was numerically evaluated using a white-noise excited 
linear reinforced concrete 3-story frame in a healthy and two damaged states caused by two ground motions of 
increased intensity. The damaged models were simulated with locally reduced effective flexural rigidities (i.e., 
along the plastic hinge zones), computed by non-linear response history analysis and the Takeda hysteretic 
model. The furnished numerical results demonstrate that the considered approach is capable to detect very small 
structural damage directly from the compressed measurements even for high noise levels at SNR=10dB. These 
results suggest that the adopted approach makes a dependable noise-immune structural damage detection 
technique that can be potentially embedded within arrays of wireless sensors for cost-efficient (in terms of data 
sampling and wireless transmission rates) V-SHM in seismically prone regions.  
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