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Abstract 

A non-stationary stochastic averaging/linearization formulation is considered in conjunction with a phenomenological 

stochastic model for pulse-like ground motions (PLGMs) to probe into the response of bilinear hysteretic strain hardening 

oscillators to typical near-source accelerograms with forward-directivity signatures without resorting to non-linear response 

history analysis (NRHA). In particular, the considered stochastic PLGM model is parametrically defined by a non-separable 

non-stationary stochastic process treating the high and the low frequency content of typical PLGMs in a consistent manner 

as a superposition of “bursts” of energy on the time-frequency plane with different amplitude, duration, bandwidth, location 

in time, and location in frequency. Each such burst is represented by a uniformly modulated non-stationary process of the 

separable kind. Further, the adopted stochastic dynamics formulation yields time-varying equivalent linear properties 

(ELPs) which are construed as non-stationary stochastic processes with evolutionary statistics dependent on the time-

evolving intensity and frequency content of the PLGM stochastic excitation. It is numerically demonstrated by considering a 

PLGM stochastic process fitted to a typical fault-normal recorded accelerogram with a single forward-directivity low-

frequency pulse that the ELPs derived by the proposed approach for various different bilinear oscillators are amenable to a 

clear physical interpretation: they can be viewed as instantaneous (time-varying) effective stiffness and viscous damping 

characterizing the time-varying inelastic response level/behavior whose severity is governed by resonance structural 

dynamics phenomena related to the input seismic energy distribution on the time-frequency plane and to the pre-yield 

natural period of the bilinear oscillators. Furthermore, it is verified in the context of Monte Carlo analysis pertaining to an 

ensemble of 250 simulated PLGM records compatible with the adopted PLGM stochastic model that the peak inelastic 

response of bilinear oscillators can be well approximated by the peak response of equivalent linear oscillators defined by 

appropriate statistics of ELPs evaluated at the time instant when the response variance determined by the adopted approach 

is maximized. Overall, the herein reported numerical data illustrates the usefulness and applicability of the proposed 

approach to serve as a potent alternative tool in assessing the seismic vulnerability of yielding structures to PLGMs within 

the performance-based earthquake engineering framework compared to the currently used approaches relying on NRHA. At 

first instance, the herein presented approach can be adopted within a stochastic incremental dynamic analysis context to 

account for the influence of forward-directivity effects to seismic structural response. 

Keywords: stochastic pulse-like seismic ground motion model; non-stationary stastical linearization; non-staionary 

equivalent linear properties; simulation of pulse-like ground motions; bilinear hysteretic oscillator 
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1. Introduction 

Seismological considerations suggest that, under certain conditions, horizontal earthquake ground motions 

(GMs) recorded close to the seismic fault and along the fault normal direction may exhibit one or more long 

period high-amplitude pulse(s) mostly attributed to the so-called forward-directivity effects (e.g., [1,2]). Such 

pulses have been identified and extracted from databanks of near-source recorded GMs using various signal 

processing tools (e.g., [3-5]). Importantly, these low frequency pulses may carry a significant fraction of the total 

GM energy imposing considerable ductility demands to relatively flexible structures having natural periods close 

to the dominant pulse period (e.g., [6-8]). In this regard, significant recent research efforts have been devoted to 

assess the vulnerability of structures to pulse-like ground motions (PLGMs) within a probabilistic performance-

based earthquake engineering context (e.g., [9-11]). This is typically accomplished by conducting nonlinear 

response history analyses (NRHA) in which the seismic input action is represented either by ensembles of 

recorded PLGMs out of the limited number of PLGMs available in GM databanks. Alternatively, artificial 

simulated accelerograms with pulse-like signatures may also be used (e.g., [12]). In the latter case, the high 

frequency content is modelled via standard stochastic models commonly employed to model far-field GMs, 

while the pulses (low frequency content) are modelled by superposing empirical analytically defined 

deterministic functions (waveforms) in the time domain (e.g., [2,13]).  

Herein, an alternative, considerably different, stochastic dynamics approach is proposed to study the 

inelastic response of bilinear hysteretic single-degree-of-freedom (SDOF) oscillators exposed to typical PLGMs 

without conducting NRHA. This is achieved by using a non-stationary stochastic dynamics-based formulation 

[14,15] in conjunction with a recently proposed phenomenological stochastic model which represents the salient 

features of PLGMs [16]. Specifically, the adopted stochastic dynamics formulation couples concepts of the 

classical stochastic averaging technique applied to bilinear hysteretic oscillators with strain hardening [17] with a 

non-stationary statistical linearization approach [18] to derive time-varying equivalent linear properties (ELPs). 

