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Abstract 

The Rayleigh damping model, which is pervasive in nonlinear response history analysis (RHA) of buildings, is shown to 
develop “spurious” damping forces and lead to inaccurate response results. We prove that a viscous damping matrix 
constructed by superposition of modal damping matrices—irrespective of the number of modes included or values assigned 
to modal damping ratios—completely eliminates the “spurious” damping forces. Based on response results, we conclude 
that the classical Rayleigh damping model is inappropriate. The two preferred damping models are (1) a modified Rayleigh 
damping model in which the stiffness-proportional term is based on a k that omits contributions from all rotational springs 
used to model plastic hinges; and (2) a damping matrix defined by superposition of modal damping matrices. The first of 
these two models is easier to understand and implement, whereas the second model has the advantage that it eliminates the 
spurious damping forces even if rotational springs that model plastic hinges include damping, as in some widely used 
computer programs. 
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1. Introduction 

Nonlinear response history analysis (RHA) of structures is being increasingly employed in performance-based 
earthquake engineering. The standard equations that are solved in nonlinear RHA are 

( ) ( ) ( ) ( )s x gx y gy z gz gru t u t u t+ + = − − +mu cu f u m m - m p    ι ι ι  (1) 

where u is the vector of degrees of freedom (DOFs); m and c are the mass and damping matrices, respectively; 
the vector ( )sf u  represents the nonlinear relation between resisting forces and deformations, which includes 

both material and geometric nonlinearities. (For linear systems s =f k u , where k is the stiffness matrix.) The 

right side represents the dynamic excitation: ( )gxu t , ( )gyu t , and ( )gzu t  are the x-, y-, and vertical components 

of earthquake ground acceleration, xι , yι , and zι  are the corresponding influence vectors, and grp  represents 
gravity loads. 

It is standard in earthquake dynamics of structures to model the various energy dissipating mechanisms 
except inelastic hysteresis by the damping forces D =f cu  in Eq. (1). Although calibrated against modal damping 
ratios estimated from structural motions recorded within the pre-yielding range of response, it is customary to 
use the same model for nonlinear RHA of structures. This extension is based on the tacit assumption that the 
previously mentioned energy dissipating mechanisms continue unchanged even after the structure has yielded. 
Unfortunately, experimental evidence is not available to support or refute this assumption. 

Rayleigh damping is the most common—almost pervasive—model for viscous damping in nonlinear 
RHA of buildings. The damping matrix is expressed as 0 1a a= +c m k  where the coefficients 0a  and 1a  are 
determined from damping ratios specified in two natural modes of vibration of the structure or at two selected 
frequencies. Rayleigh damping is computationally attractive because the damping matrix preserves the sparsity 
pattern of the stiffness matrix and does not require formation of additional matrices. 

However, nonlinear RHA of buildings modeled with Rayleigh damping may lead to responses that are 
physically not plausible [1−3]; for example, large damping moments appear at beam–column joints when 
structural elements are yielding, with the corollary effect that bending moments computed from ( )sf u  in beams 
and columns framing into a joint are not in equilibrium. This problem was first identified by Chrisp [1] and later 
by Bernal [3]. As will be demonstrated later, this unbalanced moment is entirely associated with the damping 
force from the stiffness proportional part of the Rayleigh damping model; we will refer to these damping forces 
as “spurious” for reasons that will become apparent later. 

Several ideas to alleviate or reduce these “spurious” damping forces have been proposed: use the tangent 
stiffness instead of the initial stiffness in Rayleigh damping [4−7], or assign zero damping to the yielding 
component of each structural member [8, 9]. Furthermore, the requirement on the damping matrix to eliminate 
the “spurious” damping forces was identified, and two methods to achieve such a damping matrix were proposed 
[3]. 

