
16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

Paper N° 3481 (Abstract ID) 

Registration Code: S-F1464752161 

Shear Capacity of 3D Composite Joints of Concrete-Filled Tubular Column 
C. Liu(1), J. Fan(2) 

 
(1) PhD. Student, Dept. of Civil Engineering, Tsinghua University, liucheng13@mails.tsinghua.edu.cn 
(2) Professor, Dept. of Civil Engineering, Tsinghua Univ., fanjsh@tsinghua.edu.cn 
 

 

Abstract 
Shear capacity analysis of the panel zone in a composite joint of concrete-filled steel tubular (CFT) column and steel beam 
is important for avoidance of premature shear failure of the joint. This paper reviews 2D shear capacity models for joints 
between CFT column and steel beam. Then a 3D model is proposed for consideration of joints subjected to symmetric beam 
loadings in two planes and compared to the existing 2D shear capacity models. The effects of encased concrete on the shear 
capacity of the joint are taken into account for 3D composite joints through an additional compression strut model. A shear 
force and deformation relationship with four linear segments is thus achieved for a composite joint. To evaluate the 
corresponding ultimate shear capacity, the modeling results are compared with experiments where specimens fail through 
shear mode at the joints. It is found that the shear–deformation relationship and ultimate shear capacities predicted for 3D 
composite joints agree well with the experimental results. 
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1. INTRODUCTION 
A concrete-filled steel tubular (CFT) column is a structural element in which steel tube and encased concrete carry 
load by composite action between them. The strength and ductility of the encased concrete is improved by the 
confinement effect of the steel tube while the local buckling of steel tube is delayed by the encased concrete. Due to 
advantages such as high strength, excellent ductility and convenience for production and construction, CFT columns 
are widely used in civil infrastructure. In high-rise buildings, a typical structure system is formed by CFT columns 
connecting with horizontal structural members (such as beams and floor panels). To ensure structural ductility, 
premature shear failure of a composite joint should be avoided, especially in structural seismic design. Resistance to 
earthquake loading in such structural systems depends largely on the capacity of beam-to-column composite joints. 
Therefore, reliable estimation of the mechanical performance of composite joints between CFT column and beam is 
essential for structural design. 

Extensive experimental and theoretical studies have been performed to understand the performance of the panel 
zone in a composite joint between CFT column and steel beam and to develop corresponding mechanical models. 
Analytic formulations for joint shear capacity have also been developed [2~5], but only a 2D configuration (i.e. with 
CFT column and steel beam in the same plane) has been considered. Research has shown that for a composite joint 
with internal diaphragms, the steel plates in the joint region and the encased concrete both contribute to the shear 
capacity of the joint. Using the superposition principle, equations have been formulated to estimate the shear capacity 
of 2D composite joints by the Architectural Institute of Japan (AIJ) [6]. In the latter research, however, the effects of 
axial compression on the shear capacity of the panel zone were not considered. Also, it was required that the nominal 
compression strength of the encased concrete should not be higher than 36 MPa, which largely limited its applicability 
for high-strength concrete. Koester [1] conducted a series of experiments on split-tee through-bolted moment joints 
between CFT columns and wide-flange steel beams. In this configuration, the shear capacity of the panel zone of the 
composite joints was estimated through regression analysis of experimental results without mechanism-based 
modeling. This limitation therefore restricts the applicability of the proposed shear capacity equation for other forms 
of composite joints with different connection configurations. Cheng et al. [2,3] proposed an innovative stress-strain 
model for the panel zone of a composite joint based on the compression strut mechanism, in which the shear force 
transfer was taken into account through a truss mechanism. The shear capacity formulation developed in this way 
considered the effects of axial compression on the steel wall and the encased concrete of the column; however, the 
model became complicated and was not convenient for design purposes. Nishiyama et al. [4] carried out a series of 
experiments on beam-to-column joints of CFT columns made of high-strength steel and concrete. Their experimental 
results showed that the design formula given in AIJ (1987) was applicable for unconfined compression strength of 
concrete up to 110 MPa and tensile strength of steel up to 809 MPa. Similar experiments were conducted by [5] on the 
joints of high-strength CFT columns and steel beams to investigate structural elastoplastic behavior. A new 
compression strut mechanism was proposed, where a trilinear shear–deformation relationship was derived for 
description of the full shear deformation of the panel zone, and the effects of axial force on the behavior of the steel 
tube were also considered. In that study, the shear deformation at the ultimate strength of the encased concrete was 
defined as the ultimate shear deformation of the composite joint. Since the ultimate shear strain of concrete is much 
lower than that of a steel tube, the shear capacity at yielding of the webs of the steel tube was considered in the 
calculation of the ultimate shear capacity of the joint. In another words, the shear capacity of the joint was provided 
by the yielding strength of the steel tube plus the ultimate strength of the encased concrete. 