These ELPs can be viewed as non-stationary stochastic processes with evolutionary statistics dependent on the 

input stochastic excitation and, from a theoretical viewpoint, they serve as effective stiffness (or equivalently 

natural frequency) and viscous damping ratio in the definition of an underlying equivalent linear damped SDOF 

system (ELS). Further, the considered stochastic PLGM model is parametrically defined by a non-separable non-

stationary stochastic process treating the high and the low frequency content of typical PLGMs in a consistent 

manner as a superposition of “bursts” of energy on the time-frequency plane with different amplitude, duration, 

bandwidth, location in time, and location in frequency (see also [19,20]).  

The main aim of this work is to numerically verify that the derived ELPs pertaining to bilinear oscillators 

with different properties and exposed to the PLGM model bear a physical significance and can be treated as 

instantaneous (time-varying) stiffness and viscous damping ratio whose values reflect the severity of non-linear 

response at different times during the earthquake excitation. For a typical PLGM input, it is expected that tracing 

in time the inelastic response of relatively flexible bilinear oscillators through these ELPs can serve as a potent 

structural dynamics approach for peak inelastic response prediction. To assess the validity of this argument, a 

Monte Carlo-based analysis is further undertaken herein, in which peak ductility demands are approximated by 

peak linear responses of appropriately defined ELSs through ELP statistics for a large ensemble of simulated 

PLGMs generated as realizations of the underlying PLGM model along the lines in [21,22]. The remainder of 

this paper is structured as follows. Section 2 reviews the adopted stochastic dynamics formulation and discusses 

important mathematical and numerical aspects. Section 3 presents the herein considered PLGM stochastic model 

and describes an efficient simulation strategy for artificial PLGMs. Section 4 applies the proposed approach to 

various bilinear oscillators for a PLGM model fitted to a particular recorded GM with significant forward 

directivity effects and provides comprehensive numerical evidence on the usefulness and applicability of the 

approach. Finally, Section 5 summarizes conclusions and points to future research directions.   

2. Stochastic averaging treatment of bilinear hysteretic oscillators 

Consider a viscously damped quiescent bilinear hysteretic single-degree-of-freedom (SDOF) oscillator with 

mass m, viscous damping constant c, yielding deformation uy, pre-yield stiffness k, and post-yield over pre-yield 
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stiffness ratio a. Its response to a zero-mean non-stationary seismic ground acceleration stochastic process ag(t) 

is governed by the stochastic differential equation given as 

    
    

 
,

2
h

o o g

f u t u t
u t u t a t

m
     . (1) 

In the above equation, u(t) denotes the displacement response of the oscillator relative to the ground motion, ωο= 

(k/m)1/2 is the pre-yield natural frequency, ξο= c/2ωοm is the critical damping ratio and a dot over a symbol 

represents differentiation with respect to time t. Further, the function fh represents the oscillator restoring force 

following a bilinear hysteretic law which can be mathematically written as  

           , 1hf u t u t aku t a kz t   . (2) 

In the above equation z(t) is an auxiliary state variable governed by the following differential equation [23] 

                1 1 1 ,yz t u u t H u t H z t H u t H z t          (3) 

in which H(ν) is the Heaviside step function, assuming the values H(ν)=1 for ν≥0 and H(ν)=1 for ν<0.  

 Focusing on lightly damped bilinear oscillators (e.g. ξ<0.10), it can be assumed that the response process 

u(t) in Eq. (1) exhibits a pseudo-harmonic behavior described by the system of equations [17] 

                  cos ; sinu t A t A t t u t A A t A t t                , (4) 

where the response amplitude process, A(t), and the phase, φ(t), are slowly varying functions in time and, thus, 

they can be treated as constant over one cycle of oscillation. Next, manipulation of the system of Eqs. (4) yields 

    
 

 

2

2 2

2

u t
A t u t

A
  . (5) 

To this end, the classical statistical linearization framework [18] is herein adopted to define a surrogate 

equivalent linear system (ELS) such that the variance of its response displacement process y(t) to the stochastic 

process ag(t) approximates well the response variance u(t) of the hysteretic oscillator considered in Eq. (1). 

