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Abstract 
Laboratory experiments play a critical role in earthquake engineering research. Hybrid simulation provides a viable 
technique to assess structural performance through component tests. One challenge exists for current practice of hybrid 
simulation when a complex structure has more critical components than those could be accommodated in laboratories. 
Hybrid simulation with model updating has been developed to updating the model parameters for analytical substructures 
based on the observed behavior of similar parts within experimental substructures. Hybrid simulation with model updating 
thus has great potential to be extended to real-time hybrid simulation to account for rate-dependent behavior within 
structures beyond existing laboratory capacity in terms of space and equipment. It however also raises concern on how to 
quantify the cumulative effect of modeling errors in analytical substructures throughout the experiments. This paper 
evaluates a previously developed tool using experimental results. The proposed tool is demonstrated to be highly effective 
for assessing the effect of modeling error and thereby enables future reliability assessment of hybrid simulation results when 
actual structural response is not available for immediate comparison. 
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1. Introduction 
Laboratory experiments play an important role in earthquake engineering research for performance evaluation of 
civil engineering structures under earthquakes. Conventional experimental methods (e.g., quasi-static tests, 
quasi-static pseudo-dynamic tests, and shaking table tests) are often constrained by limitations in laboratory 
space and testing equipment, and are thus not able to satisfy the needs of modern earthquake engineering 
research for large- or full-scale structural tests. As a result, conventional structural experiments are typically 
conducted only for the most critical parts of a structure at the component level and on a reduced scale. Such 
experiments pose serious problems for extrapolating the behavior of a particular component to the behavior of 
not only the entire system but also from a reduced scale to the full scale. The hybrid simulation technique [1-7], 
also known as the substructure technique, provides a viable solution to overcome space and equipment 
constraints and enable researchers to assess entire structural performance through component tests. Not well 
understood key components of the structure are physically tested as experimental substructures in laboratories, 
while well-behaved parts are numerically simulated as analytical substructures in computer programs. A 
numerical integration algorithm is utilized to integrate all different substructures to solve for the structural 
response under earthquakes.  

 A key challenge exists for current practice of hybrid simulation when a complex structure has more 
critical components than that laboratories can accommodate. More recently, the hybrid simulation technique was 
integrated with model updating [8-10]. Similar critical parts exist in both experimental and analytical 
substructures. Throughout the experiment, measured responses from the experimental substructures are used to 
refine the numerical models for critical parts within analytical substructures to improve their prediction for the 
rest of the test. This has been achieved successfully with the Unscented Kalman Filter (UKF) [11-13] and more 
recently with the Constrained Unscented Kalman Filter (CUKF) [14]. Thus, hybrid simulation only requires the 
physical representation of a smaller percentage of critical parts within the complex structure to derive the entire 
structural response. Fact-finding experiments using hybrid simulation with model updating were conducted for 
simple structures [8-10]. These exploratory researches also demonstrated that modeling errors in analytical 
substructures could have detrimental effects on the accuracy of entire hybrid simulation results. The inevitable 
modeling error due to estimation of the numerical parameters will lead to undesired inaccurate structural 
responses, including incorrect restoring forces of the analytical substructures. These errors will then propagate 
and accumulate during the entire experiment. It is necessary to quantify the cumulative effects of modeling error 
on the accuracy of the hybrid simulation to replicate the structural response under earthquakes.  It is therefore 
critical to quantify the effect of the inaccurately estimated parameters for hybrid simulation with model updating 
to enable it to be used more properly and reliably for the earthquake engineering community. 

2. Model Accuracy Indicator 
A model accuracy indicator (MAI) was proposed by Chen et al. [15] to quantify the cumulative effect of 
modeling errors that can occur during hybrid simulation of complex structures. The definition of MAI is based on 
the synchronized subspace plot, as shown in Figure 1, between the restoring forces of the experimental and 
analytical substructure subjected to the same displacement history. The definition of MAI can be described as 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖+1  = 0.5(𝑀𝑀𝑖𝑖+1 − 𝑇𝑇𝑀𝑀𝑖𝑖+1) (1) 
 

where i represents the current time step; A i+1 and TA i+1 are the enclosed and complementary enclosed areas for 
the i+1th time step; and MAIi+1 is the model accuracy indicator for the i+1th time step. 