The purpose of this paper is to investigate these spurious damping forces, identify reasons why the use 
of the tangent stiffness matrix should be abandoned, and present two methods to eliminate spurious damping 
forces. 
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2. System and Ground Motion 

All response results are presented for a variant of the Seattle 20-story moment-resisting steel frame building 
designed for the SAC project, as described in Ref. [10]. Modal damping ratios are assumed to be 2%. This value 
is assigned to the first and third modes to determine 0a  and 1a  in Rayleigh damping. When the damping matrix 

is defined as superposition of modal damping matrices, all 20 modes are included, with nζ  = 2% in all modes. 
All response results presented are for the ground motion defined by the se30 record from the 1985 Valparaiso, 
Chile, earthquake. It was one of the 20 records with an exceedance probability of 2% in 50 years selected for the 
Seattle site as part of the SAC project. 

3. Spurious Damping Forces from Rayleigh Damping Model 

Consider a structural model that has mass associated with DOFs tu , zero inertia associated with DOFs 0u , and 

external dynamic forces applied only along DOFs tu . This situation is typical in analysis of building frames, 
where the joint rotation DOFs are usually assigned zero inertia and the effective external forces associated with 
horizontal ground motion exist along lateral floor displacements, tu , but not in rotational DOFs. Specializing 
Eq. (1) for an undamped, linearly elastic system and writing in partitioned form: 

0

0 000 0

( )t ttt ttt

t

t
+ =

          
       

          

u uk km 0 p
k k0 0 u u 0




 (2) 

Because no inertia terms or external forces are associated with DOFs 0u , the second equation permits a static 

relation between 0u  and tu : 

1
00 00 t t
−= −u k k u  (3) 

We demonstrate next that the damping forces in 0u  DOFs will be zero for a linear systems with 
Rayleigh damping: 

0 1a a= +c m k  (4) 

The damping forces are 

0

0 0 00 0

tDt tt t

D t
=

      
    
      

uf c c
f c c u




 (5) 

Substituting Eq. (4), the damping forces in 0u  DOFs are given by 

0 1 0 00 0D t ta= +  f k u k u   (6) 

Differentiating Eq. (3) with respect to time gives a corresponding equation in velocities that is substituted in Eq. 
(6) to obtain 
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1
0 1 0 00 00 0D t tt ta −= − =  f k u k k k u 0   (7) 

Although the damping forces in 0u  DOFs do not exist during linear response of a structure, they develop 
after the structure deforms into the inelastic range. Because the stiffness-proportional part of Rayleigh damping 
is based on the initial stiffness matrix, the damping forces are given by Eq. (6), even after yielding of the 
structure. However, the internal elastic resisting forces are no longer given by s =f k u , but by the nonlinear 

hysteretic function sf (u) . This implies that the tangent stiffness matrix varies with time, Eq. (3) is no longer 
valid, and the damping forces 0Df  defined by Eq. (6) will no longer be zero. This seems anomalous in the sense 
that viscous damping moments develop because of yielding of the structural elements, a mechanism that has no 
causal relationship to viscous damping. It is for this reason that we refer to them as spurious damping forces. 

These spurious damping forces are demonstrated in Fig. 1 where the damping moment—normalized by 
the plastic moment Mp of the beam—at a joint on the 18th floor of the SAC-Seattle 20-story steel moment-
resistant frame building is presented as a function of time. This damping moment is equal to the unbalanced 
moment Mu at the joint if member forces are computed from sf (u) . Also shown in Fig. 1 are intervals of 
yielding of the plastic hinge. Observe that moment imbalance exists at a joint if the structure is yielding but 
decreases quickly when the structure returns to linearly elastic state. The unbalanced moment is implausibly 
large, almost three times the plastic moment of the beam; thus the computed response of the structure is expected 
to be in error, as will be confirmed later. 

 
Fig. 1 –  Unbalanced moment due to Rayleigh damping at a beam−column joint on the 18th floor of the SAC-
Seattle 20-story frame due to SE30 ground motion record from the 1985 Valparaiso, Chile, earthquake. Lower 

part of the figure shows time intervals of yielding (from Ref. [10]). 