Specifically, the governing equation of motion of the ELS reads as    

            2

eq eq gy t A y t A y t a t     , (6) 

which corresponds to a linear damped SDOF oscillator with effective natural frequency and viscous damping 

properties (ELPs) ωeq(A) and βeq(A), respectively. The above ELPs are functions of the time-dependent inelastic 

response amplitude A(t) in Eq. (5) and are expressed as 

  
 

 
 2 2 ; 2

eq eq

eq o eq o o

k A c A
A a A

m m
        . (7) 

The terms keq(A) and ceq(A) appearing in Eq. (7) correspond to the contributions of the hysteretic part of the 

response expressed by the function fh in Eq. (2) to the effective stiffness and viscous damping properties of the 

ELS in Eq. (6). They are given by the expressions [17,18] 

  
 

   
 

 
 

1 1
;eq h eq h

a k a k
k A C A c A S A

A A A

 
   (8) 

where Ch(A) and Sh(A) are obtained in closed-form as  
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, (9) 
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in which cos(Λ)=1-2uy/A. In deriving Eqs. (7) to (9), an error function (difference) between Eqs. (4) and (6), that 

is, between the governing equations of the hysteretic oscillator and of the ELS, has been defined and minimized 

in the mean square sense (see [17,18] for detailed derivations).  

Next, attention is focused on the ELPs ωeq(A) and βeq(A) in Eq. (7) which are treated as non-stationary 

stochastic processes. This consideration is justified by noting that the ELPs are functions of the amplitude A(t) of 

the inelastic response process u(t), which is a non-stationary stochastic process itself. In this regard, the time-

varying statistics of the ELPs, such as the mean value and standard deviation, can be obtained by applying the 

mathematical expectation operator EA[∙] with respect to the process A(t). For instance, the time-varying mean 

values of the ELPs in Eq. (7) are given by the expressions 

        ;eq A eq eq A eqt E A t E A            (10) 

The evaluation of the above expectations requires considering an underlying time-varying probability density 

function (PDF), f(A,t), characterizing the evolutionary statistical attributes of the amplitude process A(t). 

Following [14], it is assumed that A(t) has the time-dependent Rayleigh distribution 

   
 

 

 

 

2

2 2
, exp

2u u

A t A t
f A t

t t 

 
  
 
 

, (11) 

where  2

u t  is the non-stationary variance of the hysteretic response process u(t). The choice of the above PDF 
f(A,t) is motivated by the fact that the non-stationary PDF of the response amplitude of a linear lightly damped 
SDOF oscillator subject to Gaussian white noise excitation follows a time-dependent Rayleigh distribution of the 

form of Eq. (11), observing the property  

  
2

2 2
lim , exp

2t

A A
f A t

 

 
  

 
, (12) 

where 2  is the stationary response variance of the SDOF oscillator [24]. Furthermore, it is shown in [14] that 
the PDF in Eq. (11) is applicable to non-linear oscillators under evolutionary stochastic excitations, as well. By 
adopting the PDF in Eq. (11), the time-varying ELPs in Eq. (7) become functions of the non-stationary variance 
of the bilinear oscillator  2

u t , and, therefore, the governing equation of motion of the ELS in Eq. (6) becomes 

              2 2 2 .eq u eq u gy t t y t t y t a t        (13) 

Furthermore, a combination of deterministic and stochastic averaging yields the following first order stochastic 

differential equation for the bilinear hysteretic response amplitude (e.g. [14]) 

        1 2, ,A t K A t K A t w t  , (14)  

where  

       
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, ,1
, ; ,

2 2
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S t t S t t
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A t t

     
 

   
     , (15) 

and w(t) is a zero-mean white noise stochastic process of intensity one. In Eq. (15), S(ω,t) is the evolutionary 

power spectral density function (EPSD) characterizing the acceleration strong ground motion process ag(t) in the 

domain of frequencies ω. In the next section, an EPSD modelling acceleration ground motions with forward-

directivity (pulse-like) effects is discussed and used in Eq. (15) in the ensuing numerical work. The solution of 

the stochastic differential equation in Eq. (14) proceeds by considering the associated Fokker-Planck equation 

governing the evolution of the response amplitude PDF f(A,t) written as (e.g. [25]) 

          
2

2

1 22

1
, ', , , ', , , ',

2
f A t t A t K A t f A t t A t K A t f A t t A t

t A A

  
                

