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Abstract 
This paper presents an operational assessment of existing damage detection algorithms for structural health monitoring 
(SHM) of building structures. This project assumed the typical SHM scenario involving continuous structural vibration 
recording using accelerometers. This study compared six established stiffness based damage detection algorithms utilising 
the ASCE benchmark instrumented structure dataset. This will be one of the first studies comparing the effectiveness of 
current damage detection algorithms using the benchmark data. The analyses indicate that all six considered damage 
detection algorithms have no difficulty in detecting the existence of the damage. Additionally, the identified stiffnesses 
using PP, FDD, EFDD methods were the most accurate for identifying the damage severity. The AR-ARX model was the 
least accuracy in estimating the stiffness amongst the six methods. All six algorithms were sensitive to modelling errors, 
while ANN and AR-ARX model techniques were sensitive to loading condition. 

Keywords: Structural Heath Monitoring; Damage Detection, ASCE Benchmark Structure 

1. Introduction 
Structural Health Monitoring (SHM) refers to the use of continuous sensor data to monitor the condition of 
structures, typically via tracking of building dynamic characteristics. The most common application is the 
continuous recording of building vibration using accelerometers. SHM has the potential to detect and quantify 
damage which is substantially helpful for decision making following an extreme event, such as earthquakes. It 
has potential to largely reduce loss of life and injuries, and reduce operation downtime following the disaster [1].  

In general, structural damage detection can be classified into global damage detection and local damage 
detection. Local damage detection techniques refer to non-destructive testing (NDT), including the use of 
radiographs, ultrasonic and magnetic imaging. It is mainly used to detect local damage, determine the extent and 
locate damage in structures [2]. Research has shown that they can be very effective for small structures [3]. 
However, local damage detection methods are difficult to implement in large or complex structures as it requires 
extensive instrumentation and many areas of the structure may be difficult to access. Under this situation, the 
global damage detection is the only option. Global damage detection infers damage on the basis of changes in a 
structure’s dynamic parameters (stiffness, mass and damping) [4].  

At present, numerous global damage detection techniques exist for SHM. Examples include regression 
analysis using AR-ARX model [5], Natural Excitation Technique and Eigensystem Realization Algorithm 
(NExT and ERA) [6], Neural Network (NN) method [7] and etc. However, these various techniques have been 
applied to different numerical or experimental structures, which make it difficult to compare the effectiveness of 
the different methodologies. In order to provide a platform for the comparison of those techniques, a benchmark 
problem in structural health monitoring was established by the joint IASC–ASCE Task Group on Structural 
Health Monitoring. For the first phase of the benchmark problem, the selected structure is a four-storey, two-bay 
by two-bay steel-frame quarter-scale model structure, shown in Fig. 1. The section properties are given in Table 
1. Analytic models of the structure were developed, and simulated responses for five damage cases were 
generated. The goal of phase I benchmark study is to identify the location the damage in the structure using only 
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noisy acceleration measurements. Issues such as limited sensor data and modelling errors were also considered 
in phase I of this problem. The details of the benchmark problem can be found in Johnson et al. [8].  

 
Fig. 1 – The benchmark structure [7] 

Table 1 – Properties of Structural Members 

Property Columns Floor beams Braces 

Section Type B100×9 S75×11 L25×25×3 

Cross-sectional area A (m2) 1.133×10-3 1.43×10-3 0.141×10-3 

Moment of inertia (Strong 
direction), Iy [m4] 1.97×10-6 1.22×10-6 0 

Moment of inertia (Weak 
direction), Iz [m4] 0.664×10-6 0.249×10-6 0 

St. Venant torsion constant 
J [m4] 8.01×10-9 38.2×10-9 0 

Young’s Modulus E (Pa) 2×1011 2×1011 2×1011 

Mass per unit length ρ 
[kg/m] 8.89 11.0 1.11 

 

In this study, a total of six damage detection methods were considered in this paper. It included Peak 
Picking (PP) method, Frequency Domain Decomposition (FDD) method, Enhanced Frequency Domain 
Decomposition (EFDD) method, Eigen Realization Algorithm combined with the Natural Excitation Technique 
(NExT and ERA), AR-ARX model and Artificial Neural Network (ANN) method. First three of the five damage 
cases in the benchmark study were used to compare the effectiveness of the six damage detection methods. 