 𝑀𝑀𝑖𝑖+1  = 𝑀𝑀𝑖𝑖  +  0.5(𝐹𝐹𝑖𝑖+1
𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐹𝐹𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒)  ∙ (𝐹𝐹𝑖𝑖+1𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐹𝐹𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎) (2a) 

 𝑇𝑇𝑀𝑀𝑖𝑖+1 =  𝑇𝑇𝑀𝑀𝑖𝑖 +  0.5(𝐹𝐹𝑖𝑖+1𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎)  ∙ (𝐹𝐹𝑖𝑖+1
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒) (2b) 
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where Fexp and Fana are the restoring forces of the experimental and analytical substructures, respectively. An 
accurate model for the critical part in the numerical substructure will lead to exactly same restoring force as that 
of experimental substructure measured during the experiment. In this case, the enclosed area of the synchronized 
subspace is equal to zero. 

  
Figure 1. Schematic Synchronized Subspace Plot of MAI 

3. Kalman Filter 
Kalman filter is an estimator for problems which require knowledge of the instantaneous system state [16]. It has 
been useful in applications for complex dynamic systems where it may not be possible to measure all variables 
of interest. The unscented Kalman filter is often used for nonlinear systems with the discrete state space and 
measurement equations defined as: 

 xi+1  = f (xi , ui)   (3a) 
 yi+1  = h (xi +1, ui+1) (3b) 
 

where x  is the system state vector and u is the known input. The functions f and h represent the state and 
measurement functions, respectively. Typical application of Kalman filter involves first performing an unscented 
transform of the state space equation. The results are then fed to the measurement equation and another 
unscented transform will be performed. Then the Kalman filter gain will be calculated and applied to a 
comparison between the estimated mean of the measurement equation and an actual measurement of the real 
system. From this a new estimation of the state space will be derived for “updating” the system.  

Wang and Wu [14] analyzed the effect of model updating through the Constrained Unscented Kalman 
Filter (CUKF). The typical Kalman filter can randomly pick its sigma points which can cause problems since 
specific values may cause instability of the system. To avoid this instability issue, the prediction step involving 
the state space equation and the correction step involving the measurement equation are conducted separately. 
For the prediction steps the points violating the constraints will be projected back on to the bounds. Furthermore, 
the symmetrical points will be scaled back similarly to maintain this symmetry. For the correction step violating 
sigma points will be pulled back to the boundary without regards for symmetry. For the CUKF an initial estimate 
of the system state “x�k” is constructed from which the first set of sigma points “Xk” are selected   

 Xk|k, i = x�k|k,   i = 0 (4a) 

 Xk|k, i = x�k|k + θk,isk|i,   i = 1, 2,…, 2n (4b) 
where sk,i is defined as the Cholesky factorization of the covariance matrix or 

 sk,i = �√Pk|k�i , i = 1,2,…, n (5a) 
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 sk,i = −�√Pk|k�i−n , i = n +1, n + 2, …, 2n (5b) 
and θk is the sampling step size 

 θk,i = �(n + κ) , i = 1, 2,…, 2n (5c) 
As discussed earlier initial constraints on the sigma points are set and if violated, the sampling step size will be 
adjusted to track the sigma points back to the defined boundaries. These methods are discussed in more depth in 
Wang and Wu [14]. This constrained set of sigma points will then be subjected to the state space function to 
generate a preliminary set of sigma points for the next time step “𝐗𝐗𝒌𝒌+𝟏𝟏|𝒌𝒌” and its respective system state estimate 
𝐱𝐱�𝐤𝐤+𝟏𝟏|𝐤𝐤. 