 (16) 
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Substituting the Rayleigh PDF of Eq. (11) into Eq. (16) and manipulating yields the following equation for the 

evolution of the non-linear system response variance (see [14] for a detailed derivation) 

       
   
  

2

2 2 2

2 2

,eq u

u eq u u

eq u

S t t
t t t

t

  
   

 
   . (17)  

The latter is a first-order ordinary differential equation, which can be solved by any standard numerical 
integration scheme such as the Runge-Kutta method. Once the evolution of the non-linear response variance 

 2

u t  is numerically determined, the non-linear response amplitude PDF of Eq. (11) can be readily obtained as 
well as the statistics of the time-varying ELPs in Eq. (7), such as their mean values in Eq. (10). In Section 4, 
time-dependent ELPs determined by taking as input the stochastic model for pulse-like strong ground motions 
discussed in the next section are used to probe into the seismic response of yielding bilinear hysteretic SDOF 

systems accounting for forward directivity effects without resorting to nonlinear response history analyses. 

3. Stochastic representation and simulation of pulse-like ground motions 

For the purposes of this work, the stochastic dynamics approach presented in the previous section is coupled 

with the phenomenological parametric stochastic model introduced by Lungu and Giaralis [16] capturing the 

salient time-varying features of pulse-like ground motions (PLGMs) in intensity and frequency content. This 

stochastic model relies on the common phenomenological interpretation of typical near-fault ground motion 

acceleration records with forward directivity effects as a superposition of relatively high frequency (HF) energy 

content on distinctive low frequency (LF) high energy pulses [2,13]. In the time domain, the model reads as [16] 

  
1

11

1

( )( ) ( ) ( )
ji i j

P

g HF HF LF

R

F

ji

Le ta t e g tt g t








   . (18) 

and is a superposition of P+R uncorrelated separable uniformly modulated non-stationary stochastic processes 

yielding an overall non-separable stochastic model (see also [19,20]). The first P processes (i.e., first term in Eq. 

(18)) model the evolution of the HF content of the PLGM stochastic model. Each of these processes are defined 

as a product of a stationary zero-mean stochastic process gHFi(t) (i =1,2,.., P), represented by a power spectrum 

density function GHFi(ω) in the frequency domain, and a deterministic time-dependent envelope function eHFi(t). 

Similarly, the second term in Eq. (18) models the evolution of the LF content as a superposition of R stationary 

zero-mean stochastic processes gLFj(t) (j =1,2,.., R), represented by a power spectrum density function GLFj(ω) in 

the frequency domain, each one uniformly time modulated via the time-varying envelope function eLFj(t).  

 In this study, the widely used Clough-Penzien (CP) two-sided spectrum defined for positive frequencies as 

  
   

4 2 2 2 4

max2 2
2 2 2 2 2 2 2 2 2 2

4
,

4 4

gi gi gi

HFi

gi gi gi fi fi fi

G
    

  
         


 

   
 (19) 

is used to model the frequency content of each of the i-th HF processes in Eq. (18) where ωmax is the highest 

frequency of interest. The CP spectrum comprises two linear filters in tandem: a high pass filter, characterized 

by the cut-off frequency ωfi and the steepness (slope of the filter) ζfi and the Kanai-Tajimi filter, which accounts 

for the local soil conditions by representing soil deposits via a linear SDOF oscillator with (soil) natural 

frequency ωgi and (soil) damping ratio ζgi. The role of the high pass filter is to eliminate spurious low frequencies 

allowed by the Kanai-Tajimi filter. Furthermore, the skewed bell-shaped function  

   exp
2i i

i
HF HF

b t
e t C t

 
  

 
 (20) 

is considered to model the time varying intensity of the HF stochastic processes in Eq. (18) commonly used for 

the task at hand (e.g. [26]). In the above equation, the parameter CHFi relates to the peak amplitude of the 

envelope, while bi controls the time instant at which the envelop attains its peak value (at 2/bi), as well as the 
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width of the envelop. The latter has a non-linear relationship with the effective duration of each HF process 

defined as the time-interval in which 90% of the total process energy is released as discussed in [27].  