2. Past Studies 
Traditional methods of damage detection are predominately stiffness based and relied upon changes of structural 
vibration characteristics, including natural frequencies, damping ratios or mode shapes. These variations are used 
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to determine the damage location and severity between undamaged and damaged structures. In 2000, Lee and 
Chung [9] presented a damage detection method using natural frequencies. They used three procedures to 
determine the location and size of damage First, the approximate crack location was identified using Armon’s 
Rank-ordering method, in which the first four natural frequencies were used. Then, a corresponding Finite 
element (FE) model is established based on the results of the crack position range, and the crack size is obtained 
by the FE model. Finally, Gudmundson’s equation was applied with the obtained crack size and the system’s 
natural frequencies to determine the actual crack location. Curadelli et al. [10] proposed a damage detection 
technique using the instantaneous damping coefficient as a damage-sensitive parameter based on a wavelet 
transform. With examples using experimental and simulated results on structures subjected to seismic base 
excitation, it was shown that the damage detection technique using the instantaneous damping coefficient is 
useful to assess changes in the vibration characteristics due to incremental damage of nonlinear systems. Khoo et 
al. [11] demonstrated a damage detection method of locating damage by evaluating damage-sensitive parameters 
including mode shapes and resonant pole shifts in a wooden wall structure. The damaged location was 
determined using the visual comparison of the deformation mode shapes before and after damage. 

In recent years, structural damage detection methods based on machine learning of measured response 
signal of structures in service have gained popularity amongst researchers. This type of damage detection 
method has the advantage of being easy to implement, lower cost and more accurate dynamic characteristic 
information of structures [12]. The methods include Neural Network, Factor Analysis, Wavelet Analysis, 
Genetic Algorithm, etc. In 2003, Kao and Huang [13] proposed a Neural Network based damage detection 
method, which included two steps. First, the neural system identification network was formulated to identify the 
undamaged and damaged states of the structure. Then, the trained neural system identification network was used 
to generate free vibrations responses with the same initial condition. Finally, the extent of the damage could be 
assessed by comparing the periods and amplitudes of the free vibration responses of the undamaged and 
damaged statuses. Kim and Melhem [14] classified wavelet-based damage detection methods into three 
categories, i) variation of wavelet coefficients, ii) local perturbation of wavelet coefficients in a space domain 
and iii) reflected wave caused by local damage. The first identified the existence and severity of damage. The 
second localized the damage in structures by detecting the irregularity of wavelet coefficients. The last identified 
the location and severity of damage.  

This far, a complete comparison of the current damage detection methods using IASC-ASCE benchmark 
problem is not yet available. Caicedo et al. [6] applied NExT and ERA techniques to the benchmark study and 
showed that this method was effective for detecting damage in benchmark model. This was confirmed by the 
less than 1% errors in typical stiffness estimates and that the method was insensitive to noise. Lam et al. [15] 
also applied a statistical model updating approach in the benchmark study. The results indicated that this method 
slightly overestimated the damage extent for cases with modelling error, but was accurate in cases with zero 
modelling error. This highlighted the importance in selecting an appropriate model for successful damage 
detection. Shuichi et al. [16] used a vibration-based damage detection algorithm on the ASCE benchmark 
building model. This approach was limited to identifying structural damages that produced changes in the 
structural dynamic characteristics. Results showed the applied algorithm had a good accuracy in damage 
identification and was relatively insensitive to noise in the sensors. However, it could not be used to estimate the 
severity of the damage. 

3. Damage detection methods 
A total of 6 damage detection methods were considered in this paper. It included Pick Peaking (PP) method, 
Frequency Domain Decomposition (FDD) method, Enhanced Frequency Domain Decomposition (EFDD) 
method, Eigen Realization Algorithm combined with the Natural Excitation Technique (NExT and ERA), Auto-
regressive and auto-regressive with exogenous inputs (AR-ARX) model and Artificial Neural Network (ANN) 
method.  

The first four methods could be regarded as system identification approaches, which were used to extract 
modal parameters (frequency, damping ratio, mode shape etc.). Since the reduction of the story stiffness was 
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considered as the damage indicator, these four method, combined with modal updating, could be used as damage 
detection methods to monitor the story stiffness change of the ASCE benchmark structure. 

Pick Peaking (PP) method [17] is the simplest method for identifying the modal parameters of a structure. 
The PP method is achieved based on that the frequency response function (FRF) goes through an extreme value 
around the natural frequencies. The frequency at that extreme value can be taken as eigenfrequency. When under 
ambient vibration measurements, the FRF is replaced by the auto spectra of the ambient outputs. In this way, the 
natural frequencies are simply determined from the observation of the peaks on the graphs of the averaged 
normalised power spectral densities (ANPSDs). 