 Xk+1|k,  i = f �Xk|k,  i
C � , i = 0,1,…,2n (6a) 

 x�k+1|k = ∑ Wk,iXk+1|k,   i
2n
i=0  (6b) 

The preliminary system state estimate will be used for the measurement equation to generate measurement sigma 
points “𝐘𝐘𝒌𝒌+𝟏𝟏” and a measurement estimate “𝐲𝐲�𝒌𝒌+𝟏𝟏" 

 Yk+1|k,   i = h �Xk+1|k,   i� , i = 0, 1,…,2n  (7a) 

 y�k+1|k = ∑ Wk,iYk+1|k,   i
2n
i=0  (7b) 

Then a measurement covariance matrix “𝐏𝐏𝒚𝒚𝒚𝒚 ” and the cross covariance matrix “𝐏𝐏𝒙𝒙𝒚𝒚 ” are generated which is 
used to derive the Kalman filter gain “𝐊𝐊𝒌𝒌+𝟏𝟏” 

 Pyy,k+1|k = ∑ Wk,i �Yk+1|k,   i − y�k|k�2n
i=0 �Yk+1|k,   i − y�k|k�

T
  + Rk+1 (8a) 

 Pyy,k+1|k ∑ Wk,i �Xk+1|k,   i − x�k|k�2n
i=0 �Yk+1|k,   i − y�k|k�

T
 (8b) 

 Kk+1 = Pxy,k+1|k Pyy,k+1|k
−1  (8c) 

The Kalman filter gain is then used to calculate the updated sigma points “𝐗𝐗𝐤𝐤+𝟏𝟏|𝐤𝐤+𝟏𝟏” for the next time step using 
a comparison between the measurement sigma points and a measurement “𝐲𝐲𝐤𝐤|𝐤𝐤” from a live experiment  

 Xk+1|k+1,  i = Xk+1|k,  i + Kk+1 �yk|k − Yk+1|k,   i�,   i = 0, 1,…, 2n (9) 

The next step system state estimates “𝐱𝐱�𝐤𝐤+𝟏𝟏|𝐤𝐤+𝟏𝟏” and covariance matrices “𝐏𝐏𝐤𝐤+𝟏𝟏|𝐤𝐤+𝟏𝟏” are then calculated using  

 x�k+1|k+1 = ∑ Wk,iXk+1|k+1,   i
2n
i=0  (10a) 

 Pk+1|k+1 = ∑ Wk,i �Xk+1|k|1,   i − x�k+1|k+1�2n
i=0 �Xk+1|k+1,   i − x�k+1|k+1�

T
 + Qk + Kk+1 Rk+1Kk+1

T  (10b) 

and a final analysis is done to project any estimates that violate the constraints back to their bounds where Qk is 
the process noise covariance matrix and Rk+1 is the observation noise. 

4 Bouc-Wen Model 
The Bouc-Wen model is used in this study to emulate the responses of the experimental and numerical 
substructures. The equation of motion for a single degree of freedom structure can be expressed as following 

 𝑚𝑚 ∙ �̈�𝑥(𝑡𝑡)   +  𝑐𝑐 ∙ �̇�𝑥(𝑡𝑡)  + 𝑟𝑟(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) (11) 
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where m is the mass; c is the inherent viscous damping; r(t) is the restoring force; F(t) is the earthquake 
excitation force; and ẋ(t) and ẍ(t)   are the velocity and acceleration responses, respectively. For hybrid simulation 
the restoring force of the SDOF structure is assumed to be composed of two parts: 

 𝑟𝑟(𝑡𝑡) =  ra(t)  +  re(t) (12) 

where ra(t) and  re(t) are the restoring forces of the analytical and experimental substructures, respectively. For 
the Bouc-Wen model the restoring force is defined by the nonlinear equation set of 

 𝑟𝑟(𝑡𝑡) = 𝛼𝛼 ∙ 𝑘𝑘 ∙ 𝑥𝑥(𝑡𝑡) + (1 −  𝛼𝛼) ∙ 𝑘𝑘 ∙ 𝑧𝑧(𝑡𝑡) (13a) 

 �̇�𝑧(𝑡𝑡) =  �̇�𝑥(𝑡𝑡)  −  𝛾𝛾 ∙ �̇�𝑥(𝑡𝑡) ∙ 𝑧𝑧(𝑡𝑡) ∙ |𝑧𝑧(𝑡𝑡)|𝑎𝑎−1–  𝛽𝛽 ∙ �̇�𝑥(𝑡𝑡) ∙ |𝑧𝑧(𝑡𝑡)|𝑎𝑎 (13b) 
 

Description of the parameters is provided in Table 1 for the Bouc-Wen model used in this study. 