4 Rayleigh Damping based on Tangent Stiffness 

To reduce the unbalanced moments at joints arising from Rayleigh damping, several researchers have proposed 
to modify the stiffness proportional term by replacing the initial stiffness matrix by the tangent stiffness matrix 
[4–7], i.e., 

0 1 Ta= +c m a k  (8) 

It has been demonstrated that the spurious damping forces are reduced by using the tangent stiffness instead of 
the initial stiffness. However, defining damping proportional to the tangent stiffness matrix lacks a physical basis 
and has conceptual implications that are troubling. 
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To illustrate these issues, we compare the response of an elastoplastic SDF system for two damping 
models: constant damping coefficient, ( ) ( )2 2n nc m kζ ω ζ ω= = —the model used since the inception of 
research in earthquake response of inelastic systems [11]; and damping coefficient proportional to the tangent 
stiffness, i.e., ( )2 T nc kζ ω= . We will refer to these models as initial-stiffness-proportional damping and 
tangent-stiffness-proportional damping, respectively. The second damping model is identical to the first for the 
elastic branches of the force-deformation curve, but its damping coefficient is zero for the plastic branches. The 
SDF system considered has the following properties: small amplitude vibration period Tn = 0.5 sec, damping 
ratio ζ = 5%, and normalized yield strength 0.125yf = . The deformation response of this system for the two 
damping models is presented in Fig. 2. Observe that tangent-stiffness-proportional damping leads to larger 
response because it dissipates no energy while the system is yielding. For this damping model, although the 
deformation response appears to be reasonable, the variation of damping force with time seems physically 
unacceptable: the damping force drops suddenly to zero each time yielding occurs, as observed in Fig. 2b. To 
further understand the implications of this damping model, we focus on a single cycle of response in Fig. 2c-e. 
Evident are: (1) the sudden drop in damping force; and (2) nonlinear damping force-velocity relation with 
triangular loops, behavior that lacks a plausible physical basis. As shown Fig. 2e, this damping model does not 
display complete elliptical loops in the Df u−  plot that are characteristic of the linear model. Another 
unacceptable feature of this damping model is that it implies a negative damping coefficient when the member 
stiffness at large deformations becomes negative. 

Because of these conceptual problems, use of the tangent-stiffness-proportional damping model is not 
recommended, although it greatly reduces the spurious damping forces, as researchers have demonstrated [4–7, 
10]. Two preferred approaches to eliminate the spurious damping forces developed in the traditional Rayleigh 
damping model are presented in the next two sections. 

 
Fig 2 – Response of an elastoplastic SDF system due to El Centro ground motion; Tn = 0.5 sec, ζ = 5%, and 

0.125yf = , (a) deformation; (b, c) damping force, (d) damping force-velocity relation; and (e) damping force-
deformation relation. Results are presented for two damping models: linear viscous damping and nonlinear 

viscous damping with its coefficient proportional to the tangent stiffness (from Ref. [13]). 
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5. Penalty Elements to Model Plastic Hinges 

Plastic hinges are typically modeled by rotational springs with, say, bilinear moment-rotation relation. For 
moment M less than the yield moment for the beam, the spring should be rigid (i.e., infinitely stiff) to prevent 
hinge rotation. This idea is implemented by assigning a very high value of initial stiffness to minimize rotation 
of the rotational spring and its contribution to the flexibility of the beam. If such a high stiffness is included in 
the a1k term in Rayleigh damping, a large damping moment will exist even after the hinge yields, resulting in 
spurious damping forces, as was observed in Fig. 1. 

Researchers have demonstrated that penalty-type elements, commonly used to impose constraints at 
contact or sliding surfaces, are also useful in modeling plastic hinges [8]. Because penalty elements provide only 
constraints, they should not contain damping. Therefore, stiffness contributions from these penalty elements are 
not included in the a1k term of the damping matrix. This approach eliminates the spurious damping forces. 