Existing formulations of joint shear capacity only consider the shear forces in one plane, corresponding to a 2D 
composite joint configuration. For realistic composites joints under seismic action, the joint panel zone is actually 
subjected to shear forces in two planes, corresponding to a 3D joint configuration. For such cases, no mechanical 
modeling has yet been done to describe joint stiffness and to predict joint shear capacity. In this paper, the 2D load 
transfer mechanism is extended to a 3D construct to analyze the shear capacity of composite joints in CFT column 
systems. A 3D load transfer mechanism is analytically modeled and the contributions from both steel column and 
encased concrete to the shear capacity of the joint panel zone are investigated. In this 3D model, a shear–deformation 
relationship with four linear segments is considered and its reliability and applicability are verified against previous 
experimental results including scenarios of composite joints with normal strength concrete [7] and with high-strength 
concrete [4]. 
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2. ANALYTIC SHEAR CAPACITY MODEL OF A 3D COMPOSITE JOINT 
Composite joints in building structures are often under 3D loading conditions, such as those for interior columns, 
exterior columns and corner columns. In a CFT column system connected by orthogonal beams, the core zone of the 
3D composite joint is actually subjected to shear forces from two orthogonal planes, the mechanism of which may be 
different from that of a planar composite joint. In this section, we establish analytic models of the shear–deformation 
relationship of steel tube and concrete core. Classical plastic theory is applied to derive the yield and ultimate shear 
strength of the steel tube. Two forms of strut mechanism are considered to model the ultimate shear capacity of the 
concrete core. The joint shear–deformation relationship is obtained by the superposition principle, considering the 
contributions from both steel webs and concrete core. It should be noted that the 3D loading conditions considered in 
this paper are limited to the scenario where the shear forces from two orthogonal directions are equal (resultant shear 
force in 45° direction) and the planar shape of the concrete panel is square, since this scenario is the most typical for 
3D loading conditions. 

2.1 Shear capacity and deformation of steel tube at joint region 
The shear capacity of a steel tube at the joint region has two components. One component derives from the shear 
strength of the webs of the steel tube and the other derives from the shear capacity of the steel tube–inner diaphragm 
system. In 3D composite joints, the latter component derives mainly from the deformation of the diaphragm system 
from cubic to parallelepiped shape (similar to a frame mechanism) and it has been reported that this contribution to 
the total shear capacity of the steel tube at the joint region is very limited [10]. Therefore, only the contribution of the 
webs to the overall shear capacity of the steel tube is taken into account in this study. 

In 3D joint panel zones subjected to shear forces from both x and y directions, the shear stresses in the webs of 
the steel tube can be determined by principles of material mechanics. Fig. 1 shows the distributions of shear stresses 
along the webs of steel tube in the plastic stage (Fig. 1) under bi-directional loading. If Vx = Vy , the resultant shear 
force V acts in a 45° direction to Vx or Vy. 

Vx Vy

Steel web

τ

τ 

τ

2V

τ 

 
Fig. 1. Distribution of shear stress (τ) of steel webs in  plastic stage under bi-directional loading  

Assuming a uniform shear stress distribution in the webs of the steel tube in the plastic stage (Fig. 1), the shear 
stress can then be calculated as: 
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V
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τ =  (1) 

where τ is the shear stress of the webs of the steel tube. According to the von Mises criterion, the yield (τy) and 
maximum (τu) shear stress sustained by the webs of the steel tube can be calculated respectively as: 
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where fsy and fsu are the yielding and ultimate strength of the steel tube respectively and ss is the axial compression 
stress of the steel tube. Hence the yielding (Vsy) and ultimate (Vsu) shear capacities of the webs can be obtained as: 
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The yielding (γsy) and ultimate (γsu) shear deformations of the steel tube of a plain joint are given as: 
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where the shear modulus of the steel tube Gs is normally 79 GPa. Gs’ is the slope of the second stage of the trilinear 
shear–deformation relationship of the steel tube and can be expressed as [5]: 
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where sy su1
23

f f
τ

+
′ = ⋅ ; αs is the ratio between the tangent modulus of the second stage and that of the first stage in 

the trilinear shear–deformation relationship and can be taken as 0.1 according to material testing results [7]. 