The frequency content of the j-th LF process in Eq. (18) is modelled by the symmetric half-cosine two-

sided spectrum defined for positive frequencies as [16] 

        
1

1 cos , 1 a 1 a
2 ajLF pj pj j pj j

j pj

G


   


 
  
       

  
  

 , (21)

 

where the parameter aj controls the width and the peak value of the spectrum, and ωpj is the dominant (central) 

frequency of the j-th pulse. Moreover, the time variation of each LF process is defined by the envelope function  

    
2

1
exp

2j j

pj

LF LF pj

j

e t C t t




  
        

, (22) 

which is extensively used for modelling forward directivity pulses in the time domain (e.g. [13]). In the previous 

equation, CLFj controls the amplitude of the LF content, tpj is the time instant of the peak amplitude of the j-th 

function, while the parameter γj>1 takes on sufficiently large values such that the frequency content of the 

envelope function does not interfere with the frequency content of the LF part of the process in Eq. (18), that is, 

the support of the Fourier magnitude spectrum of the function in Eq. (22) falls outside the bandwidth of all the 

GLFj spectra defined in Eq. (21).  

 Under the assumption that all the envelope functions involved in the definition of the R+P uncorrelated 

processes in Eq. (18) vary slowly and smoothly in time, the PLGM process ag(t) can be represented on the time-

frequency plane by the EPSD (e.g., [20]) 

    
2

1

2

1

( ) ( ), ( )
i j j

P

HF HF i LF

R

LF

i j

S t e te t G G 
 

   . (23) 

The above expression motivates the interpretation of the herein adopted stochastic PLGM model as a 

superposition of HF and LF energy bursts on the time-frequency plane, the LF bursts corresponding to distinct 

directivity pulses. Furthermore, Eq. (23) suggests that it is possible to generate artificial pulse-like ground 

motions compatible with a given non-separable EPSD S(t,ω) in an efficient manner by employing any standard 

stationary spectrum compatible simulation technique [28]. This is accomplished by, first, generate stationary 

time-histories compatible with all the different R+P spectra GHFi(ω) and GLFi(ω), then, multiply each time-

history with the corresponding envelopes GHFi(ω) and GLFi(ω) to obtain time-histories with time-domain non-

stationarity, and, finally, add (superpose) the previous non-stationary time-histories to derive pulse-like records 

with non-stationarity in both the time and frequency domain. Figure 1 depicts pictorially the above EPSD 

compatible simulation for the simplest case of R=P=1 (see [16]). 

 

Fig. 1 – Generation of pulse-like accelerograms as realizations of the stochastic model in Eq. (18) for R=P=1.    
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4. Numerical application 

4.1. Considered pulse-like non-stationary stochastic process and associated EPSD 

The usefulness and applicability of the herein proposed stochastic dynamics approach to study the response of 

bilinear hysteretic SDOF oscillators exposed to PLGMs is numerically exemplified by considering an 

appropriately defined EPSD S(ω,t) in Eq. (23) capturing the salient features of a particular recorded 

accelerogram. The considered accelerogram is the El Centro Array #6 component recorded during the 1979 

Imperial Valley earthquake plotted in Fig. 2(a) and classified as a PLGM in [3] as is characterized by a single 

dominant distinctive pulse. The LF pulse contained in the considered PLGM is plotted in Fig. 2(b) as extracted 

by Baker [3] (http://web.stanford.edu/~bakerjw/), while Fig. 2(c) plots the residual HF part. Moreover, the 

pseudo-acceleration response spectrum of the PLGM is plotted in Fig. 2(d) (continuous blue curve) attaining 

significantly large spectral acceleration values at long natural periods (T>3s) which is a manifestation of the 

rather rich LF (pulse-like) content. 

 
Fig. 2 – (a) to (c): Time history acceleration traces of the El Centro Array #6 component (1979 Imperial Valley 

event), pulse, and residual; (d): Elastic pseudo-acceleration response spectra of the El Centro Array #6 record 

and spectra statistics of 250 EPSD compatible accelerograms; (e): An EPSD compatible accelerogram. 

The simplest possible form of the PLGM stochastic model in Eq. (18) is adopted comprising one 

uniformly modulated process to capture the HF content of the considered ground motion in Fig. 2(c) (R=1) and 

one uniformly modulated process to capture the LF content of the considered ground motion in Fig. 2(b) (P=1). 