Frequency Domain Decomposition (FDD) [18] is a frequency domain identification, which is based on 
decomposing the power spectral density function matrix using Singular Value Decomposition (SVD). Then, 
modes can be picked by locating the picks in SVD plots, but no modal damping is calculated The enhanced 
Frequency Domain Decomposition (EFDD) technique [19] is an extension to the FDD technique. Compared to 
FDD, EFDD gives an improved evaluation of both the natural frequencies and the mode shapes and also includes 
damping. Besides, in EFDD, the SDOF Power Spectral Density function, identified around a resonance peak, is 
calculated using the Inverse Discrete Fourier Transform (IDFT). The natural frequency is obtained by 
determining the number of zero-crossing as a function of time, and the damping by the logarithmic decrement of 
the corresponding SDOF normalized auto correlation function. The SDOF function is estimated using the shape 
determined by the previous FDD peak picking. 

Natural Excitation Technique and Eigensystem Realization Algorithm (NExT and ERA) [20,21] includes 
two main stages: the first is to eliminate the effect of the unknown force from the governing equation of motion 
using the Natural Excitation Technique (NExT), and the second procedure is to extract the modal parameters of 
the homogeneous model using the Eigensystem Realization Algorithm (ERA). The fundamental principles of the 
NExT method is that the cross-correlation function between the response vector and the response of selected 
reference DOFs satisfies the homogeneous equation of motion, provided that the excitation and responses are 
weakly stationary random processes, which is normally the case for ambient vibration. Eigensystem Realization 
Algorithm (ERA) starts with formation of Hankel block data matrix. Then, Hankel block data matrix is 
factorized using SVD. Finally, the discrete-time state-space realization matrices for the structural model can be 
obtained.  

Auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model is a two-stage prediction 
model, which is proposed by Sohn and Farrar [22]. The model is constructed with selected and normalized 
acceleration signals obtained from the undamaged structure. The one-step-ahead error prediction is defined as a 
damage-sensitive index. If there is any damage in the structure, the previously obtained model using the 
reference signals will not be able to reproduce the new time series measured from the damaged structure. 

Artificial Neural Network (ANN) method is one of pattern recognition approach, whose basic mechanism is 
first to calculate the pattern features of a selected list of possible damage scenarios by computer simulation, and 
then to match the measured pattern features from the possibly damaged structure with all the calculated pattern 
features one by one [23]. The damage scenario that corresponds to the “best fit” calculated pattern feature is then 
regarded as the “true” damage scenario for the structure. ANN is used for matching the measured pattern 
features to the calculated pattern features. The multi-layer feedforward type of ANN is adopted in this paper. It 
includes three layers: input layer, hidden layer and output layer. The unit in each layer is named neurons, which 
refer to the inputs and output data in the mathematical models. The design of the ANN involves the selection of 
1) the number of hidden neuron in the hidden layer and 2) the activation function for all the neurons in the 
hidden layer. Further details could be found in Wu et al. [24].  

 

4. Comparison of Different Methods using Benchmark Problem 
This study adopts the same cases and damage patterns previously comprehensively described in Johnson et al. 
[8]. 1% equivalent viscous damping was assumed for all modes. Measurement noise was numerically simulated 
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using a white noise signal with a root mean square (RMS) amplitude equaling to 10% of the RMS amplitude of 
the roof response. Forty seconds of data at 1,000 Hz sampling rate were used for the damage detection analyses. 

Two finite element (FE) models were developed based on the benchmark structure. The first model 
assumes each floor is perfectly rigid with translation restricted to a plane parallel to the floor. Therefore, in this 
model, each floor has 3 degrees of freedom (DOF), for a total of 12 DOF in structural model. The second FE 
model has 120 DOFs, where floor nodes have the same horizontal translation and in-plane rotation but can have 
relative vertical translation. This model is considered to determine the effects of modelling errors in the 
identification process. The benchmark problem included 5 Cases, shown in Table 2. Case 1 was designed to be 
the computationally simplest to process, while Case 5 was considered the most complex. The case complication 
increased as the case number increased. In terms of Cases 1, 3, and 4, the simulated response data were 
generated using a 12-DOF shear building model, while in Cases 2 and 5, a 120-DOF model was used. The 
natural frequencies and horizontal storey stiffness of these two models could be found in Johnson et al. [8]. 
There were additionally six different Damage Patterns in this benchmark problem, shown in Table 3. It was 
assumed that a broken brace has zero stiffness contribution, but it would not affect the mass of the structure 
(mass matrix). Damage Pattern 0 represented the undamaged state. In Cases 1–3, only Damage Patterns 1 and 2 
were studied. In this paper, only these three cases were considered.  