2.2 Shear capacity and deformation of concrete at panel zone 
As in a 2D joint, the shear transfer mechanism of the concrete at the panel zone of a 3D joint can be described using 
the strut model [8]. In this paper, two mechanisms – the shear capacities of the main compression strut (Vcu1) and the 
additional confined compression strut (Vcu2) – contribute to the overall shear capacity of the concrete. For a joint 
under planar loading, the main compression strut and the additional confined compression strut are illustrated in Fig. 
2(a) for loading in the XZ plane and in Fig. 2(b) for loading in the YZ plane. The corresponding shear–deformation 
relationship was already detailed in [5]. 
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Fig. 2. Compression strut model for concrete at panel zone of a composite joint under loading in (a) XZ plane, (b) YZ 
plane and (c) 3D loading (bi-directional loading) 

Moreover, with the loadings from two planes in a 3D joint, the main and additional compression struts as 
shown in Fig. 2(c) are in 3D stress states. Accordingly, their orientation, shape and size may differ from those in a 
planar loading state. According to theory developed for reinforced concrete, the shear capacity of the main 
compression strut is formed through an arch mechanism. The additional compression struts in a 3D composite joint 
(Fig. 2(c)) are further confined by the steel tube flange. The shapes and orientations of the main and additional struts 
in the 3D composite joint shown in Fig. 2(c) were obtained as a result of the superposition effect of the corresponding 
main and additional struts from the two planar loading scenarios (i.e. Fig. 2(a) and (b)). Hence the main strut in a 3D 
state is determined as the overlap of the two main struts from two planar loading states in Fig. 2(a) and (b).  

To extend the modeling of concrete shear capacity of a 2D joint to a 3D configuration, the challenge is to take 
into account the 3D stress states of the main and additional compression struts. The subscripts “3D” and “2D” are 
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used below to distinguish the variables (e.g. shear capacities) in 3D and planar loading states. The mechanism of the 
main compression strut in a 3D shear state is illustrated in Fig. 3. Vcu1-3D is the shear capacity of the main strut and 
scbb2cosθ3D is the corresponding axial force. θ3D is the inclination angle of the main strut with respect to the concrete 
core (i.e. the angle between AC1 and axis Z). Plane C1C2C3C4 presents a cross section cut from the main 
compression strut to form an isolated body for establishing the relationship between the shear capacity Vcu1-3D and the 
axial force  scbb2cosθ3D. 

Vcu1-3D

scbb2cosθ3Dsinθ3D=
Vcu1-3D
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C4
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h

A

C1

C2
C3

C4

y

Vcu1-3D

main strut
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Fig. 3. Stress state of main compression strut mechanism of concrete in the panel zone of a 3D composite joint 

Considering the force equilibrium in the horizontal direction of the isolated body (Fig. 3), the shear capacity of 
the main compression strut of concrete Vcu1-3D can be established as: 

 2
cu1-3D cb 3D 3Dsin coss θ θ=V b  (7) 

where scb is the compression strength of the concrete; θ3D is the inclination angle of the compression strut with 
respect to the square concrete core; b is a dimension parameter illustrated in Fig. 3 and is determined by geometric 
relation as:  

 
c
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where dc and h are the width and the height respectively of the panel zone as illustrated in Fig. 3. 