Table 1 – Summary of Bouc-Wen Parameters for SDOF simulation 

Parameter Description 
α Ratio of elastic to inelastic stiffness 
β Basic hysteresis shape control   
γ Basic hysteresis shape control  
k Initial elastic stiffness 
n Sharpness of yield 

 

5. Computational Simulation 
Computational simulation is first conducted to evaluate the effectiveness of the MAI to track the effect of 
inaccurately estimated model parameters in the analytical substructures. Both single-degree-of-freedom and two-
degree-of-freedom structures are considered for the computational simulation. For the constrained unscented 
Kalman filer, the state space equation is set as f(x) = z(t, v, γ, β,n) and the measurement equation is set as h(f(x)) 
= r(t, k, α, x(t), z(t)). The system state vector is defined as x = [z, k, β, γ, n, α]T initially in analytical substructures 
a system state estimate 𝐱𝐱� = [x1, x2, x3, x4, x5, x6]T is selected which will be the initial estimated values of the 
system state. An initial covariance matrix P0 will also be selected based on the confidence of these estimations. 
Additionally there will observation noise Rk+1 and a process noise covariance matrix Qk which contributes to the 
rate at which a solution is found.  

5.1 Single-Degree-of-Freedom (SDOF) Structure 

The single-degree-of-freedom steel chevron buckling braced frame is schematically shown in Figure 2. The 
structure is divided into two categories of interest, the braces and the surrounding frame. One brace is physically 
tested while the other is numerically modeled with parameters updated throughout the test. The frame has a 
beam assumed to be infinitely stiff. The braces are assumed to carry all the lateral stiffness amongst the vertical 
elements. It can be observed that the experimental and analytical substructures are subjected to the same 
displacement response during the hybrid simulation. 
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Figure 2. Schematic of Single-Degree-of-Freedom Steel Chevron Buckling Braced Frame 

The parameters of the Bouc-Wen model for the experimental substructure are selected as k = 135 kN/mm, β = 
0.55, γ = 0.45, n = 2, and α = 0.02; while the parameters for the numerical substructure are intentionally selected 
with error as k = 100 kN/mm, β = 0.2, γ = 0.2, n = 3, and α = 0.05. The bounding properties of the CUKF are k ≥ 
0, β ≥ 0, n ≥ 1, and 0 ≤ α ≤ 1. The Kalman filter has the properties Qk = 10−6 𝐈𝐈𝟔𝟔, Rk+1 = 1.5 kN2, and P0 = 
diag(10−6, 100, 10, 10, 10, 10−2).  The process noise covariance matrix and the observation noise were tuned to 
represent the actual noise during the experiments. The initial covariance matrix is based on the confidence of the 
initial estimates. Since z is a calculated value a small corresponding index coefficient of 10−6 is used. For the 
purpose of simulation it is assumed that stiffness value was not well known and therefore given the highest 
corresponding indices of 100. However for most practical applications the initial stiffness will be readily 
available from static tests. The simulation is initially conducted for the 1994 Canoga park ground motion scaled 
with peak ground acceleration (PGA) of 1000 mm/sec. It is then repeated for the same ground motion scaled by 
different factors of 1.5, 2, 2.5 and 3.0 to evaluate the effectiveness of the MAI when the substructures develop 
nonlinear behavior. All the simulations are then compared to the corresponding simulation with exact parameter 
values for both analytical and experimental substructures. The root-mean-square (RMS) errors are calculated and 
presented in Table 2.  