Table 2 – Damage Cases considered in the benchmark study 

Case Number 
Model used to 

generate simulated 
response 

Damage 
Patterns Excitation Mass Distribution 

1 12 DOF 1,2 Ambient Symmetric 

2 120 DOF 1,2 Ambient Symmetric 

3 12 DOF 1,2 Shaker Diagonal on Roof Symmetric 

4 12 DOF 1,2,3,4,6 Shaker Diagonal on Roof Asymmetric 

5 120 DOF 1,2,3,4,5,6 Shaker Diagonal on Roof Asymmetric 

Table 3 – Damage patterns considered in the benchmark study 

Damage Pattern Characteristics 

0 undamaged 

1 All braces at the first floor are broken 

2 All braces at the first and third floors are broken 

3 One brace at the first floor is broken 

4 Two braces are broken, one at the first floor and other at the third floor 

5 Damage Pattern 4 plus on beam-column connection at the first floor is broken 

6 One third stiffness reduction of one brace at the first floor 
 

A total of 6 damage detection methods were considered in this paper. It included Pick Peaking (PP) 
method, Frequency Domain Decomposition (FDD) method, Enhanced Frequency Domain Decomposition 
(EFDD) method, Eigen Realization Algorithm combined with the Natural Excitation Technique (NExT and 
ERA), Auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model and Artificial Neural 
Network (ANN) method. To effectively compare these methods, the horizontal stiffness in each storey was 
calculated and compared by each method.  
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For PP, FDD, EFDD and NExT and ERA methods, a 40-second length acceleration data with a sampling 
rate of 100 Hz was used. In general, damage detection based on AR-ARX model is a time series analysis using 
the residual error. Residual error being the difference between the actual acceleration measurement and the 
prediction obtained from the AR-ARX model. When the damage occurred in the structure, the increase in 
residual errors would be maximized at the sensors instrumented near the actual damage locations. To compare 
with other methods, a different way of AR-ARX model is used. In this paper, a 40-second length acceleration 
data was obtained for damage detection with a sampling rate of 100 Hz. The AR-ARX model was constructed 
only using the first half data both in undamaged and damage data. The second half data was used to calculate 
stiffness of the structure using the AR-ARX model constructed in the first half data. The order of AR-ARX 
model is selected as 15 by using AIC criterion. The parameters of AR-ARX model na=5, nb=5 and time delay 
was set to 1. The design of ANN is discussed as follows. The damaged-induced changes in the modal parameters 
of the first two modes are employed as the ANN input, the number of input neurons is ten. The number of output 
neurons is four, because of four possible damage locations in each direction. The hyperbolic tangent sigmoid 
(tansig) is selected as the activation function, with 17 hidden neurons. Since this selection gives the highest value 
of evidence.  

4.1 Case 1 
For Case 1, mass was distributed in the structure symmetrically in both the undamaged and damaged (Damage 
Patterns 1 and 2) states, and the response was restricted in the y direction. Therefore, a planar 4-DOF shear 
building model was considered sufficient as the identification model in this case.  

Table 4 – Comparison of Horizontal Storey Stiffness – K (MN/m) using different methods for Case 1 

Damage 
Pattern 

Storey 
Stiffness, K 
(Benchmark 

Study) 

PP FDD EFDD NExT and 
ERA AR-ARX ANN 

K Diff. K Diff. K Diff. K Diff. K Diff. K Diff. 