Substituting Eq. (8) into Eq. (7) gives: 
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where α is the aspect ratio of the panel zone, α=h/dc 

From Eq. (9) it can be seen that the inclination angle θ3D should be determined first, in order to calculate the 
shear capacity of main compression strut (Vcu1-3D). Based on the lower bound theorem of classical plasticity theory [9], 
the stress state illustrated in Fig. 3 is a statically admissible field and the corresponding shear capacity is the lower 
bound of the true shear capacity. The maximum value of Vcu1-3D with respect to θ3D in Eq. (9) represents the closest 
estimation of the true shear capacity. Therefore, the inclination angle θ3D can be determined when Vcu1-3D reaches its 
maximum value in Eq. (9). To find the maximum point of Vcu1-3D, Eq. (9) is differentiated with respect to θ3D. Eq. (10) 
can be obtained therefore: 
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Eq. (10) is a nonlinear equation that determines the relationship between the aspect ratio α and inclination 
angle θ3D. It is difficult to find the analytical solution of inclination angle θ3D as a function of aspect ratio α. Matlab 
2009b® was used to obtain a numerical solution for various values of aspect ratio α in the range of engineering 
practice ; then a simplified formulation for θ3D as a function of α is obtained by data regression as: 

 
3D

1=0.468arctan =0.468arctancd
h

θ
a

   
  
  

 (11) 

The shear capacity of the main compression strut can then be rewritten as: 

 2
cu1-3D cb 3D

1 sin 2
2

s θ=V b  (12) 

where b and θ3D are determined by Eqs. (8) and (11) respectively. 

In a similar manner to the additional compression strut mechanism in a planar shear state [5], the additional 
compression struts in a 3D shear state are illustrated in Fig. 4. Four additional compression struts exist, as shown in 
Fig. 4 (with different colors), and they are confined by the flanges of the steel tube. Due to the interaction of the steel 
tube flange, two plastic hinges may be formed at the two ends of each additional compression strut. 
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Fig. 4. Additional compression struts of concrete in the panel zone of a 3D joint 

 

The formulation of the shear capacity Vcu2-3D of one additional strut is derived as below, according to the 
mechanism illustrated in Fig. 5 (a) (b) (c). Because the x or y components of Vcu2-3D are provided by two additional 

compression struts, the contribution of each additional strut to the overall shear capacity is obtained as 2 Vcu2-3D/4. 

 
fcu2-3D cb 3D4 sinV M bs θ=  (13) 

where Mf is the plastic moment capacity of the flange plate of the steel tube and can be expressed as: 
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Fig. 5. Derivation of the shear capacity of the additional compression strut for a 3D joint (a) horizontal force equilibrium 
(b) ultimate limit state of steel flanges (c) axial force equilibrium of additional strut 

Considering that shear capacity is often designed in the directions of the principal axes (x and y) of the two 
orthogonal beams, the shear capacity (Vcu-x or Vcu-y) of the concrete in the panel zone of a 3D composite joint can be 
calculated in these two directions according to Eq. (15), which was derived based on Eqs. (12) and (13): 
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The deformation at the ultimate shear strength of a 3D concrete core is given as [5]: 
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where κc is the shear coefficient of the concrete core (1.2 for square concrete); Gc is the shear modulus of the concrete 
core; Ac is the cross-sectional area of the concrete core. αcu is the stiffness reduction ratio as given by [5]: 
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c
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where the compression strength of the concrete scb is in units of MPa. 

2.3 Shear capacity and deformation of a 3D composite joint 
The total shear capacity V3D-x of a joint in a 3D loading state is the superposition of the shear capacity of the concrete 
core (Eq. (3)) and that of the steel webs (Eq. (15)): 
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The shear–deformation relationship of a 3D composite joint may include four linear segments, as a result of the 
superposition of the trilinear model of the steel tube and the ideal elastoplastic model of encased concrete. For 
composite joints with fully developed shear strength and shear strain in the joint region, the webs of the steel tube 
usually yield first and then the concrete in the panel zone reaches its ultimate shear strain. Finally, the web of the steel 
tube reaches its ultimate state. The shear–deformation relationship is shown in Fig. 6, where point A corresponds to 
the yielding point of the panel zone; point B is determined by the shear deformation at which the concrete core just 
reaches the ultimate shear strength; and point C represents the ultimate shear strength of the panel zone corresponding 
to the ultimate state of the steel tube.  
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Fig. 6. Shear–deformation relationship with four linear segments for the panel zone 
It is also important to evaluate the ratio of shear capacities in 3D and planar loading states (V3D-x/V2D). For 

such evaluation, a yield to tensile ratio (fsu/fsy) of 1.3 and an axial compression ratio of 0.2 (N0/ (Acscb+Asfsy), where 
N0 is column axial force, Ac and As are section areas of concrete and steel tube respectively) are adopted to calculate 
the joint shear capacity V3D-x (Eq. (18)). Figs. 7 and 8 clearly illustrate the effects of the aspect ratio α, width to 
thickness ratio rw (dc/ts) and strength ratio rs (fsy/scb) on the reduction of joint shear capacity subjected to loading 
from 2D to 3D. Again, the aspect ratio shows significant reduction in capacity.  
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Fig. 7. Relationship between rw and V3D-x/V2D (rs=10) 
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Fig. 8. Relationship between rs and V3D-x/V2D (rw=40) 