6. Modal Damping Model based on Superposition of Modal Damping Matrices 

Consider the damping model as a superposition of modal damping matrices [11]: 

1

2N
n n T

n n
n nM

ζ ω

=

=
 
 
 
∑c m mφφ  (9) 

This model eliminates the spurious damping forces arising in the Rayleigh damping model. Writing Eq. (9) in 
partitioned form: 

0
0

10 00 0

2N
tt t nttt ttn n T T
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ζ ω
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∑
c c m 0 m 0
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φ
 (10) 

where ntφ  and 0nφ  are the subvectors of the nth mode corresponding to the tu  and 0u  DOFs. Multiplying out 
the matrices on the right side gives 

1

2N
n n T

tt tt nt nt tt
n nM

ζ ω

=

=
 
 
 
∑c m mφ φ  (11) 

00 0 0t t= = =c c c 0  (12) 

It is clear that the damping matrix of Eq. (9) is of the special form: 

tt=
 
 
 

c 0
c

0 0
 (13) 

With such a damping matrix, the damping forces in the DOFs 0u  with no mass will always be zero—during 
both elastic and inelastic regimes of response. This conclusion is valid independent of the number of modes 
included in Eq. (9) and irrespective of values specified—no matter how small or large—for the modal damping 
ratios. 
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However, the implications of not including a particular term in the series of Eq. (9) should be 
recognized. The nth term in the summation is the contribution of the nth mode with its damping ratio nζ , to the 
damping matrix. If this term is not included in the series, the resulting damping matrix implies zero damping in 
the nth mode. Solution strategies used for numerical integration of equations of motion should be robust enough 
to work in the presence of zero damping in modes J+1 to N. Unconditionally stable time stepping procedures, 
such as the constant average acceleration method should be employed for such applications. 

7. Related Work 
7.2 Early Work in RUAUMOKO 

The idea of using superposition of modal damping matrices to construct the damping matrix for nonlinear RHA 
goes back to Chrisp’s master’s thesis [1] under the supervision of Athol Carr [2]. However, their motivation for 
introducing this damping model was different than presented in this paper. Our goal was to conform to the 
special structure of the damping matrix given by Eq. (3), which is achieved by the damping model of Eq. (9), 
independent of the number of modes and modal damping values. In contrast, their goal was to limit the damping 
ratio in the very high modes. For this purpose, Carr added two implementations of the damping matrix in his 
signature software RUAUMOKO [12]; modal damping ratios are (1) constant at all frequencies; and (2) a 
trilinear function of frequency that is constant at ω lower than ω1, varies linearly between ω1 and ωJ, and then 
stays constant at ω higher than ωJ. It was demonstrated that these damping models greatly reduce the spurious 
damping moments at joints [2]. 

Unfortunately, the work of Chrisp and Carr did not find widespread adoption, perhaps because it never 
appeared as a published paper in a prominent journal. As a result, researchers continued to look for a way of 
reducing the spurious damping forces associated with the Rayleigh damping model. 

7.2 Earlier Proposals for Damping Matrix of Special Form 

Two ways of constructing a damping matrix that conforms to Eq. (13) were proposed in 1994 [3]. The first 
solution was to use the Caughey series with 0l ≤  terms in Eq. (11.4.11) of Ref. [11]. The second proposal was 
to first construct the damping matrix with reference to DOFs tu  with mass, and then expand this c to the full set 
of DOFs with columns and rows of zeros corresponding to DOFs that have no mass. The condensed damping 
matrix could be modeled by Rayleigh damping with initial-stiffness-proportional damping and coefficients 0a  
and 1a  determined in the usual manner. Neither of these two approaches seem to have been adopted widely, 
perhaps because they result in a damping matrix that is fully populated, and because the condensed stiffness 
matrix required in the second approach is not computed as part of the standard computation in most general 
purpose computer programs. 

8. Influence of Damping Model on Response 

Concentrated plasticity is the most common approach to modeling structural elements typical of multistory 
buildings. This model is based on the assumption that inelastic deformation will be concentrated as plastic 
hinges at the two ends of a structural element, and the remainder of the element remains linearly elastic. 