0 

L1 67.90 67.76  -0.2% 67.76  -0.2% 67.76  -0.2% 68.62  1.1% 70.38  3.6% 68.77  1.3% 
L2 67.90  67.74  -0.2% 67.58  -0.5% 67.74  -0.2% 67.32  -0.9% 66.21  -2.5% 67.42  -0.7% 
L3 67.90  68.04  0.2% 67.94  0.1% 68.04  0.2% 67.83  -0.1% 69.63  2.6% 67.23  -1.0% 
L4 67.90  67.79  -0.2% 67.79  -0.2% 67.79  -0.2% 67.67  -0.3% 66.02  -2.8% 67.42  -0.7% 

1 

L1 19.67  19.61  -0.3% 19.61  -0.3% 19.61  -0.3% 19.36  -1.6% 19.11  -2.9% 21.06  7.1% 
L2 67.90  67.58  -0.5% 67.77  -0.2% 67.58  -0.5% 67.77  -0.2% 69.81  2.8% 67.90  0.0% 
L3 67.90  67.83  -0.1% 67.94  0.1% 67.83  -0.1% 67.68  -0.3% 66.17  -2.6% 66.28  -2.4% 
L4 67.90  67.79  -0.2% 67.87  0.0% 67.96  0.1% 67.70  -0.3% 69.41  2.2% 67.90  0.0% 

2 

L1 19.67  19.94  1.4% 19.94  1.4% 19.94  1.4% 19.87  1.0% 20.63  4.9% 19.63  -0.2% 
L2 67.90  67.90  0.0% 68.17  0.4% 67.90  0.0% 67.44  -0.7% 70.48  3.8% 67.13  -1.1% 
L3 19.67  19.75  0.4% 19.71  0.2% 19.75  0.4% 19.71  0.2% 20.30  3.2% 20.17  2.5% 
L4 67.90  68.00  0.1% 67.90  0.0% 68.00  0.1% 67.70  -0.3% 69.65  2.6% 66.47  -2.1% 

Six methods were used in this Case and the horizontal storey stiffness calculated by different methods 
were summarized in Table 4. In the table, the differences between the used methods and the benchmark study 
results were also presented. Johnson et al. [8] reported exact stiffness values of the undamaged and damaged 12-
DOF structure. For undamaged structure, the horizontal storey stiffness in y direction is 67.90 MN/m. However, 
the first storey stiffness is reduced to 19.67 MN/m in the damage pattern 1. For damage pattern 2, both the first 
storey stiffness and the third storey stiffness is reduced to 19.67 MN/m.  In undamaged condition, the identified 
stiffness using PP, FDD, EFDD methods ranged from 67.58 to 68.04 MN/m, which were within 0.5% difference 
from the benchmark study value. For NExT and ERA method and ANN method, the difference increased to 
1.1% and 1.3%, respectively. The AR-ARX model had the largest difference from benchmark study up to 3.6%. 
For damaged structure, differences between the all methods and the benchmark study results increased slightly 
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and ANN method produced the largest difference (7.1%). Nevertheless, all these methods have no difficulty in 
detecting the existence of the damage, since a difference within 5% could be considered as being reduced for 
structural analysis purposes. Besides, only the identified stiffness at damaged location using ANN method was 
over 5% from benchmark study results.  

4.2 Case 2 
Case 2 is similar to Case 1 except it used a 120-DOF model to simulate the response measurements. Compared 
to 12-DOF model, the horizontal slab panels were assumed to only contribute to the in-plane stiffness, making 
the floor behave as rigid regarding in-plane motions only. Also, the remaining out-of-plane degrees of freedom, 
including vertical motion and rolling of the floor, were active. The inclusion of this Case is to evaluate the effect 
of modelling error in damage detection. In this case, only symmetric mass distribution was considered and the 
ambient vibration was imposed along the y direction as in Case 1. Thus, a planar 4-DOF shear building model 
was also employed as the identification analysis model in this case. 

The identified horizontal storey stiffness are summarized in Table 5. In short, similar conclusions can be 
drawn as in Case 1.  The PP, FDD, EFDD, NExT and ERA methods produced very similar stiffness to the 
benchmark study, and ANN method produced the largest differences compared to the other five methods. 
Furthermore, it can be seen that the differences amongst all the methods tend to be larger due to the modelling 
error. Especially for ANN method, the difference from the benchmark study results is increased to 10.7%. Also, 
most storey stiffness have lower values compared to Case 1. This is reasonable as the 120-DOF model had fewer 
constraints leading to a more flexible model.  

Table 5 – Comparison of Horizontal Storey Stiffness (MN/m) using different methods for Case 2 

Damage 
Pattern 

Storey 
Stiffness, K 
(Benchmark 

Study) 

PP FDD EFDD NExT and 
ERA AR-ARX ANN 

K Diff. K Diff. K Diff. K Diff. K Diff. K Diff. 