Clearly, higher width to thickness ratios and lower strength ratios lead to more remarkable spatial coupling effects. 
The effects of the width to thickness ratio rw and the strength ratio rs are more considerable on joint shear capacity 
with smaller aspect ratios. In the worst case (i.e., small aspect and strength ratios but a large width to thickness ratio), 
joint shear capacity in 3D loading may correspond to only 60% of that in 2D loading. 

3 EXPERIMENTAL VALIDATION 
To validate the analytical modeling developed above, four specimens (J101, J202, J203 and J301) were designed and 
tested under reversed-cyclic loading [7]. The specimens were CFT columns with steel beams through interior 
diaphragm connections. Specimen J202 was the reference specimen, the dimensions of which are shown in Fig. 9 in 
detail. The geometries of specimens J101 and J301 were the same as that of J202, but no concrete slab was placed on 
top of the steel beam for J101, and no encased concrete was placed in the steel tubular column (but with a different 
tube thickness of 12 mm) for J301. Specimen J203 had beams in only one plane and was tested under a uni-directional 
reversal loading whereas the other specimens had beams in two planes and were tested under bi-directional reversal 
loading. The experimental setup and loading configuration are shown in Fig. 10. 
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Fig. 9. Dimensions of the joint specimens (J202) 
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Fig. 10. Schematic diagram of experimental setup, joint details, and loading configuration for specimen J202 

During the tests, a constant axial force was first applied on the top of the column as shown in Figs. 9. Vertical 
reversed-cyclic loads were applied at the ends of four beams (two beams in each plane), in a force control mode until 
the measured strains in the steel beam or steel panel exceeded the material yield strain, and subsequently in a 
displacement control mode.  

The final failure mode of all four specimens was a typical shear failure in the panel zone of the joints, as shown 
in Fig. 11. The shear failures were characterized by fracture of the steel wall in the panel zone and crushing of the 
encased concrete within. These specimens therefore provide valuable information for examining the proposed 
analytical model developed for the joint shear capacity. 
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(a) 

 
(b) 

 
(c) 

Fig. 11. Typical failure modes of the four specimens (a) fracture of steel tube (J101); (b) Crushing of encased 
concrete (J202) and (c) Overall deformation (J101) 

The shear capacities of the specimens were calculated using the proposed formulation developed for 3D 
composite joints (Eq. (18)). The calculated values are compared with the experimental results in Table 1, where Vsu 
and Vcu are the calculated contributions from the steel tube and the encased concrete according to Eqs. (3) and (15) 
respectively; Vpu is the total shear capacity of the 3D joint calculated by Eq. (18) and Veu is the measured shear 
capacity of the joint from experiments. 

Table 1. Comparison of predicted shear capacities with experimental results 

No. Vsu/kN Vcu/kN Vpu/kN Veu/kN 

J101 1336.0 284.0 1620.0 1743.7 

J202 1336.0 275.4 1611.4 1594.8 

J203 1336.0 457.2 1793.2 1944.0 

R1 806.4 1579.6 2386.0 2384.6 

R6 808.7 914.8 1723.5 1787.6 

 
Overall, good agreement between the calculated (Vpu) and measured (Veu) total shear capacities was found, 

with a maximum discrepancy less than 8%. Specimen J202 associated with beams in two planes was also compared to 
J203 with beams only in one plane. It was found that that the experimental result for the joint shear capacity of J202 
was about 18% lower than that of J203, and 11% lower than the predicted shear capacity of J203. This comparison 
indicates that using the planar shear formulation may overestimate the joint shear capacity in the case of a 3D loading 
configuration and this may lead to unsafety. 