The earthquake response of a concentrated plasticity model of a building responding into the inelastic 
range can be greatly influenced by how damping is modeled. Response results will be presented for three 
damping models: (1) RI, Rayleigh damping based on initial stiffness, Eq. (4); (2) Mod-RI, Modified Rayleigh 
model without damping in plastic hinges (Section 5); and (3) MODAL, superposition of modal damping 
matrices, Eq. (9), with damping specified in all 20 modes of dominantly lateral vibration of the 20-story 
building. 
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The selected ground motion drives the building significantly into the inelastic range, and its response is 
greatly influenced by the choice of damping model. This is evident from Fig. 3, where the roof displacement 
response of the building with its damping defined by three models is presented. The roof displacement of the 
building with the RI damping model oscillates about the zero-displacement axis, presumably because of the 
much larger damping resisting force arising from the large initial stiffness of the hinge. In contrast, significant 
permanent drift is observed in the case of Mod-RI and MODAL damping models, both of which lead to similar 
response results. As expected based on the preceding observations, the floor displacements, story drifts, and 
plastic rotations are greatly underestimated if the RI damping model is used. This is shown in Fig. 4 where the 
height-wise variation of the peak values of these response quantities are plotted; observe that the response results 
for the other two damping models are similar. 

Based on these results, we conclude that the classical Rayleigh damping model is inappropriate for 
nonlinear RHA of buildings. The preferred damping models are: (1) a modified Rayleigh damping model in 
which the stiffness-proportional term is based on a k that omits contributions from all rotational springs used to 
model plastic hinges; and (2) a damping matrix defined by superposition of modal damping matrices. The first of 
these two models is easier to understand and implement, whereas the second model has the advantage that it 
eliminates the spurious damping forces even if rotational springs that model plastic hinges include damping, as 
in some widely used computer programs. 

 
Fig. 3 – Response history of roof displacement due to intense ground motion for three damping models: RI, 

Mod-RI, and MODAL (with damping specified in all 20 modes); from Ref. [13]. 

 
Fig. 4 – Peak values of (a) floor displacements, (b) story drifts, and (c) plastic hinge rotations—at each floor it is 
the largest value among all hinges—due to intense ground motion for three damping models: RI, Mod-RI, and 

MODAL (with damping specified in all 20 modes); from Ref. [13]. 
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9. Limitations of Linear Viscous Damping 

Damping forces can be unrealistically large if the linear viscous damping model is used in nonlinear RHA. This 
problem, which has been identified in the context of modified Rayleigh damping, arises because yielding of 
structural elements limits their resisting forces, but no such mechanism exists for limiting the damping forces 
[8]. In the SDF system mentioned in Section 4, the peak damping force was determined to be almost 30% of the 
yield strength of the system (Fig. 2b). In contrast, for the corresponding linear system, the ratio of peak values of 
damping and elastic forces is 10%+ Hall has proposed the idea of imposing a limit on the damping forces that 
can develop, resulting in a nonlinear ( )Df u  relation [8]. This idea requires further investigation and 
development. 

10. Conclusions 

This investigation of modeling viscous damping in nonlinear RHA of buildings with concentrated plasticity at 
beam-column joints has led to the following conclusions: 

1.  The Rayleigh damping model causes spurious damping forces, resulting in unbalanced elastic moments at 
beam–column joints; the source of this problem has been identified. 

2.  Defining damping matrix proportional to the tangent stiffness matrix lacks a physical basis and is fraught 
with conceptual problems. 

3.  The classical Rayleigh damping model is inappropriate for nonlinear RHA of buildings. The preferred 
damping models are: (1) a modified Rayleigh damping model in which the stiffness proportional term is based 
on a k that omits contributions from all rotational springs used to model plastics hinges; and (2) a damping 
matrix defined by superposition of modal damping matrices. 
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