0 

L1 61.62 61.91 0.5% 61.91 0.5% 60.90 -1.2% 62.48 1.4% 63.79 3.5% 62.34 1.2% 
L2 53.66 53.89 0.4% 53.89 0.4% 54.16 0.9% 53.43 -0.4% 51.94 -3.2% 54.12 0.9% 
L3 51.04 51.21 0.3% 51.10 0.1% 51.21 0.3% 51.10 0.1% 52.75 3.3% 50.54 -1.0% 
L4 49.16 49.33 0.3% 49.26 0.2% 49.20 0.1% 49.14 0.0% 47.64 -3.1% 48.80 -0.7% 

1 

L1 15.41 15.52 0.7% 15.52 0.7% 15.52 0.7% 15.75 2.2% 14.85 -3.6% 16.56 7.5% 
L2 46.57 47.05 1.0% 47.05 1.0% 47.05 1.0% 47.30 1.6% 48.13 3.3% 45.81 -1.6% 
L3 51.13 50.93 -0.4% 50.93 -0.4% 50.75 -0.7% 50.87 -0.5% 49.52 -3.1% 51.04 -0.2% 
L4 48.69 48.86 0.3% 48.86 0.3% 48.86 0.3% 48.77 0.2% 50.22 3.1% 49.16 1.0% 

2 

L1 15.54 15.79 1.6% 15.60 0.4% 15.79 1.6% 15.35 -1.2% 16.62 7.0% 17.21 10.7% 
L2 42.90 42.83 -0.2% 43.04 0.3% 42.83 -0.2% 42.90 0.0% 44.94 4.8% 42.19 -1.7% 
L3 12.25 12.25 0.0% 12.25 0.0% 12.25 0.0% 12.25 0.0% 12.71 3.8% 13.38 -9.2% 
L4 41.68 41.83 0.4% 41.90 0.5% 41.83 0.4% 41.79 0.3% 43.27 3.8% 41.68 0.0% 

4.3 Case 3 
The only difference between Cases 1 and 3 is that the loading in Case 3 stemmed from a single white noise input 
acting at the centre of the roof in the diagonal direction. This loading excited both x and y translational motions. 
In this case, the mass distribution of the structure was symmetric and there was no torsional motion. An 8-DOF 
shear building model was used to capture the motions excited in both x and y directions.  

Table 6 summarizes the identified stiffness parameters in Case 3. Accordingly, this shows that the 
different excitation had not materially affected the stiffness estimation. The PP, FDD, EFDD, and NExT and 
ERA methods very accurately identified stiffness in the X direction. But the results in ANN method showed 
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significant sensitivity to loading conditions and produced large stiffness variations (up to 34.7%) from actual 
values. 

Table 6 – Comparison of Horizontal Storey Stiffness (MN/m) using different methods for Case 3 

Damage 
Pattern Dir. 

Storey 
Stiffness, 

K 
(Benchmark 

Study) 

PP FDD EFDD NExT and 
ERA AR-ARX ANN 

K Diff. K Diff. K Diff. K Diff. K Diff. K Diff. 

0 

X 

L1 77.38 77.25  -0.2% 77.25  -0.2% 78.04  0.8% 76.73  -0.8% 74.00  -4.4% 75.42  -2.5% 
L2 57.38 57.27  -0.2% 57.27  -0.2% 57.27  -0.2% 57.27  -0.2% 55.32  -3.6% 56.31  -1.9% 
L3 54.88 55.06  0.3% 54.99  0.2% 54.93  0.1% 54.86  0.0% 56.68  3.3% 55.90  1.9% 
L4 52.85 53.33  0.9% 53.11  0.5% 53.11  0.5% 52.71  -0.3% 55.32  4.7% 53.87  1.9% 

Y 

L1 61.62  62.28  1.1% 61.88  0.4% 61.49  -0.2% 62.94  2.1% 63.87  3.6% 62.54  1.5% 
L2 53.66  53.53  -0.2% 53.53  -0.2% 53.53  -0.2% 53.28  -0.7% 51.29  -4.4% 52.61  -1.9% 
L3 51.04  51.30  0.5% 51.22  0.4% 51.15  0.2% 51.01  -0.1% 52.82  3.5% 51.70  1.3% 
L4 49.16  49.71  1.1% 49.53  0.8% 49.59  0.9% 49.02  -0.3% 50.83  3.4% 49.84  1.4% 