Further, joint shear–deformation curves were formed by the calculated shear capacity values and the 
corresponding shear deformation for specimen J202 and J203, as shown in Fig. 12. The highly nonlinear experimental 
shear–deformation skeleton curve can be relatively well described by the proposed modeling curve with four linear 
segments. Discrepancies between the experimental and predicted shear–deformation skeleton curves were mainly 
found at the second and third segments between the yield and ultimate states. These discrepancies may resulted from 
the assumption of an ideal elastoplastic shear–deformation relationship of the concrete core. 

10 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

-40 -20 0 20 40

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

 
γ/10-3

Sh
ea

r F
or

ce
 V

/k
N

 experimental
 predicted

 
(a) 

-40 -20 0 20 40

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

γ/10-3

Sh
ea

r F
or

ce
 V

/k
N

 experimental
 predicted

 
(b) 

Fig. 12. Comparison of experimental and predicted skeleton curves of specimen (a) J202 (bi-directional loading) 

and (b) J203 (uni-directional loading) 

The 3D shear capacity model was further validated by the experimental results reported in [4]. The specimens R1 
and R6 were tested under uni-directional and bi-directional reversal loading respectively, and were similar to 
specimens J202 and J101. The predicted and experimental results are compared in the last two rows in Table 1 and 
good agreement is evident, with discrepancies less than 5%. The planar shear capacity of specimen R6 was calculated 
as 2222.6 kN by the equations introduced by [4] and this value was 24% higher than the experimental result (1787.6 
kN, see Table 1). It is evident for specimen R6 that the spatial coupling effect significantly weakened the shear 
capacity of the joint subjected to 3D loading. This is because in this case, high-strength concrete (scb=97.7 MPa) was 
used for specimen R6, leading to a rather small steel to concrete strength ratio (rs=fsy/scb=5.0). 

4 CONCLUSIONS 
An analytical model was developed in this paper to estimate the shear capacity of 3D composite joints of CFT 
columns and steel beams subjected to shear forces in two planes. In this model, the main compression strut and 
additional compression strut mechanisms were formulated for the concrete core of the joint panel subjected to 3D 
loading scenario. The joint shear capacity was calculated and compared with experimental results where the 
specimens were subjected to reversed-cyclic loading in two planes and failed through shear mode at the joints. The 
joint shear–deformation relationship was characterized by a piecewise linear model with four segments, taking into 
consideration the effects of shear forces in two planes. The modeling results of joint shear capacities and shear–
deformation relationships were validated by the experimental results from references. Based on this work, the 
following conclusions can be drawn: 

1) The analytical model developed in this paper suggests that 3D (bi-directional) loading weakens the shear capacity 
of the concrete panel zone, although it does not affect the shear capacity of the webs of the steel tube. Because of the 
loadings from two planes and the associated space coupling effects on a 3D joint, the main and additional 
compression struts, obtained as a result of superposition of two 2D joints in the corresponding plane loading state, 
may present different orientations, shapes and sizes from those in a planar loading state.  

2) A new piecewise linear constitutive model based on the superposition principle was implemented into the shear–
deformation relationship of 3D composite joints. This constitutive model was characterized by the analytic ultimate 
shear strength formula in 3D shearing states, and therefore the spatial coupling effect caused by bi-directional shear to 
the concrete zone could be taken into consideration. The predicted and experimental shear–deformation curves 
showed satisfactory agreement. The major discrepancy was found between yield and ultimate states because of the 
assumption of an ideal elastoplastic shear–deformation relationship of the concrete core. 

3) The proposed model for the shear capacity of composite joints of CFT columns was validated by the results from 
2D and 3D joint experiments. Further calculations also indicated that using the planar shear capacity formulation for a 
joint in a 3D shear state may lead to an overestimation of 10%~20% for the joint shear capacity. The reduction in joint 
shear capacity due to a 3D loading configuration depends mainly on the aspect ratio of the joint panel, the steel to 
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concrete strength ratio and the width to thickness ratio of the steel tube. A decrease in the aspect ratio results in the 
most notable reduction in joint shear capacity and such a reduction also becomes more considerable with an increase 
in the width to thickness ratio or a decrease in the strength ratio. For a worst-case scenario where the joint has a 
relatively small aspect ratio (0.5 for example), a large width to thickness ratio (80.0 for example) and a small strength 
ratio (5.0 for example), joint shear capacity in the 3D shear state can reduce to only 60% of that in the 2D loading 
state. 
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