The 11 parameters required in defining the model are determined as detailed in [16] and reported in Table 1. A 

contour plot of the associated EPSD in Eq. (23) of the PLGM model is provided in Fig.3 in which warmer colors 

correspond to larger amplitude values. Two bursts of energy are clearly identified on the time-frequency plane 

one corresponding to the HF and one to the LF parts of the stochastic model. The former (HF) burst is centered 

at approximately 18rad/s frequency and 2/b= 4s time instant (HF content) having a relatively low amplittude but 

being quite widely distributed on the plane. The latter (LF) burst is high amplitude, centered at t0 = 6.96s time 

instant, and well localized in the frequency domain at 1.65rad/s.  

Table 1 – Parameters defining the adopted PLGM stochastic mode  

High frequency part (HF): R=1 Low frequency part (LF): P=1 

eHF - Eq. (20) GHF - Eq. (19) eLF – Eq. (22) GLF – Eq. (21) 

CHF = 0.0765 m/s2 

b = 0.5 s-1 

ζf = 0.55 

ωf = 2.33 rad/s 

ζg = 0.65 

ωg = 22 rad 

CLF = 1.1667 m/s2 

ωp = 1.65 rad/s 

γ = 2.89 

t0 = 6.96 s 

ωp = 1.65 rad/s 

a = 0.50 

 

http://web.stanford.edu/~bakerjw/
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To asssess the appropriateness of the considered PLGM stochastic model of using it as a proxy of the 

recorded PLGM in Fig. 2(a) in applying the stochastic dynamics approach detailed in Section 2, the median 

elastic response spectrum of an ensemble of 250 realizations (i.e., artificial PLGMs; an arbitrarily chosen one is 

plotted in Fig. 2(e)) compatible with the EPSD of the PLGM model in Eq.(23) are plotted in Fig. 2(d). These 

records have been generated by taking the steps delineated in Fig. 1. Specifically, the stationary HF spectrum 

compatible signals were simulated by filtering white noise sequences through an appropriately defined discrete-

time auto-regressive-moving-average filter fitted to the CP spectrum of Eq. (19) as detailed in [26], while the 

stationary LF spectrum compatible signals were simulated using the standard spectral representation algorithm 

[29]. Each record is base-line adjusted by acausal high-pass filtering with a fourth-order Butterworth filter with 

cut-off frequency of 0.13Hz to eliminate spurious low frequencies (see also [26]). It is observed that the above 

median response spectrum lies close to the response spectrum of the recorded PLGM, especially in the range of 

long periods (T>2s). Note that enhanced matching in the shorter period range can be achieved by adopting a 

more refined HF part in the PLGM model (i.e., with R>1), (see also [20]). However, this study focuses moslty on 

long period yielding structures for which PLGMs are usually detrimental, and for this purpose the achieved level 

of matching between the median response spectrum of EPSD compatible accelerograms and the response 

spectrum of the considered recorded PLGM is deemed satisfactory. As a final note on Fig. 2(d), the median 

plus/minus one standard deviation (±1σ) response spectra of the EPSD compatible accelerograms are also 

plotted to illustrate the variability in terms of peak linear structural response involved in these simulated signals. 

4.2. Time-varying equivalent linear properties (ELPs) 

The EPSD S(ω,t) of the PLGM stochastic model/process defined by the parameters of Table 1 is herein used as 
input to the stochastic dynamics approach presented in Section 2 to derive time-varying ELPs of yielding 

bilinear hysteretic SDOF oscillators, that is, ωeq and βeq in Eq. (7). To this aim, S(ω,t) enters Eq. (17) and the 
latter is numerically solved in conjunction with Eqs. (7) and (11) for bilinear oscillators of different properties to 
obtain the variance of the response displacement  2

u t , and time-varying ELP statistics. Figures 3 and 4 furnish 
selected plots of these quantities in time to demonstrate that the derived ELPs from the herein proposed approach 
are amenable to a physically meaningful interpretation and are not simply mathematical/numerical artefacts. 

 
Fig. 3 – Pulse-like input EPSD contour plot and time-varying ωeq statistics for three bilinear hysteretic oscillators 

with ξο=5%, α=0.1, and R=5 and different pre-yield natural periods Tn. 