1 

X 

L1 35.21  35.49  0.8% 35.28  0.2% 35.07  -0.4% 35.07  -0.4% 33.53  -4.8% 43.78  24.3% 
L2 49.05  49.08  0.1% 49.19  0.3% 49.08  0.1% 49.36  0.6% 50.80  3.6% 49.05  0.0% 
L3 54.85  54.90  0.1% 54.83  0.0% 54.90  0.1% 54.69  -0.3% 57.43  4.7% 53.62  -2.2% 
L4 52.44  52.77  0.6% 52.61  0.3% 52.56  0.2% 52.28  -0.3% 54.63  4.2% 52.21  -0.4% 

Y 

L1 15.41  15.36  -0.3% 15.36  -0.3% 15.36  -0.3% 15.02  -2.5% 14.68  -4.7% 18.49  20.0% 
L2 46.57  46.92  0.7% 46.92  0.7% 46.92  0.7% 46.61  0.1% 48.32  3.8% 46.57  0.0% 
L3 51.13  51.24  0.2% 51.16  0.1% 51.08  -0.1% 51.02  -0.2% 52.84  3.3% 51.04  -0.2% 
L4 48.69  49.24  1.1% 49.18  1.0% 49.24  1.1% 48.69  0.0% 51.12  5.0% 49.16  1.0% 

2 

X 

L1 35.49  35.56  0.2% 35.56  0.2% 35.56  0.2% 35.56  0.2% 37.23  4.9% 42.57  19.9% 
L2 43.35  43.52  0.4% 43.42  0.2% 43.32  -0.1% 43.45  0.2% 45.64  5.3% 42.82  -1.2% 
L3 22.17  22.13  -0.2% 22.13  -0.2% 22.13  -0.2% 22.22  0.2% 21.46  -3.2% 29.86  34.7% 
L4 42.22  42.38  0.4% 42.33  0.3% 42.38  0.4% 42.19  -0.1% 43.46  2.9% 42.22  0.0% 

Y 

L1 15.54  15.75  1.4% 15.75  1.4% 15.75  1.4% 15.70  1.0% 16.13  3.8% 17.20  10.7% 
L2 42.90  42.90  0.0% 43.07  0.4% 42.90  0.0% 42.61  -0.7% 44.82  4.5% 42.90  0.0% 
L3 12.25  12.30  0.4% 12.28  0.2% 12.30  0.4% 12.28  0.2% 12.83  4.8% 14.81  20.9% 
L4 41.68  41.74  0.1% 41.68  0.0% 41.74  0.1% 41.56  -0.3% 40.10  -3.8% 41.68  0.0% 

5. Conclusion  
The effectiveness of six damage detection methods was investigated utilising the IASC–ASCE benchmark 

structure. This study evaluated the effectiveness and accuracies of the methods subjected to various excitation 
scenarios, modelling complexity, structural regularity and damage patterns. The horizontal storey stiffness in 
each storey were identified and utilised as the metric for comparing the effectiveness of the methods, these were 
also compared against the benchmark results for verification of accuracy. The results show that all six damage 
detection methods have no difficulty in detecting the existence of the damage. However, the identified stiffness 
using PP, FDD, EFDD and NExT and ERA method methods were most reliable and accurate, which are less 
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than 5% difference from benchmark study results. The results from AR-ARX model was less accurate, whose 
difference is up to 7.0%. Regarding ANN method, it has large error (up to 34.7%) when calculating the storey 
stiffness of the structure and there is damage occurred in this level. Furthermore, all six methods were sensitive 
to the modelling errors, while only ANN method were sensitive to excitation conditions.  

6. Acknowledgements 
The authors would like to give sincere thanks to Prof. J.L. Beck and Prof. E.A Johnson for sharing the raw data 
from the IASE-ASCE benchmark study. The first author wishes to acknowledge the support from EQC for 
funding his travel to 16WCEE conference and the financial support from China Scholarship Council (CSC) for 
this study. 

7. References 
[1] Farrar CR, Worden K (2007): An introduction to structural health monitoring. Philosophical 

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365 
(1851), 303-315. 

[2] Kesavan KN, Kiremidjian AS (2012): A wavelet-based damage diagnosis algorithm using principal 
component analysis. Structural Control Health Monitoring, 19, 672-685. 

[3] Yan YJ, Cheng L, Wu ZY, Yam LH (2007): Development in vibration-based structural damage 
detection technique. Mechanical Systems and Signal Processing, 21 (5), 2198-2211. 