Table 2 – RMS Error for Simulations using Different Ground Motion Scales 

Scale 1.0 1.5 2.0 2.5 3.0 
RMS (10-5) 3.76 4.95 3.49 1.80 0.12 

 
Figure 3. Comparison of Displacement Responses for Simulations of Exact, No Updating, and CUKF 

Updating for Ground Motion with PGA of 1000 mm/sec2 
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The RMS values in Table 2 indicate little correlation between ground motion scale and accuracy of hybrid 
simulation with model updating. It also shows that the CUKF generates very accurate results as all errors are 
smaller than 1E-5. Figure 3 shows the time history of simulated displacement responses with and without 
updating in comparison with exact response. It can be observed that model updating using CUKF could help 
achieve accurate results. Figure 4a further demonstrates this through comparing the restoring forces. 

 
Figure 4a. Comparison of Restoring Forces for 
Simulations with Ground Motion PGA of 1000 

mm/sec2 

Figure 4b. Difference between Analytical and Physical 
Restoring Forces for Simulations with Ground Motion 

PGA of 1000 mm/sec2 

It can be observed in Figure 4a that difference initially exists between exact restoring force and the simulated 
restoring force with model updating. As time progresses the two restoring forces become almost the same. This 
is expected due to the nature of the CUKF which attempts to correct the numerical model to match the restoring 
force from the experimental substructure. This correction is observed by Figure 4b which shows the difference 
between analytical and physical restoring forces from an updated and non-updated case. It is clearly illustrated 
that the CUKF is effectively correcting the analytical substructure. The time histories of MAI are compared and 
presented in Figures 5 and 6 between simulations with and without model updating and at different ground 
motion scales.   

 
Figure 5. Time history of MAI for Simulations with and without Model Updating scaled to 1000 mm/sec2 

It can be observed in Figure 5 that the MAI successfully captures the effect of the error within the model 
parameters of the analytical substructures. The simulation without model updating has the largest values of MAI 
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throughout the entire duration with maximum value around 2E05 kN2. The model updating with CUKF 
demonstrably reduces the value of MAI thus minimizing the effect of modeling error in the analytical 
substructures. Figure 6 presents the time histories of MAI for simulations with model updating when the 
structure is subjected to different ground motion scales. It can be observed that, there does not exist an obvious 
correlation between ground motion scale and MAI. When the ground motion scale increases from 1.0 to 1.5, the 
maximum value of MAI increases; however the MAI decreases with ground motion scale increasing from 1.5 to 
3.0. This implies that the CUKF was able to more reliably come to an accurate result as the input force 
increased, thus decreasing modeling error.   

 
Figure 6. Time history of MAI for simulations with different scales of ground motion 

5.2 Multiple-Degree-of-Freedom (MDOF) Structure 

A two-story one-bay steel buckling restrained braced frame shown in Figure 7 is considered for evaluating the 
MAI for multiple-degree-of-freedom structures. The entire steel frame is analytically modeled except for the first 
story brace. The beams are assumed to have infinite stiffness and the columns are assumed to have 1/8th of the 
stiffness of the braces. It can be observed that in this MDOF case, the experimental and analytical substructures 
will undergo different displacement responses. 

Both braces are assumed to have properties consistent with the Bouc-wen Model by Black et al. [17]. The brace 
for experimental substructure is defined by the set properties of k = 414.5 kN/mm, β = 0.55, γ = 0.45, n = 1, and 
α = 0.025 while the brace for analytical substructure has estimated parameters of k = 415 kN/mm, β = 0.1, γ = 
0.1, n = 3, and α = 0.04. The estimated parameters k and α is close to the actual values as the stiffness  and post 
yield stiffness will likely be accurately obtained through mechanics or static load testing. The properties of the 
CUKF will be the same as the SDOF case except for the initial covariance matrix P0 = 
diag(10−6, 10−8, 100, 100, 100, 10−3). The covariance matrix is updated to reflect that the stiffness and post 
yield stiffness are more accurately known that the other parameters and therefore their corresponding covariance 
may be lower. Figure 8 presents the adaptation of the parameters for the simulation when the structure is 
subjected to the Canoga ground motion scaled to have PGA of 1000 mm/s2.  
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Figure 7. Two Degree of Freedom Frame Schematic 