Specifically, in Fig. 4 the mean and the mean ±1σ values of ωeq are plotted on the time-frequency plane 
for three inelastic oscillators with different pre-yield natural period Tn= 2π/ωο equal to 0.3s, 1s, and 3s, and with 
common damping ratio ξο=5% and post over pre-yielding stiffness α=0.1. The yielding displacement uy of all 
oscillators is set such that they the same strength reduction factor      max / max / 5el y el y

t t
R f t f u t u   , 

where   max el
t

u t  is hereafter computed for any given inelastic oscillator by the mean peak response 
displacement of a linear SDOF oscillator with damping ratio ξο and natural frequency ωο exposed to the 
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ensemble of 250 EPSD compatible artificial pulse-like accelerograms whose response spectra statistics are 
shown in Fig. 2(d). To facilitate interpretation, the plots of the ωeq ELP are superposed on the contour plot of the 

input EPSD and the two vertical gray lines indicate the time instants at which the two prominent bursts of energy 
are centered: the HF burst at 2π/18= 0.35s period and the LF burst at 2π/1.65= 3.8s period. These plots confirm 
that the equivalent natural frequency ωeq obtained by the adopted approach can be interpreted as an 
instantaneous stiffness index of the inelastic oscillators since its value decreases due to yielding at times where 
the oscillators are exposed to the strong ground motion part of the input stochastic process. More importantly, it 
can be deduced from Fig.4 that the proposed stochastic dynamics approach captures faithfully, through the time-

varying ωeq ELP, the impact of the salient non-stationary features of the input PLGM process on the inelastic 
response of the bilinear oscillators in both the time and in the frequency domain. Indeed, the stiffer oscillator is 
significantly excited (and yields) relatively early in time due to the HF burst of energy which peaks at a period, 
0.35s, close to the pre-yield natural period of the oscillator. This is manifested by a local reduction of the ωeq in 
time which traces well the shape of the HF burst and attains a local minimum very close to the local peak value 
of the EPSD corresponding to the HF part of the input process. However, the flexible oscillator with a Tn (=3s) 

value lying close to the pulse period of 3.8s yields approximately 3s later in time from the stiff oscillator (as 
manifested by a reduction to the ωeq) as its response is almost exclusively governed by the LF burst of energy 
which peaks 3s later than the HF burst. The third considered oscillator with an intermediate pre-yield stiffness is 
mostly influenced by the HF burst, however, it does yield somewhat later in time than the stiff oscillator: an 
indication that it is affected to a small degree by the LF content of the input stochastic process. 

 
Fig. 4 – Time-varying mean ELPs and response displacement variance  2

u t  for various bilinear oscillators 
with ξο=5% exposed to the EPSD in Fig.3. 

The above observations are further confirmed by examining Fig.4(a) which plots the mean ωeq in time 
normalized to its peak (pre-yielding) value of the previously considered inelastic oscillators. The location of the 
minimum ωeq values, which coincide with the time instant at which the response variance is maximized (Fig. 

4(c)), are also indicated with vertical lines. As intuition suggests, the local mean ωeq minima or, equivalently, the 
local  2

u t maxima, occur with some delay from the two local maxima of the seismic input energy also shown 
in these plots by vertical gray lines. Moreover, Fig.4(b) plots the corresponding equivalent mean damping ratio 
defined as ξeq= βeq/(2ωeq). It is seen that ξeq has a reciprocal relationship with ωeq: when ωeq decreases, ξeq 
increases and vice versa, while local extreme values are attained at exactly the same time. Effectively, these 
numerical data suggest that equivalent damping ratio values larger than the initial ξο= 5% value are associated 

with an instantaneous hysteretic energy dissipation and is a manifestation of non-linear behavior. Additional 
evidence of the fact that ωeq  and ξeq bear intuitive physical significance and are well-related with the severity of 
the exhibited non-linear response to non-stationary PLGM excitations is provided in the right panel plots of 
Fig.4 pertaining to two bilinear osicllators with different post-to-pre-yielding stiffness ratio α and all other 
properties the same. The oscillator with hysteretic behavior closer to a perfectly elasto-plastic one (α=0.1) attain 
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lower equivalent natural frequency and higher equivalent damping ratio values at all time instants compared to 
the oscillator with α=0.5 for the same strength reduction R=5, while the maxima of the ELPs occur later in time.  