[4] Doebling SW, Farrar CR, Prime MB (1998): A summary review of vibration-based damage 
identification methods. Shock and vibration digest, 30 (2), 91-105. 

[5] Peeters B (2000): System identification and damage detection in civil engineering. PhD thesis,  
Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium. 

[6] Caicedo JM, Dyke SJ, Johnson EA (2004): Natural excitation technique and eigensystem realization 
algorithm for phase I of the IASC-ASCE benchmark problem: simulated data. Journal of Engineering 
Mechanics, 130 (1), 49-60. 

[7] Fenza AD, Sorrentino A, Vitiello P (2015): Application of Artificial Neural Networks and Probability 
Ellipse methods for damage detection using Lamb waves, Composite Structures, 133, 390-403. 

[8] Johnson EA, Lam HF, Katafygiotis LS, Beck JL (2004): Phase I IASC-ASCE structural health 
monitoring benchmark problem using simulated data. Journal of Engineering Mechanics, 130 (1), 3-15. 

[9] Lee YS, Chung MJ (2000): A study on crack detection using eigenfrequency test data. Computers & 
structures, 77 (3), 327-342. 

[10] Curadelli RO, Riera JD, Ambrosini D, Amani MG (2008): Damage detection by means of structural 
damping identification. Engineering Structures, 30 (12), 3497-3504. 

[11] Khoo LM, Mantena PR, Jadhav P (2004): Structural damage assessment using vibration modal analysis. 
Structural Health Monitoring, 3 (2), 177-194. 

[12] Santos A, Figueiredo E, Silva MFM, Sales CS, Costa JCWA (2016): Machine learning algorithms for 
damage detection: Kernel-based approaches, Journal of Sound and Vibration, 363, 584-599. 

[13] Kao CY, Hung SL (2003): Detection of structural damage via free vibration responses generated by 
approximating artificial neural networks. Computers & Structures, 81 (28), 2631-2644. 

[14] Kim H, Melhem H (2004): Damage detection of structures by wavelet analysis. Engineering Structures, 
26 (3), 347-362. 

9 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

[15] Lam HF, Katafygiotis LS, Mickleborough NC (2004): Application of a statistical model updating 
approach on phase I of the IASC-ASCE structural health monitoring benchmark study. Journal of 
engineering mechanics, 130 (1), 34-48. 

[16] Mikami S, Beskhyroun S, Miyamori Y, Oshima T (2007): Application of a vibration-based damage 
detection algorithm on a benchmark structure. In 3rd International Conference on Structural Health 
Monitoring of Intelligent Infrastructure. Ishmii-Int Soc Structural Health Monitoring Intelligent 
Infrastructure. 

[17] Bendat JS, Piersol AG (1980): Engineering applications of correlation and spectral analysis. New York, 
Wiley-Interscience.  

[18] Brincker R, Zhang L, Andersen P (2000): Modal identification from ambient responses using frequency 
domain decomposition. In Proc. of the 18th International Modal Analysis Conference (IMAC), San 
Antonio, Texas. 

[19] Jacobsen NJ, Andersen P, Brincker R (2007): Using EFDD as a robust technique for deterministic 
excitation in operational modal analysis. In International Operational Modal Analysis Conference. 
Aalborg Universitet. 

[20] James GH III, Carne TG, Lauffer JP (1993). The natural excitation technique (NExT) for modal 
parameter extraction from operating wind turbines. SAND92-1666, UC-261, Sandia National 
Laboratories. 

[21] Juang JN, Pappa RS (1985): An eigensystem realization algorithm for modal parameter identification 
and model reduction. Journal of guidance, control, and dynamics, 8 (5), 620-627. 

[22] Sohn H, Farrar CR (2001): Damage diagnosis using time series analysis of vibration signals. Smart 
materials and structures, 10 (3), 446. 

[23] Yao R, Pakzad SN (2012): Autoregressive statistical pattern recognition algorithms for damage detection 
in civil structures. Mechanical Systems and Signal Processing, 31, 355-368. 

[24] Wu X, Ghaboussi J, Garrett JH (1992): Use of neural networks in detection of structural damage. 
Computers & structures, 42 (4), 649-659. 

 

10 


	Abstract
	1. Introduction
	2. Past Studies
	3. Damage detection methods
	4. Comparison of Different Methods using Benchmark Problem
	5. Conclusion
	6. Acknowledgements
	7. References