 

 
Figure 8. Time Histories of Parameters through CUKF: a) k, b) β, c) γ, d) n, e) α, and f) z  

 
Figure 8 shows the updating of the Bouc-wen parameters in the analytical substructure over time. The 
parameters of the analytical model are observed to converge to the accurate values. The displacement responses 
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of the 2nd and roof level of the structure are presented in Figure 9.  Little difference can be observed between the 
displacements of two stories. Figure 10 shows that a majority of the yielding occurred in the brace framing into 
the 2nd floor for this simulation. This could have contributed to the difference in story drifts. 

        
Figure 9. Displacement Responses of Roof and 2nd 

Floor         
Figure 10. Hysteresis of Braces in Roof and 2nd Story  

       

  
Figure 11. Time History of MAI 

The time history of the MAI is presented in Figure 11. The MAI indicates that some of the accumulated error 
decreased after initially peaking. This could suggest that the online model updating could be over tuned causing 
potentially unrealistic results. When the constrained unscented Kalman filter perfectly updates the model, the 
MAI slope is expected to have the slope of 0. In the case where the MAI begins decreasing the Kalman filter 
could be shut off or toned down to keep the simulation stable.  

5. Application of MAI to Experimental Results 

The effectiveness of the MAI is further evaluated by the experimental results by Wang and Wu [15], which 
involves the real-time hybrid simulation of a SDOF two-bay braced frame with one brace numerically modeled 
and the other physically tested.  
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The synchronized subspace plot in Figure 12 indicates that there was error in the numerical modeling of the 
analytical substructure. The time history of the MAI in Figure 13 further confirm this with its value increasing 
monotonically from zero to the maximum value around 7E+5 kN2.  

 
Figure 12. Subspace Plot of Experimental RTHS test      Figure 13. MAI Time History of Experimental Results 

6. Summary, Conclusions, and Future Work 

Online model updating makes it possible to extend the existing hybrid simulation technique to more complex 
civil engineering structures beyond the limits of laboratory space and servo-hydraulic equipment. Updating the 
numerical model of the analytical substructures based on the measurements from the experimental substructure 
presents a challenge to interpret the reliability of hybrid simulation results. This study presents numerical 
evaluation of a recently proposed MAI to quantify the cumulative effect of modeling error in hybrid simulation 
with model updating. The MAI is further demonstrated through experimental results. It is demonstrated that the 
MAI can effectively capture the cumulative effect of modeling error in analytical substructure thus providing a 
useful quantity for potential reliability assessment of hybrid simulation with model updating. However research 
still needs to be conducted to assess the accuracy of an updated hybrid simulation. The MAI aims to be a tool in 
the researcher’s arsenal by showing cumulative system error through deviation in the analytical and experimental 
subspace plots.  

However, this methodology has not been perfected. As seen in section 5.1 there is a significant reduction in the 
maximum MAI of the CUKF condition compared to the un-updated condition. Despite the reduction the MAI of 
the CUKF case indicates there is some modeling error. The MAI corresponding to an acceptable tolerance level 
of this error is currently unknown. In section 5.2 both braces where assumed to be the same so the experimental 
model could update the numerical model. Due to the simulated structures configuration larger forces occurred in 
the experimental substructure. Yielding occurred in this substructure however the force at the roof level was low 
enough to keep the analytical brace close to elastic. This does not line up with practical design considerations of 
distributing yielding evenly throughout a structure. Researchers doing online model updating should take this 
into consideration with a focus on finding ways to accurately update analytical substructures of different strength 
levels than their physical counterparts. Normalization of the MAI should also be explored to aid in interpretation 
of results. The MAI clearly can be used as a tool to observe the buildup of modeling error, however more work 
needs to be done to interpret the results. 
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