4.3. Estimation of peak ductility demand using statistics of ELP maxima 

Having established the physical meaning of the ELPs of Eq. (7) in interpreting the severity and the attributes of 
the non-linear behavior of bilinear hysteretic osicllators exposed to PLGM action, a further step is herein taken 
to illustrate the usefulness and potential of using the ELSs defined by statistics of the ELP maxima in time, to 
predict the peak non-linear response for different levels of input excitation (i.e., within an incremental dynamic 
analysis framework) or, equivalently, for different yielding strength (or displacement) as defined by the strength 
reduction factor R. To this end, Figs. 5(a) and 5(b) plot the mean and the mean ±1σ of the peak values of the 

ELPs (occuring at different times for each R value when  2

u t  is maximum as shown in Fig. 4) as functions of 
the strength reduction factor R for a bilinear oscillator with α=0.1 and Tn=1s. As R increases, i.e., as bilinear 
oscillators with lower yielding strength are considered or, equivalently, as the seismic input intensity increases, 
ωeq decreases monotonically yielding softer ELSs, while ξeq increases to account for the increased energy 
dissipation through more severe plastic/ hysteretic behaviour of the inelastic oscillators. However, the rate of 
both the above trends tend to saturate for larger R values. Such trends have been observed in the literature in the 

context of standard statistical linearization techniques assuming stationary input excitation and yielding 
deterministically defined ELPs [21,22].  

 
Fig. 5 – ELPs for bilinear oscillator with a= 0.5, ωο= 2π rad/s, and various yielding displacement uy  Peak 

response of various bilinear hysteretic oscillators and of the corresponding equivalent linear oscillators for 40 

EC8 compatible accelerograms. 

Next, statistical values of the peak absolute ductility   max / y
t

u t u  , are plotted versus the strength 
reduction factor R in Fig. 5(c) (dots of various shapes) for bilinear hysteretic oscillators with α=0.1, Tn=1s, and 

different yielding displacements uy obtained from standard NRHA. The analysis uses the standard constant 
acceleration Newmark algorithm and is undertaken for the ensemble of the 250 simulated PLGMs discussed in 
sub-section 4.1. (Figs. 2(d) and 2(e)). Superposed on Fig. 5(c), is the peak response y(t) normalized by the 
yielding deformation uy of equivalent linear oscillators (curves of various types) defined by different peak ELP 
statistical values. It is seen that the average of the peak nonlinear responses can be well-approximated by the 
peak response of ELSs defined by the mean ELP values reduced by 2 to 2.5 their standard deviation σ. Similar 

results and trends not reported here due to space limitations hold for bilinear oscillators with various different 
properties as well. Overall, these results suggest that the adopted stochastic dynamics technique may provide 
useful estimates of the peak response statistics of bilinear oscillators exposed to PLGMs without the need for 
NRHA. 
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5. Concluding remarks  

A non-stationary stochastic averaging/linearization formulation was considered in conjunction with a 

phenomenological stochastic PLGM model to study the response of hysteretic bilinear oscillators to typical 

pulse-like near-source accelerograms with forward-directivity low frequency pulses without resorting to non-

linear response history analysis. This was achieved by focusing on the time-varying ELPs derived from the 

proposed methodology treated as non-stationary stochastic processes. The evolutionary statistics of the ELPs 

(mean value and standard deviation) depend on the properties of the bilinear oscillator and on the features of the 

excitation stochastic model. The latter captures the time-evolving intensity and frequency content signatures of 

typical PLGMs by means of a parametrically defined non-separable non-stationary stochastic process given by 

the sum of separable uniformly modulated stochastic processes interpreted as local bursts of energy with 

different locations on the time-frequency plane. It was numerically demonstrated by considering a PLGM 

stochastic process fitted to a typical fault-normal recorded accelerogram with a single forward-directivity 

signature (low-frequency pulse), that the obtained ELPs are amenable to a clear physical interpretation. They can 

be construed as instantaneous (time-varying) effective stiffness and viscous damping characterizing the time-

varying inelastic response level/behavior whose severity is governed by resonance structural dynamics 

phenomena related to the input seismic energy distribution on the time-frequency plane and to the pre-yield 

natural period of the bilinear oscillators. Furthermore, it has been verified in the context of Monte Carlo analysis 

pertaining to an ensemble of 250 simulated PLGM records compatible with the adopted PLGM stochastic model 

that the peak inelastic response of bilinear oscillators can be well approximated by the peak response of 

equivalent linear oscillators defined by appropriate statistics of ELPs evaluated at the time instant when the 

response variance determined by the adopted approach is maximized. Future extensions of this work will involve 

the study of the inelastic response of yielding multi-degree-of-freedom hysteretic structural systems exposed to 

PLGMs through surrogate linear oscillators [30] as well as the extention of the approach for stochastic 

incremental dynamic analysis [31]. 
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